101
|
Aguilar EG, Murphy WJ. Obesity induced T cell dysfunction and implications for cancer immunotherapy. Curr Opin Immunol 2018; 51:181-186. [PMID: 29655021 DOI: 10.1016/j.coi.2018.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Obesity has been shown to increase risk for a number of different disorders, including cancer. In addition, obesity is also associated with immune dysfunction, which could contribute to its strong association with other comorbidities. Recently, the immune system has been found to be heavily regulated by changes in metabolism. In particular, T cells are able to respond to intrinsic metabolic regulatory mechanisms, as well as extrinsic factors such as the changes in metabolite availability. The dysfunctional metabolic environment created by obesity could therefore have a direct impact on T cell responses. In this review, we highlight recent findings in the fields of T cell biology and obesity, with a focus on mechanisms driving T cell dysfunction and potential implications for immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Ethan G Aguilar
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95816, USA
| | - William J Murphy
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95816, USA; Department of Internal Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
102
|
Abstract
Obesity has been shown to increase risk for a number of different disorders, including cancer. In addition, obesity is also associated with immune dysfunction, which could contribute to its strong association with other comorbidities. Recently, the immune system has been found to be heavily regulated by changes in metabolism. In particular, T cells are able to respond to intrinsic metabolic regulatory mechanisms, as well as extrinsic factors such as the changes in metabolite availability. The dysfunctional metabolic environment created by obesity could therefore have a direct impact on T cell responses. In this review, we highlight recent findings in the fields of T cell biology and obesity, with a focus on mechanisms driving T cell dysfunction and potential implications for immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Ethan G Aguilar
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95816, USA
| | - William J Murphy
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95816, USA; Department of Internal Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
103
|
Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence. J Proteomics 2018; 178:82-91. [DOI: 10.1016/j.jprot.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
|
104
|
Pirillo A, Bonacina F, Norata GD, Catapano AL. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr Atheroscler Rep 2018; 20:12. [PMID: 29445885 DOI: 10.1007/s11883-018-0715-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is an inflammatory disorder of the arterial wall, in which several players contribute to the onset and progression of the disease. Besides the well-established role of lipids, specifically cholesterol, and immune cell activation, new insights on the molecular mechanisms underlying the atherogenic process have emerged. RECENT FINDINGS Meta-inflammation, a condition of low-grade immune response caused by metabolic dysregulation, immunological memory of innate immune cells (referred to as "trained immunity"), cholesterol homeostasis in dendritic cells, and immunometabolism, i.e., the interplay between immunological and metabolic processes, have all emerged as new actors during atherogenesis. These observations reinforced the interest in directly targeting inflammation to reduce cardiovascular disease. The novel acquisitions in pathophysiology of atherosclerosis reinforce the tight link between lipids, inflammation, and immune response, and support the benefit of targeting LDL-C as well as inflammation to decrease the CVD burden. How this will translate into the clinic will depend on the balance between costs (monoclonal antibodies either to PCSK9 or to IL-1ß), side effects (increased incidence of death due to infections for anti-IL-1ß antibody), and the benefits for patients at high CVD risk.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, 9, 20133, Milan, Italy.
| |
Collapse
|
105
|
Trim W, Turner JE, Thompson D. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Front Immunol 2018; 9:169. [PMID: 29479350 PMCID: PMC5811473 DOI: 10.3389/fimmu.2018.00169] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed "inflammageing". In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity-including an accumulation of pro-inflammatory immune cell populations-plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence.
