101
|
Secondary in-hospital epidemiological investigation after an outbreak of Pseudomonas aeruginosa ST357. J Infect Chemother 2020; 26:257-265. [DOI: 10.1016/j.jiac.2019.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
102
|
Cabral MP, Correia A, Vilanova M, Gärtner F, Moscoso M, García P, Vallejo JA, Pérez A, Francisco-Tomé M, Fuentes-Valverde V, Bou G. A live auxotrophic vaccine confers mucosal immunity and protection against lethal pneumonia caused by Pseudomonas aeruginosa. PLoS Pathog 2020; 16:e1008311. [PMID: 32040500 PMCID: PMC7034913 DOI: 10.1371/journal.ppat.1008311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/21/2020] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial pneumonia and its associated mortality. Moreover, extensively drug-resistant high-risk clones are globally widespread, presenting a major challenge to the healthcare systems. Despite this, no vaccine is available against this high-concerning pathogen. Here we tested immunogenicity and protective efficacy of an experimental live vaccine against P. aeruginosa pneumonia, consisting of an auxotrophic strain which lacks the key enzyme involved in D-glutamate biosynthesis, a structural component of the bacterial cell wall. As the amounts of free D-glutamate in vivo are trace substances in most cases, blockage of the cell wall synthesis occurs, compromising the growth of this strain, but not its immunogenic properties. Indeed, when delivered intranasally, this vaccine stimulated production of systemic and mucosal antibodies, induced effector memory, central memory and IL-17A-producing CD4+ T cells, and recruited neutrophils and mononuclear phagocytes into the airway mucosa. A significant improvement in mice survival after lung infection caused by ExoU-producing PAO1 and PA14 strains was observed. Nearly one third of the mice infected with the XDR high-risk clone ST235 were also protected. These findings highlight the potential of this vaccine for the control of acute pneumonia caused by this bacterial pathogen. Pseudomonas aeruginosa is an opportunistic bacterium and one of the most common causes of healthcare-associated diseases, including acute pneumonia, causing high mortality within immunocompromised hosts. Most of these infections are strikingly difficult to treat using conventional antibiotic therapies, since this microorganism displays high intrinsic resistance to a wide range of antibiotics. Moreover, to date, no vaccine is available for prevention. Here we used a mutated bacterial strain, which is unable to replicate in vivo and to cause disease, as a live vaccine against acute pneumonia caused by this pathogen. When applied intranasally, this vaccine induced immunity both at local and distant body sites, activating immune cells which were recruited into the airway mucosa. This evoked immune response reduced the number of non-surviving mice after infection with two cytotoxic P. aeruginosa strains causing acute lung infection. Some protection was also observed against an internationally disseminated cytotoxic strain. These data indicate that this is a promising vaccine candidate against P. aeruginosa-pneumonia.
Collapse
Affiliation(s)
- Maria P. Cabral
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Alexandra Correia
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Miriam Moscoso
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Patricia García
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Juan A. Vallejo
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Astrid Pérez
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Mónica Francisco-Tomé
- Department of Microbiology, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Víctor Fuentes-Valverde
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Germán Bou
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
- * E-mail:
| |
Collapse
|
103
|
Integrated Genome-Wide Analysis of an Isogenic Pair of Pseudomonas aeruginosa Clinical Isolates with Differential Antimicrobial Resistance to Ceftolozane/Tazobactam, Ceftazidime/Avibactam, and Piperacillin/Tazobactam. Int J Mol Sci 2020; 21:ijms21031026. [PMID: 32033143 PMCID: PMC7037351 DOI: 10.3390/ijms21031026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is one of the main causes of morbidity and mortality in hospitalized patients and the leading cause of nosocomial infections. We investigated, here, two MDR P. aeruginosa clinical isolates from a hospitalized patient with differential antimicrobial resistance to ceftazidime/avibactam (CZA), ceftolozane/tazobactam (C/T), and piperacillin/tazobactam (P/T). Their assembled complete genomes revealed they belonged to ST235, a widespread MDR clone; and were isogenic with only a single nucleotide variant, causing G183D mutation in AmpC β-lactamase, responsible for a phenotypic change from susceptible to resistant to CZA and C/T. Further epigenomic profiling uncovered two conserved DNA methylation motifs targeted by two distinct putative methyltransferase-containing restriction-modification systems, respectively; more intriguingly, there was a significant difference between the paired isolates in the pattern of genomic DNA methylation and modifications. Moreover, genome-wide gene expression profiling demonstrated the inheritable genomic methylation and modification induced 14 genes being differentially regulated, of which only toxR (downregulated), a regulatory transcription factor, had its promoter region differentially methylate and modified. Since highly expressed opdQ encodes an OprD porin family protein, therefore, we proposed an epigenetic regulation of opdQ expression pertinent to the phenotypic change of P. aeruginosa from resistant to susceptible to P/T. The disclosed epigenetic mechanism controlling phenotypic antimicrobial resistance deserves further experimental investigation.
Collapse
|
104
|
Voigt AM, Zacharias N, Timm C, Wasser F, Sib E, Skutlarek D, Parcina M, Schmithausen RM, Schwartz T, Hembach N, Tiehm A, Stange C, Engelhart S, Bierbaum G, Kistemann T, Exner M, Faerber HA, Schreiber C. Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. CHEMOSPHERE 2020; 241:125032. [PMID: 31622887 DOI: 10.1016/j.chemosphere.2019.125032] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The high use of antibiotics in human and veterinary medicine has led to a wide spread of antibiotics and antimicrobial resistance into the environment. In recent years, various studies have shown that antibiotic residues, resistant bacteria and resistance genes, occur in aquatic environments and that clinical wastewater seems to be a hot spot for the environmental spread of antibiotic resistance. Here a representative statistical analysis of various sampling points is presented, containing different proportions of clinically influenced wastewater. The statistical analysis contains the calculation of the odds ratios for any combination of antibiotics with resistant bacteria or resistance genes, respectively. The results were screened for an increased probability of detecting resistant bacteria, or resistance genes, with the simultaneous presence of antibiotic residues. Positive associated sets were then compared, with regards to the detected median concentration, at the investigated sampling points. All results show that the sampling points with the highest proportion of clinical wastewater always form a distinct cluster concerning resistance. The results shown in this study lead to the assumption that ciprofloxacin is a good indicator of the presence of multidrug resistant P. aeruginosa and extended spectrum β-lactamase (ESBL)-producing Klebsiella spec., Enterobacter spec. and Citrobacter spec., as it positively relates with both parameters. Furthermore, a precise relationship between carbapenemase genes and meropenem, regarding the respective sampling sites, could be obtained. These results highlight the role of clinical wastewater for the dissemination and development of multidrug resistance.
