101
|
Burtey A, Schmid EM, Ford MGJ, Rappoport JZ, Scott MGH, Marullo S, Simon SM, McMahon HT, Benmerah A. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of beta-arrestins. Traffic 2007; 8:914-31. [PMID: 17547696 DOI: 10.1111/j.1600-0854.2007.00578.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-arrestins (betaarrs) play a central role in the regulation of G-protein-coupled receptors (GPCRs). Their binding to phosphorylated activated GPCRs induces a conformational transition to an active state resulting in the release of their flexible C-terminal tail. Binding sites for clathrin and the adaptor protein (AP)-2 clathrin adaptor complex are then unmasked, which drive the recruitment of betaarrs-GPCR complexes into clathrin-coated pits (CCPs). A conserved isoleucine-valine-phenylalanine (IVF) motif of the C-terminal tail controls betaarr activation through intramolecular interactions. Here, we provide structural, biochemical and functional evidence in living cells that the IVF motif also controls binding to AP-2. While the F residue is directly involved in AP-2 binding, substitutions of I and V residues, markedly enhanced affinity for AP-2 resulting in active betaarr mutants, which are constitutively targeted to CCPs in the absence of any GPCR activation. Conformational change and endocytic functions of betaarrs thus appear to be coordinated via the complex molecular interactions established by the IVF motif.
Collapse
Affiliation(s)
- Anne Burtey
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
103
|
Falkowska-Hansen B, Falkowski M, Metharom P, Krunic D, Goerdt S. Clathrin-coated vesicles form a unique net-like structure in liver sinusoidal endothelial cells by assembling along undisrupted microtubules. Exp Cell Res 2007; 313:1745-57. [PMID: 17433812 DOI: 10.1016/j.yexcr.2007.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly active professional scavenger cells using clathrin-mediated endocytosis to clear the blood from macromolecular waste products. Using confocal microscopy, we observed a remarkable net-like distribution of clathrin heavy chain (CHC) in LSECs while all other cell types examined including various primary endothelial cells and cell lines showed the well-known punctuate staining pattern representing clathrin-coated vesicles (CCV). The net-like distribution of CHC in LSECs co-localized fully with microtubules, but not with actin. Upon 3D imaging, the net-like distribution of CHC resolved into numerous CCVs organized along the microtubules. The CCVs only partially co-localized with early endosome antigen 1 (EEA1) and adaptor protein 2 (AP-2). Endocytic vesicles containing ligand destined for degradation (FITC-AHGG) were organized along the clathrin/tubulin net-like structures, whereas transferrin-containing recycling vesicles co-localized to a much lower extent. Disruption of the microtubules by nocodazole treatment caused a collapse of the net-like organization of CCVs as well as a profound redistribution of EEA1, AP-2 and FITC-AHGG-containing vesicles, while transferrin internalization and recycling remained unaffected.
Collapse
Affiliation(s)
- Berit Falkowska-Hansen
- Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karls University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68163 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
104
|
Abstract
Because of the discovery of coated pits and vesicles more than 40 years ago and the identification of clathrin as a major component of the coat, it has been assumed that clathrin-coated pits (CCPs) are responsible for the uptake of most plasma membrane receptors undergoing internalization. The recent molecular characterization of clathrin-independent routes of endocytosis confirms that several alternative endocytic pathways operate at the plasma membrane of mammalian cells. This heterogeneous view of endocytosis has been expanded still further by recent studies, suggesting that different subpopulations of CCPs responsible for the internalization of specific sets of cargo may coexist. In the present review, we have discussed the experimental evidence in favor or against the existence of distinct parallel clathrin-dependent pathways at the plasma membrane.