Collapse
Affiliation(s)
- William Trim
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
106
|
Baragetti A, Ramirez GA, Magnoni M, Garlaschelli K, Grigore L, Berteotti M, Scotti I, Bozzolo E, Berti A, Camici PG, Catapano AL, Manfredi AA, Ammirati E, Norata GD. Disease trends over time and CD4 +CCR5 + T-cells expansion predict carotid atherosclerosis development in patients with systemic lupus erythematosus. Nutr Metab Cardiovasc Dis 2018; 28:53-63. [PMID: 29150407 DOI: 10.1016/j.numecd.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Patients with Systemic Lupus Erythematosus (SLE) present increased cardiovascular mortality compared to the general population. Few studies have assessed the long-term development and progression of carotid atherosclerotic plaque in SLE patients. Our aim was to investigate the association of clinical and laboratory markers of disease activity and classical cardiovascular risk factors (CVRF) with carotid atherosclerosis development in SLE patients in a prospective 5-year study. METHODS AND RESULTS Clinical history and information on principal CVRFs were collected at baseline and after 5 years in 40 SLE patients (36 women, mean age 42 ± 9 years; 14.4 ± 7 years of mean disease duration) and 50 age-matched controls. Carotid Doppler ultrasonography was employed to quantify the atherosclerotic burden at baseline and at follow up. Clinimetrics were applied to assess SLE activity over time (SLEDAI). The association between basal circulating T cell subsets (including CD4+CCR5+; CD4+CXCR3+; CD4+HLADR+; CD4+CD45RA+RO-, CD4+CD45RO+RA- and their subsets) and atherosclerosis development was evaluated. During the 5-year follow up, 32% of SLE patients, developed carotid atherosclerosis compared to 4% of controls. Furthermore, considering SLEDAI changes over time, patients within the highest tertile were those with increased incidence of carotid atherosclerosis independently of CVRF. In addition, increased levels of CD4+CCR5+ T cells were independently associated with the development of carotid atherosclerosis in SLE patients. CONCLUSION Serial clinical evaluations over time, rather than a single point estimation of disease activity or CVRF burden, are required to define the risk of carotid atherosclerosis development in SLE patients. Specific T cell subsets are associated with long-term atherosclerotic progression and may further be of help in predicting vascular disease progression.
Collapse
Affiliation(s)
- A Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; Center for the Study of Atherosclerosis - Bassini Hospital, Cinisello Balsamo, Italy
| | - G A Ramirez
- Università Vita-Salute San Raffaele, Milan, Italy; Unit of Medicine and Clinical Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Magnoni
- Department of Thoracic and Cardiovascular Surgery, Università Vita-Salute San Raffaele Scientific Institute Milan, Italy
| | - K Garlaschelli
- Center for the Study of Atherosclerosis - Bassini Hospital, Cinisello Balsamo, Italy
| | - L Grigore
- Center for the Study of Atherosclerosis - Bassini Hospital, Cinisello Balsamo, Italy; IRCCS - Multimedica Hospital, Sesto San Giovanni, Italy
| | - M Berteotti
- Department of Thoracic and Cardiovascular Surgery, Università Vita-Salute San Raffaele Scientific Institute Milan, Italy
| | - I Scotti
- Department of Thoracic and Cardiovascular Surgery, Università Vita-Salute San Raffaele Scientific Institute Milan, Italy
| | - E Bozzolo
- Università Vita-Salute San Raffaele, Milan, Italy
| | - A Berti
- Università Vita-Salute San Raffaele, Milan, Italy; Unit of Medicine and Clinical Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P G Camici
- Department of Thoracic and Cardiovascular Surgery, Università Vita-Salute San Raffaele Scientific Institute Milan, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; IRCCS - Multimedica Hospital, Sesto San Giovanni, Italy
| | - A A Manfredi
- Università Vita-Salute San Raffaele, Milan, Italy; Unit of Medicine and Clinical Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Ammirati
- Niguarda Ca' Granda Hospital, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; Center for the Study of Atherosclerosis - Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
107
|
Shala-Lawrence A, Blanden MJ, Krylova SM, Gangopadhyay SA, Beloborodov SS, Hougland JL, Krylov SN. Simultaneous Analysis of a Non-Lipidated Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein Lipidation’s Impact on Cellular Regulation. Anal Chem 2017; 89:13502-13507. [DOI: 10.1021/acs.analchem.7b03846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Agnesa Shala-Lawrence
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Melanie J. Blanden
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Svetlana M. Krylova
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Stanislav S. Beloborodov
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sergey N. Krylov
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
108
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
109
|
A past and present overview of macrophage metabolism and functional outcomes. Clin Sci (Lond) 2017; 131:1329-1342. [PMID: 28592702 DOI: 10.1042/cs20170220] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
In 1986 and 1987, Philip Newsholme et al. reported macrophages utilize glutamine, as well as glucose, at high rates. These authors measured key enzyme activities and consumption and production levels of metabolites in incubated or cultured macrophages isolated from the mouse or rat intraperitoneal cavity. Metabolic pathways essential for macrophage function were then determined. Macrophages utilize glucose to generate (i) ATP in the pathways of glycolysis and mitochondrial oxidative phosphorylation, (ii) glycerol 3-phosphate for the synthesis of phospholipids and triacylglycerols, (iii) NADPH for the production of reactive oxygen species (ROS) and (iv) ribose for the synthesis of RNA and subsequently production and secretion of protein mediators (e.g. cytokines). Glutamine plays an essential role in macrophage metabolism and function, as it is required for energy production but also provides nitrogen for synthesis of purines, pyrimidines and thus RNA. Macrophages also utilize fatty acids for both energy production in the mitochondria and lipid synthesis essential to plasma membrane turnover and lipid meditator production. Recent studies utilizing metabolomic approaches, transcriptional and metabolite tracking technologies have detailed mitochondrial release of tricarboxylic acid (TCA) intermediates (e.g. citrate and succinate) to the cytosol, which then regulate pro-inflammatory responses. Macrophages can reprogramme their metabolism and function according to environmental conditions and stimuli in order to polarize phenotype so generating pro- or anti-inflammatory cells. Changes in macrophage metabolism result in modified function/phenotype and vice versa. The plasticity of macrophage metabolism allows the cell to quickly respond to changes in environmental conditions such as those induced by hormones and/or inflammation. A past and present overview of macrophage metabolism and impact of endocrine regulation and the relevance to human disease are described in this review.