Collapse
Affiliation(s)
- A M Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany.
| | - N Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - C Timm
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - F Wasser
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - E Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - D Skutlarek
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - M Parcina
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - R M Schmithausen
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - N Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - S Engelhart
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - G Bierbaum
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - T Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - M Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - H A Faerber
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| | - C Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, Building 63, 53127, Bonn, Germany
| |
Collapse
|
105
|
Whole-Genome Sequences of Two NDM-1-Producing Pseudomonas aeruginosa Strains Isolated in a Clinical Setting in Albania in 2018. Microbiol Resour Announc 2020; 9:9/1/e01291-19. [PMID: 31896642 PMCID: PMC6940294 DOI: 10.1128/mra.01291-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolation of metallo-β-lactamase-producing, carbapenem-resistant, Pseudomonas aeruginosa strains is increasingly being documented worldwide; their presence constitutes a public health threat. Here, we report draft genome sequences of two New Delhi metallo-β-lactamase-1-producing, multidrug-resistant, P. aeruginosa strains of sequence type 235 that were isolated from the surgical wound of two patients hospitalized in the same ward.
Collapse
|
106
|
Pathogenic characteristics of Pseudomonas aeruginosa bacteraemia isolates in a high-endemicity setting for ST175 and ST235 high-risk clones. Eur J Clin Microbiol Infect Dis 2019; 39:671-678. [PMID: 31823150 DOI: 10.1007/s10096-019-03780-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa represents a major clinical concern. The interplay between antimicrobial resistance and virulence of P. aeruginosa was investigated in in vitro and in vivo studies. Thirty-eight well-characterized (21 MDR and 17 non-MDR) P. aeruginosa strains from patients with bacteraemia were analysed. Resistance phenotype, carbapenemase production, clonal relatedness, type III secretion system genotype, O-antigen serotype, cytotoxicity (ability to lyse cells) on A549 cells, and virulence (lethality in nematodes) in a Caenorhabditis elegans model were investigated. MDR strains showed lower cytotoxicity (35.4 ± 21.30% vs. 45.0 ± 18.78 %; P = 0.044) and virulence (66.7% vs. 100%; P = 0.011) than non-MDR strains. However, the pathogenicity of MDR high-risk clones varied broadly, with ST235 and ST175 clones being the most and least cytotoxic (51.8 ± 10.59% vs. 11.0 ± 1.25%; P < 0.0001) and virulent ([100% vs. 73.1; P = 0.075] and [0% vs. 93.9%; P < 0.0001], respectively). The pathogenicity of the ST235 clone was similar to that of non-MDR strains, and its ability to lyse cells and high virulence were related with the exoU-positive genotype. Furthermore, the O11 serotype was more frequent among the ST235 clone and exoU-positive genotype strains and was also essential for the pathogenicity of P. aeruginosa. Our data suggest that the pathogenicity of MDR high-risk clones is the result not only of the resistance phenotype but also of the virulence genotype. These findings have implications for the clinical management of patients and infection control programmes.
Collapse
|
107
|
Pelegrin AC, Saharman YR, Griffon A, Palmieri M, Mirande C, Karuniawati A, Sedono R, Aditianingsih D, Goessens WHF, van Belkum A, Verbrugh HA, Klaassen CHW, Severin JA. High-Risk International Clones of Carbapenem-Nonsusceptible Pseudomonas aeruginosa Endemic to Indonesian Intensive Care Units: Impact of a Multifaceted Infection Control Intervention Analyzed at the Genomic Level. mBio 2019; 10:e02384-19. [PMID: 31719179 PMCID: PMC6851282 DOI: 10.1128/mbio.02384-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
Infection control effectiveness evaluations require detailed epidemiological and microbiological data. We analyzed the genomic profiles of carbapenem-nonsusceptible Pseudomonas aeruginosa (CNPA) strains collected from two intensive care units (ICUs) in the national referral hospital in Jakarta, Indonesia, where a multifaceted infection control intervention was applied. We used clinical data combined with whole-genome sequencing (WGS) of systematically collected CNPA to infer the transmission dynamics of CNPA strains and to characterize their resistome. We found that the number of CNPA transmissions and acquisitions by patients was highly variable over time but that, overall, the rates were not significantly reduced by the intervention. Environmental sources were involved in these transmissions and acquisitions. Four high-risk international CNPA clones (ST235, ST823, ST357, and ST446) dominated, but the distribution of these clones changed significantly after the intervention was implemented. Using resistome analysis, carbapenem resistance was explained by the presence of various carbapenemase-encoding genes (blaGES-5, blaVIM-2-8, and blaIMP-1-7-43) and by mutations within the porin OprD. Our results reveal for the first time the dynamics of P. aeruginosa antimicrobial resistance (AMR) profiles in Indonesia and additionally show the utility of WGS in combination with clinical data to evaluate the impact of an infection control intervention. (This study has been registered at www.trialregister.nl under registration no. NTR5541).IMPORTANCE In low-to-middle-income countries such as Indonesia, work in intensive care units (ICUs) can be hampered by lack of resources. Conducting large epidemiological studies in such settings using genomic tools is rather challenging. Still, we were able to systematically study the transmissions of carbapenem-nonsusceptible strains of P. aeruginosa (CNPA) within and between ICUs, before and after an infection control intervention. Our data show the importance of the broad dissemination of the internationally recognized CNPA clones, the relevance of environmental reservoirs, and the mixed effects of the implemented intervention; it led to a profound change in the clonal make-up of CNPA, but it did not reduce the patients' risk of CNPA acquisitions. Thus, CNPA epidemiology in Indonesian ICUs is part of a global expansion of multiple CNPA clones that remains difficult to control by infection prevention measures.