Collapse
Affiliation(s)
- Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 75014 Paris, France, and INSERM, U567, 75014 Paris, France.
| | | |
Collapse
|
105
|
Abstract
The heptahelical G protein-coupled receptor (GPCR) family includes approximately 900 members and is the largest family of signaling receptors encoded in the mammalian genome. G protein-coupled receptors elicit cellular responses to diverse extracellular stimuli at the plasma membrane and some internalized receptors continue to signal from intracellular compartments. In addition to rapid desensitization, receptor trafficking is critical for regulation of the temporal and spatial aspects of GPCR signaling. Indeed, GPCR internalization functions to control signal termination and propagation as well as receptor resensitization. Our knowledge of the mechanisms that regulate mammalian GPCR endocytosis is based predominantly on arrestin regulation of receptors through a clathrin- and dynamin-dependent pathway. However, multiple clathrin adaptors, which recognize distinct endocytic signals, are now known to function in clathrin-mediated endocytosis of diverse cargo. Given the vast number and diversity of GPCRs, the complexity of clathrin-mediated endocytosis and the discovery of multiple clathrin adaptors, a single universal mechanism controlling endocytosis of all mammalian GPCRs is unlikely. Indeed, several recent studies now suggest that endocytosis of different GPCRs is regulated by distinct mechanisms and clathrin adaptors. In this review, we discuss the diverse mechanisms that regulate clathrin-dependent GPCR endocytosis.
Collapse
Affiliation(s)
- Breann L Wolfe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 1106 Mary Ellen Jones Building, CB#7365, Chapel Hill, NC 27599-7563, USA
| | | |
Collapse
|
106
|
Mahadev RK, Di Pietro SM, Olson JM, Piao HL, Payne GS, Overduin M. Structure of Sla1p homology domain 1 and interaction with the NPFxD endocytic internalization motif. EMBO J 2007; 26:1963-71. [PMID: 17363896 PMCID: PMC1847672 DOI: 10.1038/sj.emboj.7601646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/13/2007] [Indexed: 11/09/2022] Open
Abstract
Adaptor proteins play important endocytic roles including recognition of internalization signals in transmembrane cargo. Sla1p serves as the adaptor for uptake of transmembrane proteins containing the NPFxD internalization signal, and is essential for normal functioning of the actin cytoskeleton during endocytosis. The Sla1p homology domain 1 (SHD1) within Sla1p is responsible for recognition of the NPFxD signal. This study presents the NMR structure of the NPFxD-bound state of SHD1 and a model for the protein-ligand complex. The alpha+beta structure of the protein reveals an SH3-like topology with a solvent-exposed hydrophobic ligand binding site. NMR chemical shift perturbations and effects of structure-based mutations on ligand binding in vitro define residues that are key for NPFxD binding. Mutations that abolish ligand recognition in vitro also abolish NPFxD-mediated receptor internalization in vivo. Thus, SHD1 is a novel functional domain based on SH3-like topology, which employs a unique binding site to recognize the NPFxD endocytic internalization signal. Its distant relationship with the SH3 fold endows this superfamily with a new role in endocytosis.
Collapse
Affiliation(s)
- Ravi K Mahadev
- CR-UK Institute for Cancer Studies, School of Medicine, University of Birmingham, Birmingham, UK
| | - Santiago M Di Pietro
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M Olson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hai Lan Piao
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. Tel.: +1 310 206 3121; Fax: +1 310 206 5272; E-mail:
| | - Michael Overduin
- CR-UK Institute for Cancer Studies, School of Medicine, University of Birmingham, Birmingham, UK
- CR-UK Institute for Cancer Studies, School of Medicine, University of Birmingham, Birmingham, B15 2TT, UK. Tel.: +44 121 414 3802; Fax: +44 121 414 4486; E-mail:
| |
Collapse
|
107
|
Nath S, Bananis E, Sarkar S, Stockert RJ, Sperry AO, Murray JW, Wolkoff AW. Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell 2007; 18:1839-49. [PMID: 17360972 PMCID: PMC1855015 DOI: 10.1091/mbc.e06-06-0524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early endocytic vesicles loaded with Texas Red asialoorosomucoid were prepared from mouse liver. These vesicles bound to microtubules in vitro, and upon ATP addition, they moved bidirectionally, frequently undergoing fission into two daughter vesicles. There was no effect of vanadate (inhibitor of dynein) on motility, whereas 5'-adenylylimido-diphosphate (kinesin inhibitor) was highly inhibitory. Studies with specific antibodies confirmed that dynein was not associated with these vesicles and that Kif5B and the minus-end kinesin Kifc1 mediated their plus- and minus-end motility, respectively. More than 90% of vesicles associated with Kifc1 also contained Kif5B, and inhibition of Kifc1 with antibody resulted in enhancement of plus-end-directed motility. There was reduced vesicle fission when either Kifc1 or Kif5B activity was inhibited by antibody, indicating that the opposing forces resulting from activity of both motors are required for fission to occur. Immunoprecipitation of native Kif5B by FLAG antibody after expression of FLAG-Kifc1 in 293T cells indicates that these two motors can interact with each other. Whether they interact directly or through a complex of potential regulatory proteins will need to be clarified in future studies. However, the present study shows that coordinated activity of these kinesins is essential for motility and processing of early endocytic vesicles.