Collapse
|
110
|
Cucchi D, Mauro C. LACTB-mediated tumour suppression by increased mitochondrial lipid metabolism. Cell Death Differ 2017; 24:1137-1139. [PMID: 28475178 PMCID: PMC5520170 DOI: 10.1038/cdd.2017.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
111
|
Abstract
Body weight regain often causes failure of obesity therapies while the underlying mechanism remains largely unknown. In this study, we report that immune cells, especially CD4+ T cells, mediate the ‘memory’ of previous obese status. In a weight gain-loss-regain model, we found that C57BL/6J mice with an obesity history showed a much faster rate of body weight regain. This obesity memory could last for at least 2 months after previously obese mice were kept at the same body weight as non-obese mice. Surprisingly, such obesity memory was abrogated by dexamethasone treatment, whereas immunodeficient Rag1−/− and H2A−/− mice failed to establish such memory. Rag1−/− mice repossessed the obesity memory when immune cells or CD4+ T cells isolated from previously obese mice were transferred. Furthermore, depletion of CD4+ T cells led to obesity memory ablation. Taken together, we conclude that CD4+ T cells mediate obesity memory and promote weight regain.
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW Adipocytes have adapted to store energy in the form of lipid and also secrete circulating factors called adipokines that signal to other tissues to coordinate energy homeostasis. These functions are disrupted in the setting of obesity, promoting the development of diseases such as diabetes, cardiovascular disease, and cancer. RECENT FINDINGS Obesity is linked to an increased risk of many types of cancer and increased cancer-related mortality. The basis for the striking association between obesity and cancer is not well understood. Here, we review the cellular and molecular pathways that appear to be involved in obesity-driven cancer. We also describe possible therapeutic considerations and highlight important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah E Ackerman
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Olivia A Blackburn
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
- The Rockefeller University, 1230 York Avenue, Box 223, New York, NY, 10065, USA.
| |
Collapse
|
113
|
Amersfoort J, Kuiper J. T cell metabolism in metabolic disease-associated autoimmunity. Immunobiology 2017; 222:925-936. [PMID: 28363498 DOI: 10.1016/j.imbio.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
This review discusses the relevant metabolic pathways and their regulators which show potential for T cell metabolism-based immunotherapy in diseases hallmarked by both metabolic disease and autoimmunity. Multiple therapeutic approaches using existing pharmaceuticals are possible from a rationale in which T cell metabolism forms the hub in dampening the T cell component of autoimmunity in metabolic diseases. Future research into the effects of a metabolically aberrant micro-environment on T cell metabolism and its potential as a therapeutic target for immunomodulation could lead to novel treatment strategies for metabolic disease-associated autoimmunity.
Collapse
Affiliation(s)
- Jacob Amersfoort
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands.
| | - Johan Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
114
|
Abstract
T cells promote inflammation in obesity, but how metabolic stress associated with obesity alters T cell responses remains unclear. In this issue of Cell Metabolism,Mauro et al. (2017) demonstrate that saturated fatty acids directly increase effector-memory T cell formation by amplifying T cell antigen-receptor-induced PI3K/Akt signaling.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|