Collapse
Affiliation(s)
- Andreu Coello Pelegrin
- Clinical Unit, bioMérieux, La Balme Les Grottes, France
- Vaccine & Infectious Disease Institute, Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Mattia Palmieri
- Clinical Unit, bioMérieux, La Balme Les Grottes, France
- Vaccine & Infectious Disease Institute, Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anis Karuniawati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Rudyanto Sedono
- Critical Care Division, Department of Anesthesia and Intensive Care, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Dita Aditianingsih
- Critical Care Division, Department of Anesthesia and Intensive Care, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Henri A Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
108
|
Pincus NB, Bachta KER, Ozer EA, Allen JP, Pura ON, Qi C, Rhodes NJ, Marty FM, Pandit A, Mekalanos JJ, Oliver A, Hauser AR. Long-term Persistence of an Extensively Drug-Resistant Subclade of Globally Distributed Pseudomonas aeruginosa Clonal Complex 446 in an Academic Medical Center. Clin Infect Dis 2019; 71:1524-1531. [PMID: 31583403 PMCID: PMC7486844 DOI: 10.1093/cid/ciz973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major challenge in the treatment of infections caused by Pseudomonas aeruginosa. Highly drug-resistant infections are disproportionally caused by a small subset of globally distributed P. aeruginosa sequence types (STs), termed "high-risk clones." We noted that clonal complex (CC) 446 (which includes STs 298 and 446) isolates were repeatedly cultured at 1 medical center and asked whether this lineage might constitute an emerging high-risk clone. METHODS We searched P. aeruginosa genomes from collections available from several institutions and from a public database for the presence of CC446 isolates. We determined antibacterial susceptibility using microbroth dilution and examined genome sequences to characterize the population structure of CC446 and investigate the genetic basis of AMR. RESULTS CC446 was globally distributed over 5 continents. CC446 isolates demonstrated high rates of AMR, with 51.9% (28/54) being multidrug-resistant (MDR) and 53.6% of these (15/28) being extensively drug-resistant (XDR). Phylogenetic analysis revealed that most MDR/XDR isolates belonged to a subclade of ST298 (designated ST298*) of which 100% (21/21) were MDR and 61.9% (13/21) were XDR. XDR ST298* was identified repeatedly and consistently at a single academic medical center from 2001 through 2017. These isolates harbored a large plasmid that carries a novel antibiotic resistance integron. CONCLUSIONS CC446 isolates are globally distributed with multiple occurrences of high AMR. The subclade ST298* is responsible for a prolonged epidemic (≥16 years) of XDR infections at an academic medical center. These findings indicate that CC446 is an emerging high-risk clone deserving further surveillance.
Collapse
Affiliation(s)
- Nathan B Pincus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly E R Bachta
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan P Allen
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Present address: Department of Microbiology and Immunology, Loyola University, Chicago, CTRE 218, 2160 S. First Ave. Maywood, IL 60153
| | - Olivia N Pura
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA,Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Francisco M Marty
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alisha Pandit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d’Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Correspondence: A. R. Hauser, 303 E. Chicago Ave., Ward 6–035, Chicago, IL 60611 ()
| |
Collapse
|
109
|
Thornhill G, David M. Endoscope-associated infections: A microbiologist's perspective on current technologies. TECHNIQUES IN GASTROINTESTINAL ENDOSCOPY 2019. [DOI: 10.1016/j.tgie.2019.150625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
110
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
111
|
Lin W, Wan K, Zeng J, Li J, Li X, Yu X. Low nutrient levels as drinking water conditions can reduce the fitness cost of efflux pump-mediated ciprofloxacin resistance in Pseudomonas aeruginosa. J Environ Sci (China) 2019; 83:123-132. [PMID: 31221375 DOI: 10.1016/j.jes.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The long-term persistence of antibiotic resistance in the environment, especially in drinking water, is a public health concern. Expression of an efflux pump, an important mechanism of resistance to antibiotics, usually confers a fitness cost in bacteria. In this study, we aimed to determine why antibiotic resistance conferred by overexpression of an efflux pump persisted in low-nutrient environments (TOC < 10 mg/L) such as drinking and source water in which antibiotic selective pressure might be very low or even absent. Competition experiments between wild-type Pseudomonas aeruginosa and ciprofloxacin-resistant mutants revealed that the fitness cost of ciprofloxacin resistance significantly decreased (p < 0.05) under low-nutrient (0.5 mg/L total organic carbon (TOC)) relative to high-nutrient (500 mg/L TOC) conditions. Mechanisms underlying this fitness cost were analyzed. The mexD gene expression in resistant bacteria (cip_3 strain) was significantly lower (p < 0.05) in low-nutrient conditions, with 10 mg/L TOC ((8.01 ± 0.82)-fold), than in high-nutrient conditions, with 500 mg/L TOC ((48.89 ± 4.16)-fold). Moreover, rpoS gene expression in resistant bacteria ((1.36 ± 0.13)-fold) was significantly lower (p < 0.05) than that in the wild-type strain ((2.78 ± 0.29)-fold) under low-nutrient conditions (10 mg/L TOC), suggesting a growth advantage. Furthermore, the difference in metabolic activity between the two competing strains was significantly smaller (p < 0.05) in low-nutrient conditions (5 and 0.5 mg/L TOC). These results suggest that nutrient levels are a key factor in determining the persistence of antibiotic resistance conferred by efflux pumps in the natural environment with trace amounts or no antibiotics.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
112
|
Epidemiology and characterisation of carbapenem-non-susceptible Pseudomonas aeruginosa in a large intensive care unit in Jakarta, Indonesia. Int J Antimicrob Agents 2019; 54:655-660. [PMID: 31398483 DOI: 10.1016/j.ijantimicag.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to describe the epidemiology and clinical impact of carbapenem-non-susceptible Pseudomonas aeruginosa (CNPA) in intensive care units (ICUs) of the national referral hospital of Indonesia. Adult patients admitted to ICUs were prospectively included. Pseudomonas aeruginosa were from clinical cultures and systematic screening. Environmental niches and healthcare workers (HCWs) were also screened. Susceptibility was determined phenotypically and the presence of carbapenemase genes was determined by PCR. Multiple loci variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) were used for genotyping. Of the patients included in the study, 17/412 (4.1%) carried CNPA on admission and 34/395 (8.6%) became positive during their ICU stay. The acquisition rate was 18/1000 patient-days at risk. Of 16 environmental isolates, 12 (75.0%) were CNPA. HCWs screened negative. Acquisition of CNPA was associated with longer ICU stay (adjusted hazard ratio = 1.89, 99% confidence interval 1.12-3.13). Mortality was >40% among patients with CNPA versus <30% among those without CNPA (P = 0.019). Moreover, 83/119 (69.7%) CNPA carried either blaVIM (n = 36), blaIMP (n = 23) or blaGES-5 (n = 24). Four sequence types (STs) dominated (ST235, ST823, ST446 and ST357). Five major MLVA clusters were distinguished, two belonging to ST235 and the other three to ST823, ST446 and ST357. CNPA are introduced into these ICUs and some strains expand clonally among patients and the environment, creating endemic CNPA. VIM-, IMP- and GES-5 genes are prevalent. CNPA acquisition was associated with prolonged ICU stay and may affect ICU survival.