Collapse
Affiliation(s)
- Sangeeta Nath
- Department of Anatomy and Structural Biology and
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Eustratios Bananis
- Department of Anatomy and Structural Biology and
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Souvik Sarkar
- Department of Anatomy and Structural Biology and
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Richard J. Stockert
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Ann O. Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27858
| | - John W. Murray
- Department of Anatomy and Structural Biology and
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Allan W. Wolkoff
- Department of Anatomy and Structural Biology and
- *Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| |
Collapse
|
108
|
Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett 2007; 581:2112-8. [PMID: 17335816 PMCID: PMC1974873 DOI: 10.1016/j.febslet.2007.01.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/18/2007] [Indexed: 11/17/2022]
Abstract
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
109
|
Burtey A, Rappoport JZ, Bouchet J, Basmaciogullari S, Guatelli J, Simon SM, Benichou S, Benmerah A. Dynamic Interaction of HIV-1 Nef with the Clathrin-Mediated Endocytic Pathway at the Plasma Membrane. Traffic 2006; 8:61-76. [PMID: 17140399 DOI: 10.1111/j.1600-0854.2006.00512.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The HIV-1 Nef protein perturbs the trafficking of membrane proteins such as CD4 by interacting with clathrin-adaptor complexes. We previously reported that Nef alters early/recycling endosomes, but its role at the plasma membrane is poorly documented. Here, we used total internal reflection fluorescence microscopy, which restricts the analysis to a approximately 100 nm region of the adherent surface of the cells, to focus on the dynamic of Nef at the plasma membrane relative to that of clathrin. Nef colocalized both with clathrin spots (CS) that remained static at the cell surface, corresponding to clathrin-coated pits (CCPs), and with approximately 50% of CS that disappeared from the cell surface, corresponding to forming clathrin-coated vesicles (CCVs). The colocalization of Nef with clathrin required the di-leucine motif essential for Nef binding to AP complexes and was independent of CD4 expression. Furthermore, analysis of Nef mutants showed that the capacity of Nef to induce internalization and downregulation of CD4 in T lymphocytes correlated with its localization into CCPs. In conclusion, this analysis shows that Nef is recruited into CCPs and into forming CCVs at the plasma membrane, in agreement with a model in which Nef uses the clathrin-mediated endocytic pathway to induce internalization of some membrane proteins from the surface of HIV-1-infected T cells.
Collapse
Affiliation(s)
- Anne Burtey
- Institut Cochin, Département Maladies Infectieuses, Paris F-75014, France
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Puthenveedu MA, von Zastrow M. Cargo Regulates Clathrin-Coated Pit Dynamics. Cell 2006; 127:113-24. [PMID: 17018281 DOI: 10.1016/j.cell.2006.08.035] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/02/2006] [Accepted: 08/01/2006] [Indexed: 11/15/2022]
Abstract
Clathrin-coated pits (CCPs) are generally considered a uniform population of endocytic machines containing mixed constitutive and regulated membrane cargo. Contrary to this view, we show that regulated endocytosis of G protein-coupled receptors (GPCRs) occurs preferentially through a subset of CCPs. Significantly, GPCR-containing CCPs are also functionally distinct, as their surface residence time is regulated locally by GPCR cargo via PDZ-dependent linkage to the actin cytoskeleton. Such cargo-regulated CCPs show delayed recruitment of dynamin and can undergo an abortive event in which clathrin coats separate from the plasma membrane without concomitant receptor endocytosis. Segregation of cargo into CCP subsets, combined with cargo-dependent control of CCP dynamics, suggests a simple kinetic mechanism to generate functional specialization early in the endocytic pathway and reduce competition between diverse endocytic cargo.