Collapse
|
113
|
Local outbreak of extended-spectrum β-lactamase SHV2a-producing Pseudomonas aeruginosa reveals the emergence of a new specific sub-lineage of the international ST235 high-risk clone. J Hosp Infect 2019; 104:33-39. [PMID: 31369808 DOI: 10.1016/j.jhin.2019.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a major bacterial pathogen responsible for hospital-acquired infections. Although its epidemiology is considered as non-clonal, certain international high-risk multidrug-resistant clones have been recognized. AIM From the first report of an intra-hospital outbreak due to an SHV2a-producing P. aeruginosa strain, to describe the emergence of a new ST235-specific lineage harbouring this rare extended-spectrum β-lactamase (ESBL). METHODS Between May and October 2018, four patients hospitalized in the cardiovascular intensive care unit of a French teaching hospital were infected by a multidrug-resistant P. aeruginosa isolate. Serotype and antimicrobial susceptibility were tested; multi-locus sequence type (MLST), core genome MLST, and resistome were determined through whole genome sequencing. A phylogenetic analysis based on single nucleotide polymorphism was performed using available ST235 genomes. FINDINGS The four strains were susceptible to colistin, ciprofloxacin, ceftazidime-avibactam, and ceftolozane-tazobactam. blaSHV2a was identified in each genome of this ST235-O11 serotype cluster that showed an identical cgMLST profile (0-2 out of 4162 different alleles). The phylogenic analysis of 162 ST235 genomes showed that only four other strains harboured a blaSHV2a, originating from France and USA, clustering together although being different from the outbreak strains. CONCLUSIONS Among the ST235 P. aeruginosa strains, a sub-lineage sharing a common genetic background and harbouring the blaSHV2a ESBL seems to emerge from different locations, yielding secondary local outbreaks.
Collapse
|
114
|
High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874. [PMID: 31350412 PMCID: PMC6659710 DOI: 10.1038/s41598-019-47303-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system of Pseudomonas aeruginosa is an important virulence factor contributing to the cytotoxicity and the invasion process of this microorganism. The current study aimed to determine the presence of the exoU+/exoS+ genotype in P. aeruginosa clinical isolates. The presence of exoS, exoT, exoU and exoY was determined in 189 P. aeruginosa by PCR, and the presence/absence of exoU was analysed according to source infection, clonal relationships, biofilm formation, motility and antimicrobial susceptibility. The gyrA, parC, oprD, efflux pump regulators and β-lactamases genes were also analysed by PCR/sequencing. The exoS, exoT and exoY genes were found in 100% of the isolates. Meanwhile, exoU was present in 43/189 (22.8%) of the isolates, being significantly associated with multidrug resistance, extensively drug resistance as well as with higher level quinolone resistance. However, the presence of β-lactamases, mutations in gyrA and parC, and relevant modifications in efflux pumps and OprD were not significantly associated with exoU+ isolates. MLST analysis of a subset of 25 isolates showed 8 different STs displaying the exoU+/exoS+ genotype. The MDR basis of the exoU+ isolates remain to be elucidated. Furthermore, the clinical implications and spread of exoU+/exoS+ P. aeruginosa isolates need to be established.
Collapse
|
115
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
116
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
117
|
Impact of FiuA Outer Membrane Receptor Polymorphism on the Resistance of Pseudomonas aeruginosa toward Peptidoglycan Lipid II-Targeting PaeM Pyocins. J Bacteriol 2019; 201:JB.00164-19. [PMID: 30988031 DOI: 10.1128/jb.00164-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Certain Pseudomonas aeruginosa strains produce a homolog of colicin M, namely, PaeM, that specifically inhibits peptidoglycan biosynthesis of susceptible P. aeruginosa strains by hydrolyzing the lipid II intermediate precursor. Two variants of this pyocin were identified whose sequences mainly differed in the N-terminal protein moiety, i.e., the region involved in the binding to the FiuA outer membrane receptor and translocation into the periplasm. The antibacterial activity of these two variants, PaeM1 and PaeM2, was tested against various P. aeruginosa strains comprising reference strains PAO1 and PA14, PaeM-producing strains, and 60 clinical isolates. Seven of these strains, including PAO1, were susceptible to only one variant (2 to PaeM1 and 5 to PaeM2), and 11 were affected by both. The remaining strains, including PA14 and four PaeM1 producers, were resistant to both variants. The differences in the antibacterial spectra of the two PaeM homologs prompted us to investigate the molecular determinants allowing their internalization into P. aeruginosa cells, taking the PAO1 strain that is susceptible to PaeM2 but resistant to PaeM1 as the indicator strain. Heterologous expression of fiuA gene orthologs from different strains into PAO1, site-directed mutagenesis experiments, and construction of PaeM chimeric proteins provided evidence that the cell susceptibility and discrimination differences between the PaeM variants resulted from a polymorphism of both the pyocin and the outer membrane receptor FiuA. Moreover, we found that a third component, TonB1, a protein involved in iron transport in P. aeruginosa, working together with FiuA and the ExbB/ExbD complex, was directly implicated in this discrimination.IMPORTANCE Bacterial antibiotic resistance constitutes a threat to human health, imposing the need for identification of new targets and development of new strategies to fight multiresistant pathogens. Bacteriocins and other weapons that bacteria have themselves developed to kill competitors are therefore of great interest and a valuable source of inspiration for us. Attention was paid here to two variants of a colicin M homolog (PaeM) produced by certain strains of P. aeruginosa that inhibit the growth of their congeners by blocking cell wall peptidoglycan synthesis. Molecular determinants allowing recognition of these pyocins by the outer membrane receptor FiuA were identified, and a receptor polymorphism affecting the susceptibility of P. aeruginosa clinical strains was highlighted, providing new insights into the potential use of these pyocins as an alternative to antibiotics.
Collapse
|
118
|
Montero MM, Domene Ochoa S, López-Causapé C, VanScoy B, Luque S, Sorlí L, Campillo N, Padilla E, Prim N, Segura C, Pomar V, Rivera A, Grau S, Ambrose PG, Oliver A, Horcajada JP. Colistin plus meropenem combination is synergistic in vitro against extensively drug-resistant Pseudomonas aeruginosa, including high-risk clones. J Glob Antimicrob Resist 2019; 18:37-44. [PMID: 31154007 DOI: 10.1016/j.jgar.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Extensively drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) and particularly P. aeruginosa high-risk clones, are of growing concern because treatment options are limited. For years, colistin monotherapy has been the only available treatment, but is well known that is not an optimal treatment. A combination of colistin with another antibiotic could be a possible therapeutic option. OBJECTIVES This study aimed to investigate effective antibiotic combinations against 20 XDR P. aeruginosa isolates obtained in a Spanish multicentre study (2015). METHODS Forty-five checkerboards with six antipseudomonal antibiotics (amikacin, aztreonam, ceftazidime, meropenem, colistin, and ceftolozane/tazobactam) were performed to determine whether combinations were synergic or additive by fractional inhibitory concentration indices. On average, 15 different regimens were evaluated in duplicate against the three most prevalent high-risk clones (ST175, ST235, ST111) by time-kill analyses over 24h. The combination showing synergism in the three high-risk clones was validated in all studied XDR isolates. RESULTS In time-kill curves, the untreated control failed, as did each study regimen when administered alone. Two combinations were synergistic in the three high-risk clones that were initially studied: amikacin plus ceftazidime and colistin plus meropenem, with the second being the most effective combination. The efficacy of colistin plus meropenem was then tested in all 20 isolates. A synergistic bacterial density reduction for the duration of the study occurred in 80% of the entire XDR collection. CONCLUSIONS These data suggest that colistin plus meropenem may be a useful combination for the treatment of infections due to XDR P. aeruginosa, including high-risk clones, which warrants evaluation in a clinical trial.
Collapse
Affiliation(s)
- María M Montero
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain.
| | - Sandra Domene Ochoa
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain
| | - Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Brian VanScoy
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Sonia Luque
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Luisa Sorlí
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain
| | | | | | - Núria Prim
- Laboratori de Referència de Catalunya, Barcelona, Spain
| | | | - Virginia Pomar
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alba Rivera
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Clinical Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Juan P Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain.
| |
Collapse
|
119
|
Molecular Characterization of Multidrug-Resistant Pseudomonas aeruginosa Isolates in Hospitals in Myanmar. Antimicrob Agents Chemother 2019; 63:AAC.02397-18. [PMID: 30803967 DOI: 10.1128/aac.02397-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa has become a serious worldwide medical problem. This study was designed to clarify the genetic and epidemiological properties of MDR P. aeruginosa strains isolated from hospitals in Myanmar. Forty-five MDR P. aeruginosa isolates obtained from different patients in seven hospitals in Myanmar were screened using the broth microdilution method. The whole genomes of the MDR isolates were sequenced using a MiSeq platform (Illumina). Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced, and drug resistance genes were identified. Of the 45 isolates, 38 harbored genes encoding carbapenemases, including DIM-1, IMP-1, NDM-1, VIM-2, and VIM-5, and 9 isolates had genes encoding 16S rRNA methylases, including RmtB, RmtD3, RmtE, and RmtF2. Most MDR P. aeruginosa strains isolated in Myanmar belonged to sequence type 1047 (ST1047). This is the first molecular epidemiological analysis of MDR P. aeruginosa clinical isolates in Myanmar. These findings strongly suggest that P. aeruginosa ST1047 strains harboring carbapenemases, including DIM-, IMP-, NDM-, and VIM-type metallo-β-lactamases, have been spreading throughout medical settings in Myanmar.
Collapse
|
120
|
Sib E, Voigt AM, Wilbring G, Schreiber C, Faerber HA, Skutlarek D, Parcina M, Mahn R, Wolf D, Brossart P, Geiser F, Engelhart S, Exner M, Bierbaum G, Schmithausen RM. Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Int J Hyg Environ Health 2019; 222:655-662. [PMID: 30905579 DOI: 10.1016/j.ijheh.2019.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential.