Collapse
Affiliation(s)
- Manojkumar A Puthenveedu
- Department of Psychiatry, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
111
|
McNiven MA. Big gulps: specialized membrane domains for rapid receptor-mediated endocytosis. Trends Cell Biol 2006; 16:487-92. [PMID: 16949286 DOI: 10.1016/j.tcb.2006.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/21/2006] [Indexed: 12/24/2022]
Abstract
Eukaryotic cells are well known to use an elaborate, clathrin-based endocytic machinery to internalize ligand-receptor complexes. Although the number of components identified as being used during this essential process has increased substantially over the past decade, an appreciation for how receptor-mediated endocytosis is organized at a broader, cellular scale is still mostly undefined. Here, some new insights into how cells cluster and organize the endocytic machinery at defined cytoplasmic domains to increase the speed and efficiency of ligand-receptor internalization are presented.
Collapse
Affiliation(s)
- Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
112
|
Maldonado-Báez L, Wendland B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol 2006; 16:505-13. [PMID: 16935508 DOI: 10.1016/j.tcb.2006.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/18/2006] [Accepted: 08/14/2006] [Indexed: 02/02/2023]
Abstract
Clathrin-dependent endocytosis allows cells to bring plasma membrane and extracellular molecules into the cell. Forming a clathrin-coated vesicle requires the sequential action of numerous factors, beginning with endocytic adaptors. Adaptors are thought to initiate the process in two ways: by selecting cargo for packaging into the vesicle and assembling the clathrin coat and other components necessary to shape the vesicle. Here, we review recent work focusing on the sequential and cooperative interactions of adaptors with their binding partners, and how adaptors contribute to initial stages of endocytic internalization. The regulation of adaptors might be a key step for controlling endocytosis, and thus aid in homeostasis and cell physiology.
Collapse
Affiliation(s)
- Lymarie Maldonado-Báez
- The Johns Hopkins University, Department of Biology, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | |
Collapse
|
113
|
Harata NC, Aravanis AM, Tsien RW. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006; 97:1546-70. [PMID: 16805768 DOI: 10.1111/j.1471-4159.2006.03987.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
114
|
Abstract
Membranes and proteins are moved around the cell in small vesicles. A protein coat aids the budding of such vesicles from donor membranes. The major type of coat used by the cell is composed of clathrin, a three-legged protein that can form lattice-like coats on membranes destined for trafficking. In this review, I outline what we know about clathrin and discuss some recent advances in understanding the basic biology of this fascinating molecule, which include building a molecular model of a clathrin lattice and discovery of a new function for clathrin that occurs during mitosis.
Collapse
Affiliation(s)
- S J Royle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
115
|
Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2006; 7:404-14. [PMID: 16723976 DOI: 10.1038/nrm1940] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin polymerization often occurs at the plasma membrane to drive the protrusion of lamellipodia and filopodia at the leading edge of migrating cells. A role for actin polymerization in another cellular process that involves the reshaping of the plasma membrane--namely endocytosis--has recently been established. Live-cell imaging studies are shedding light on the order and timing of the molecular events and mechanisms of actin function during endocytosis.
Collapse
Affiliation(s)
- Marko Kaksonen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
116
|
Heuser J. Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae--a tribute to Günther Gerisch. Eur J Cell Biol 2006; 85:859-71. [PMID: 16831485 DOI: 10.1016/j.ejcb.2006.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
117
|
Fernández GE, Payne GS. Laa1p, a conserved AP-1 accessory protein important for AP-1 localization in yeast. Mol Biol Cell 2006; 17:3304-17. [PMID: 16687571 PMCID: PMC1483057 DOI: 10.1091/mbc.e06-02-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent alpha-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes.
Collapse
Affiliation(s)
- G. Esteban Fernández
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory S. Payne
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
118
|
Ratushny AV, Likhoshvai VA. Mathematical modeling of intracellular membrane transport: Receptor-mediated endocytosis and degradation of low-density lipoproteins. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906070190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
119
|
|