Collapse
Affiliation(s)
- E Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - A M Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - G Wilbring
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - C Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - H A Faerber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - D Skutlarek
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Parcina
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R Mahn
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - D Wolf
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; University Clinic V, Department Hematology and Oncology, Medical University Innsbruck, Christoph-Probst-Platz Innrain 52, 6020, Innsbruck, Austria
| | - P Brossart
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - F Geiser
- Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - S Engelhart
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - G Bierbaum
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R M Schmithausen
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
121
|
Slekovec C, Robert J, van der Mee-Marquet N, Berthelot P, Rogues AM, Derouin V, Cholley P, Thouverez M, Hocquet D, Bertrand X. Molecular epidemiology of Pseudomonas aeruginosa isolated from infected ICU patients: a French multicenter 2012-2013 study. Eur J Clin Microbiol Infect Dis 2019; 38:921-926. [PMID: 30826996 DOI: 10.1007/s10096-019-03519-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/20/2019] [Indexed: 11/30/2022]
Abstract
Although Pseudomonas aeruginosa has a non-clonal epidemic population structure, recent studies have provided evidence of the existence of epidemic high-risk clones. The aim of this study was to assess the molecular epidemiology of P. aeruginosa isolates responsible for infections in French ICUs, regardless of resistance patterns. For a 1-year period, all non-duplicate P. aeruginosa isolated from bacteremia and pulmonary infections in ten adult ICUs of six French university hospitals were characterized by antimicrobial susceptibility testing and genotyping (MLST and PFGE). We identified β-lactamases with an extended spectrum phenotypically and by sequencing. The 104 isolates tested were distributed in 46 STs, of which 7 epidemic high-risk (EHR) clones over-represented: ST111, ST175, ST235, ST244, ST253, ST308, and ST395. Multidrug-resistant (MDR) isolates mostly clustered in these EHR clones, which frequently spread within hospitals. Only one ST233 isolate produced the carbapenemase VIM-2. PFGE analysis suggests frequent intra-hospital cross-transmission involving EHR clones. For ST395 and ST308, we also observed the progression from wild-type to MDR resistance pattern within the same PFGE pattern. Molecular epidemiology of P. aeruginosa in French ICUs is characterized by high clonal diversity notably among antimicrobial susceptible isolates and the over-representation of EHR clones, particularly within MDR isolates, even though multidrug resistance is not a constant inherent trait of EHR clones.
Collapse
Affiliation(s)
- Céline Slekovec
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France.,UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Jérôme Robert
- Centre d'immunologie et des maladies infectieuses-Paris, Cimi-Paris, INSERM, Laboratoire de Bactériologie-Hygiène, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Sorbonne Université, F-75013, Paris, France
| | | | - Philippe Berthelot
- Hygiène hospitalière et maladies infectieuses, Centre Hospitalier Universitaire, Saint-Etienne, France
| | - Anne-Marie Rogues
- Hygiène hospitalière, Centre Hospitalier Universitaire, INSERM U657, Université de Bordeaux, Bordeaux, France
| | - Véronique Derouin
- Bactériologie-Hygiène, AP-HP, Hôpitaux Universitaires Paris Sud- Clamart, Le Kremlin-Bicêtre, France
| | - Pascal Cholley
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France.,UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Michelle Thouverez
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France.,UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France.,UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France.,Centre d'immunologie et des maladies infectieuses-Paris, Cimi-Paris, INSERM, Laboratoire de Bactériologie-Hygiène, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Sorbonne Université, F-75013, Paris, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France. .,UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France.
| |
Collapse
|
122
|
Pragasam AK, Veeraraghavan B, Anandan S, Narasiman V, Sistla S, Kapil A, Mathur P, Ray P, Wattal C, Bhattacharya S, Deotale V, Subramani K, Peter JV, Hariharan TD, Ramya I, Iniyan S, Walia K, Ohri VC. Dominance of international high-risk clones in carbapenemase-producing Pseudomonas aeruginosa: Multicentric molecular epidemiology report from India. Indian J Med Microbiol 2019; 36:344-351. [PMID: 30429385 DOI: 10.4103/ijmm.ijmm_18_294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Pseudomonas aeruginosa is one of the most common opportunistic pathogens that cause severe infections in humans. The burden of carbapenem resistance is particularly high and is on the rise. Very little information is available on the molecular mechanisms and its clonal types of carbapenem-resistant P. aeruginosa seen in Indian hospitals. This study was undertaken to monitor the β-lactamase profile and to investigate the genetic relatedness of the carbapenemase-producing (CP) P. aeruginosa collected across different hospitals from India. Materials and Methods A total of 507 non-duplicate, carbapenem-resistant P. aeruginosa isolated from various clinical specimens collected during 2014-2017 across seven Indian hospitals were included. Conventional multiplex polymerase chain reaction for the genes encoding beta-lactamases such as extended-spectrum beta-lactamase (ESBL) and carbapenemase were screened. A subset of isolates (n = 133) of CP P. aeruginosa were genotyped by multilocus sequence typing (MLST) scheme. Results Of the total 507 isolates, 15%, 40% and 20% were positive for genes encoding ESBLs, carbapenemases and ESBLs + carbapenemases, respectively, whilst 25% were negative for the β-lactamases screened. Amongst the ESBL genes, blaVEB is the most predominant, followed by blaPER and blaTEM, whilst blaVIM and blaNDM were the most predominant carbapenemases seen. However, regional differences were noted in the β-lactamases profile across the study sites. Genotyping by MLST revealed 54 different sequence types (STs). The most common are ST357, ST235, ST233 and ST244. Six clonal complexes were found (CC357, CC235, CC244, CC1047, CC664 and CC308). About 24% of total STs are of novel types and these were found to emerge from the high-risk clones. Conclusion This is the first large study from India to report the baseline data on the molecular resistance mechanisms and its association with genetic relatedness of CP P. aeruginosa circulating in Indian hospitals. blaVIM- and blaNDM-producing P. aeruginosa is the most prevalent carbapenemase seen in India. Majority of the isolates belongs to the high-risk international clones ST235, ST357 and ST664 which is a concern.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vignesh Narasiman
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sujatha Sistla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Science, New Delhi, India
| | - Purva Mathur
- Department of Microbiology, All India Institute of Medical Science, New Delhi, India
| | - Pallab Ray
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chand Wattal
- Department of Microbiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Sanjay Bhattacharya
- Department of Microbiology, Tata Medical Centre, Kolkatta, West Bengal, India
| | - Vijayashri Deotale
- Department of Microbiology, Mahatma Gandhi Institute of Medical Science, Sevagram, Maharashtra, India
| | - K Subramani
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - J V Peter
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - T D Hariharan
- Department of Orthopaedic Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| | - I Ramya
- Department of Medicine (Unit-5), Christian Medical College, Vellore, Tamil Nadu, India
| | - S Iniyan
- Department of Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Disease, Department of Microbiology, Indian Council of Medical Research, New Delhi, India
| | - V C Ohri
- Division of Epidemiology and Communicable Disease, Department of Microbiology, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
123
|
Hishinuma T, Tada T, Kuwahara-Arai K, Yamamoto N, Shimojima M, Kirikae T. Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. PLoS One 2018; 13:e0207134. [PMID: 30452435 PMCID: PMC6242314 DOI: 10.1371/journal.pone.0207134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
The first outbreak in Japan of GES-5 carbapenemase-producing Pseudomonas aeruginosa occurred in a long-term care facility in 2014. To assess the spread of GES-5 producing P. aeruginosa clinical isolates in medical settings in Japan, 1,476 carbapenem-resistant P. aeruginosa isolates obtained from 2012 to 2016 were characterized. Of these 1,476 isolates, 104 (7.0%) harbored blaGES-5. Southern blotting revealed that the blaGES-5 was located on the chromosome. The isolation rates of these GES-5 producers increased significantly every year, from 2.0% (6 of 295) in 2012 to 2.8% (8 of 283) in 2013 to 5.3% (16 of 303) in 2014 to 9.7% (29 of 300) in 2015 to 15.3% (45 of 295) in 2016. Of the 104 GES-5 producers, 102 belonged to clonal complex (CC) 235, including 99 belonging to ST235 and three belonging to ST2233). Whole genome sequence analysis revealed that CC235 P. aeruginosa harboring blaGES-5 spread in a clonal manner. These results indicate that these GES-5 producing CC235 P. aeruginosa clinical isolates have spread in medical settings throughout Japan.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Yamamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
124
|
Brüggemann H, Migliorini LB, Sales ROD, Koga PCM, Souza AVD, Jensen A, Poehlein A, Brzuszkiewicz E, Doi AM, Pasternak J, Martino MDV, Severino P. Comparative Genomics of Nonoutbreak Pseudomonas aeruginosa Strains Underlines Genome Plasticity and Geographic Relatedness of the Global Clone ST235. Genome Biol Evol 2018; 10:1852-1857. [PMID: 29982603 PMCID: PMC6063271 DOI: 10.1093/gbe/evy139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen in hospitals, responsible for various infections that are difficult to treat due to intrinsic and acquired antibiotic resistance. Here, 20 epidemiologically unrelated strains isolated from patients in a general hospital over a time period of two decades were analyzed using whole genome sequencing. The genomes were compared in order to assess the presence of a predominant clone or sequence type (ST). No clonal structure was identified, but core genome-based single nucleotide polymorphism (SNP) analysis distinguished two major, previously identified phylogenetic groups. Interestingly, most of the older strains isolated between 1994 and 1998 harbored exoU, encoding a cytotoxic phospholipase. In contrast, most strains isolated between 2011 and 2016 were exoU-negative and phylogenetically very distinct from the older strains, suggesting a population shift of nosocomial P. aeruginosa over time. Three out of 20 strains were ST235 strains, a global high-risk clonal lineage; these carried several additional resistance determinants including aac(6’)Ib-cr encoding an aminoglycoside N-acetyltransferase that confers resistance to fluoroquinolones. Core genome comparison with ST235 strains from other parts of the world showed that the three strains clustered together with other Brazilian/Argentinean isolates. Despite this regional relatedness, the individuality of each of the three ST235 strains was revealed by core genome-based SNPs and the presence of genomic islands in the accessory genome. Similarly, strain-specific characteristics were detected for the remaining strains, indicative of individual evolutionary histories and elevated genome plasticity.
Collapse
Affiliation(s)
| | - Leticia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Romario Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Andrea Vieira de Souza
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Anders Jensen
- Department of Biomedicine, Aarhus University, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Germany
| | - Andre Mario Doi
- Laboratorio Clinico, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Jacyr Pasternak
- Laboratorio Clinico, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| |
Collapse
|
125
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
126
|
Chromosomally Encoded mcr-5 in Colistin-Nonsusceptible Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.00679-18. [PMID: 29844041 DOI: 10.1128/aac.00679-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
Whole-genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn3-like transposon in P. aeruginosa MRSN 12280. The isolate was nonsusceptible to colistin by broth microdilution, and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin-nonsusceptible P. aeruginosa.
Collapse
|
127
|
Bellés A, Bueno J, Rojo-Bezares B, Torres C, Javier Castillo F, Sáenz Y, Seral C. Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. Eur J Clin Microbiol Infect Dis 2018; 37:1847-1856. [DOI: 10.1007/s10096-018-3318-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
128
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
129
|
Kainuma A, Momiyama K, Kimura T, Akiyama K, Inoue K, Naito Y, Kinoshita M, Shimizu M, Kato H, Shime N, Fujita N, Sawa T. An outbreak of fluoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene. J Infect Chemother 2018; 24:615-622. [PMID: 29628388 DOI: 10.1016/j.jiac.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial-resistant isolates of Pseudomonas aeruginosa collected from 2005 to 2014 in a university hospital in Kyoto, Japan, were retrospectively analyzed by multilocus sequence typing (MLST), exoenzyme genotype determination, integron characterization, and clinical associations. During the study, 1573 P. aeruginosa isolates were detected, and 41 of these were resistant to more than two classes of antimicrobial agents. Twenty-five (61.0%) isolates were collected from urine. All isolates were resistant to ciprofloxacin, 8 (19.5%) isolates showed resistance to imipenem/cilastatin, and 8 (19.5%) isolates showed resistance to meropenem. None of the isolates fulfilled the clinical criteria for multidrug-resistant P. aeruginosa. All isolates were negative in the metallo-β lactamase test. Thirty-six (87.8%) isolates were of the exoS-exoU+ genotype and 5 (12.2%) isolates were of the exoS+exoU- genotype. Among 36 exoS-exoU+ isolates, 33 (80.5%) were ST357, and 3 (7.3%) were ST235. Five isolates of exoS+exoU- were ST186, ST244, ST314, ST508, and ST512. Thirty-three isolates were positive for class 1 integrons and four different class 1 integrons were detected: aminoglycoside (2') adenyltransferase and chloramphenicol transporter (AadB+CmlA6), OXA-4 β-lactamase and aminoglycoside 3'-adenyltransferase (OXA4+AadA2), AadB alone, and aminoglycoside acetyltransferase alone (AacA31). Among the 41 patients from which the isolates originated, the most common underlying disease was cancer in 16 patients (39%), and 9 patients (22.0%) died during the hospitalization period. There was no statistical correlation between MLST, exoenzyme genotype, and patient mortality. The results indicated outbreaks of fluoroquinolone-resistant P. aeruginosa in immunocompromised patients mainly due to the propagation of potentially virulent ST357 isolates possessing the exoU+ genotype.
Collapse
Affiliation(s)
| | - Kyoko Momiyama
- School of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Takeshi Kimura
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Koichi Akiyama
- Department of Anesthesiology, School of Medicine, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Japan.
| | | | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Japan.
| | - Masaru Shimizu
- Department of Anesthesiology, School of Medicine, Japan.
| | - Hideya Kato
- Department of Anesthesiology, School of Medicine, Japan.
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Institute of Biochemical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Naohisa Fujita
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Teiji Sawa
- Department of Anesthesiology, School of Medicine, Japan.
| |
Collapse
|
130
|
Del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C, Montero MM, Sorlí L, Tubau F, Gómez-Zorrilla S, Tormo N, Durá-Navarro R, Viedma E, Resino-Foz E, Fernández-Martínez M, González-Rico C, Alejo-Cancho I, Martínez JA, Labayru-Echverria C, Dueñas C, Ayestarán I, Zamorano L, Martinez-Martinez L, Horcajada JP, Oliver A. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob Agents Chemother 2017; 61:AAC.01589-17. [PMID: 28874376 PMCID: PMC5655108 DOI: 10.1128/aac.01589-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/27/2017] [Indexed: 02/08/2023] Open
Abstract
This study assessed the molecular epidemiology, resistance mechanisms, and susceptibility profiles of a collection of 150 extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates obtained from a 2015 Spanish multicenter study, with a particular focus on resistome analysis in relation to ceftolozane-tazobactam susceptibility. Broth microdilution MICs revealed that nearly all (>95%) of the isolates were nonsusceptible to piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, and ciprofloxacin. Most of them were also resistant to tobramycin (77%), whereas nonsusceptibility rates were lower for ceftolozane-tazobactam (31%), amikacin (7%), and colistin (2%). Pulsed-field gel electrophoresis-multilocus sequence typing (PFGE-MLST) analysis revealed that nearly all of the isolates belonged to previously described high-risk clones. Sequence type 175 (ST175) was detected in all 9 participating hospitals and accounted for 68% (n = 101) of the XDR isolates, distantly followed by ST244 (n = 16), ST253 (n = 12), ST235 (n = 8), and ST111 (n = 2), which were detected only in 1 to 2 hospitals. Through phenotypic and molecular methods, the presence of horizontally acquired carbapenemases was detected in 21% of the isolates, mostly VIM (17%) and GES enzymes (4%). At least two representative isolates from each clone and hospital (n = 44) were fully sequenced on an Illumina MiSeq. Classical mutational mechanisms, such as those leading to the overexpression of the β-lactamase AmpC or efflux pumps, OprD inactivation, and/or quinolone resistance-determining regions (QRDR) mutations, were confirmed in most isolates and correlated well with the resistance phenotypes in the absence of horizontally acquired determinants. Ceftolozane-tazobactam resistance was not detected in carbapenemase-negative isolates, in agreement with sequencing data showing the absence of ampC mutations. The unique set of mutations responsible for the XDR phenotype of ST175 clone documented 7 years earlier were found to be conserved, denoting the long-term persistence of this specific XDR lineage in Spanish hospitals. Finally, other potentially relevant mutations were evidenced, including those in penicillin-binding protein 3 (PBP3), which is involved in β-lactam (including ceftolozane-tazobactam) resistance, and FusA1, which is linked to aminoglycoside resistance.
Collapse
Affiliation(s)
- Ester Del Barrio-Tofiño
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Carla López-Causapé
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Gabriel Cabot
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alba Rivera
- Department of Microbiology and Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natividad Benito
- Department of Microbiology and Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Concepción Segura
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - María Milagro Montero
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Luisa Sorlí
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Fe Tubau
- Department of Microbiology and Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Department of Microbiology and Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Nuria Tormo
- Department of Microbiology and Infectious Diseases, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Raquel Durá-Navarro
- Department of Microbiology and Infectious Diseases, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Esther Viedma
- Department of Microbiology and Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Resino-Foz
- Department of Microbiology and Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Fernández-Martínez
- Department of Microbiology and Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigacion Valdecilla (IDIVAL), Santander, Spain
| | - Claudia González-Rico
- Department of Microbiology and Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigacion Valdecilla (IDIVAL), Santander, Spain
| | - Izaskun Alejo-Cancho
- Department of Microbiology and Infectious Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Jose Antonio Martínez
- Department of Microbiology and Infectious Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | | | - Carlos Dueñas
- Department of Microbiology and Infectious Diseases, Hospital Universitario de Burgos, Burgos, Spain
| | - Ignacio Ayestarán
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Laura Zamorano
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luis Martinez-Martinez
- Unit of Microbiology, Hospital Universitario Reina Sofía, Departament of Microbiology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan Pablo Horcajada
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Oliver
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
131
|
In Vivo Emergence of Resistance to Novel Cephalosporin-β-Lactamase Inhibitor Combinations through the Duplication of Amino Acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.01117-17. [PMID: 28674059 DOI: 10.1128/aac.01117-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023] Open
Abstract
Resistance development to novel cephalosporin-β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems (oprD), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides (aacA7/aacA8/aadA6). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified blaOXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted.
Collapse
|