101
|
Axon regeneration in C. elegans. Curr Opin Neurobiol 2014; 27:199-207. [PMID: 24794753 DOI: 10.1016/j.conb.2014.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/22/2022]
Abstract
Single axon transection by laser surgery has made Caenorhabditis elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. In vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration.
Collapse
|
102
|
S6 kinase inhibits intrinsic axon regeneration capacity via AMP kinase in Caenorhabditis elegans. J Neurosci 2014; 34:758-63. [PMID: 24431434 DOI: 10.1523/jneurosci.2886-13.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons.
Collapse
|
103
|
Richardson CE, Spilker KA, Cueva JG, Perrino J, Goodman MB, Shen K. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife 2014; 3:e01498. [PMID: 24569477 PMCID: PMC3932522 DOI: 10.7554/elife.01498] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In neuronal processes, microtubules (MTs) provide structural support and serve as tracks for molecular motors. While it is known that neuronal MTs are more stable than MTs in non-neuronal cells, the molecular mechanisms underlying this stability are not fully understood. In this study, we used live fluorescence microscopy to show that the C. elegans CAMSAP protein PTRN-1 localizes to puncta along neuronal processes, stabilizes MT foci, and promotes MT polymerization in neurites. Electron microscopy revealed that ptrn-1 null mutants have fewer MTs and abnormal MT organization in the PLM neuron. Animals grown with a MT depolymerizing drug caused synthetic defects in neurite branching in the absence of ptrn-1 function, indicating that PTRN-1 promotes MT stability. Further, ptrn-1 null mutants exhibited aberrant neurite morphology and synaptic vesicle localization that is partially dependent on dlk-1. Our results suggest that PTRN-1 represents an important mechanism for promoting MT stability in neurons. DOI:http://dx.doi.org/10.7554/eLife.01498.001 Microtubules are tiny tubular structures made from many copies of proteins called tubulins. Microtubules have a number of important roles inside cells: they are part of the cytoskeleton that provides structural support for the cell; they help to pull chromosomes apart during cell division; and they guide the trafficking of proteins and molecules around inside the cell. Most microtubules are relatively unstable, undergoing continuous dis-assembly and re-assembly in response to the needs of the cell. The microtubules in the branches of nerve cells are an exception, remaining relatively stable over time. Now Richardson et al. and, independently, Marcette et al., have shown that a protein called PTRN-1 has an important role in stabilizing the microtubules in the nerve cells of nematode worms. By tagging the PTRN-1 proteins with fluorescent molecules, Richardson et al. were able to show that these proteins were present along the length of the microtubules within the nerve cells. Further work showed that the PTRN-1 proteins stabilize the microtubule filaments within the branches of these nerve cells and also hold them in position. Richardson et al. also found that worms that had been genetically modified to prevent them from producing PTRN-1 failed to traffic certain molecules to the synapses between nerve cells. Moreover, these mutants also had problems with the branching of their nerve cells; however, these defects were relatively mild, which suggests that other molecules and proteins act in parallel with PTRN-1 to stabilize microtubules in nerve cells. Further work should be able to identify these factors and elucidate how they work together to stabilize the microtubules in nerve cells. DOI:http://dx.doi.org/10.7554/eLife.01498.002
Collapse
|
104
|
Abstract
Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease.
Collapse
Affiliation(s)
- Fernando M Mar
- Nerve Regeneration Group Instituto de Biologia Molecular e Celular - IBMC University of Porto, Porto, Portugal
| | | | | |
Collapse
|
105
|
Abstract
The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.
Collapse
|
106
|
Neumann B, Hilliard MA. Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Rep 2013; 6:93-103. [PMID: 24373971 DOI: 10.1016/j.celrep.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Axonal degeneration arises as a consequence of neuronal injury and is a common hallmark of a number of neurodegenerative diseases. However, the genetic causes and the cellular mechanisms that trigger this process are still largely unknown. Based on forward genetic screening in C. elegans, we have identified the α-tubulin acetyltransferase gene mec-17 as causing spontaneous, adult-onset, and progressive axonal degeneration. Loss of MEC-17 leads to microtubule instability, a reduction in mitochondrial number, and disrupted axonal transport, with altered distribution of both mitochondria and synaptic components. Furthermore, mec-17-mediated axonal degeneration occurs independently from its acetyltransferase domain; is enhanced by mutation of coel-1, a tubulin-associated molecule; and correlates with the animal's body length. This study therefore identifies a critical role for the conserved microtubule-associated protein MEC-17 in preserving axon integrity and preventing axonal degeneration.
Collapse
Affiliation(s)
- Brent Neumann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
107
|
Abstract
The extensive lengths of neuronal processes necessitate efficient mechanisms for communication with the cell body. Neuronal regeneration after nerve injury requires new transcription; thus, long-distance retrograde signalling from axonal lesion sites to the soma and nucleus is required. In recent years, considerable progress has been made in elucidating the mechanistic basis of this system. This has included the discovery of a priming role for early calcium waves; confirmation of central roles for mitogen-activated protein kinase signalling effectors, the importin family of nucleocytoplasmic transport factors and molecular motors such as dynein; and demonstration of the importance of local translation as a key regulatory mechanism. These recent findings provide a coherent mechanistic framework for axon-soma communication in the injured nerve and shed light on the integration of cytoplasmic and nuclear transport in all eukaryotic cells.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
108
|
Gordon-Weeks PR, Fournier AE. Neuronal cytoskeleton in synaptic plasticity and regeneration. J Neurochem 2013; 129:206-12. [PMID: 24147810 DOI: 10.1111/jnc.12502] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/20/2013] [Accepted: 10/17/2013] [Indexed: 11/26/2022]
Abstract
During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system.
Collapse
Affiliation(s)
- Phillip R Gordon-Weeks
- The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London, UK
| | | |
Collapse
|
109
|
Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 2013; 33:12764-78. [PMID: 23904612 DOI: 10.1523/jneurosci.5160-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades orchestrate diverse cellular activities with common molecular players. To achieve specific cellular outcomes in response to specific signals, scaffolding proteins play an important role. Here we investigate the role of the scaffolding protein JNK interacting protein-1 (JIP1) in neuronal signaling by a conserved axonal MAP kinase kinase kinase, known as Wallenda (Wnd) in Drosophila and dual leucine kinase (DLK) in vertebrates and Caenorhabditis elegans. Recent studies in multiple model organisms suggest that Wnd/DLK regulates both regenerative and degenerative responses to axonal injury. Here we report a new role for Wnd in regulating synaptic structure during development, which implies that Wnd is also active in uninjured neurons. This synaptic role of Wnd can be functionally separated from the role of Wnd in axonal regeneration and injury signaling by the requirement for the JIP1 scaffold and the p38b MAP kinase. JIP1 mediates the synaptic function of Wnd via p38, which is not required for injury signaling or new axonal growth after injury. Our results indicate that Wnd regulates multiple independent pathways in Drosophila motoneurons and that JIP1 scaffolds a specific downstream cascade required for the organization of presynaptic microtubules during synaptic development.
Collapse
|
110
|
Abstract
The microtubule (MT) cytoskeleton supports a broad range of cellular functions, from providing tracks for intracellular transport, to supporting movement of cilia and flagella, to segregating chromosomes in mitosis. These functions are facilitated by the organizational and dynamic plasticity of MT networks. An important class of enzymes that alters MT dynamics is the depolymerizing kinesin-like proteins, which use their catalytic activities to regulate MT end dynamics. In this review, we discuss four topics surrounding these MT-depolymerizing kinesins. We provide a historical overview of studies focused on these motors and discuss their phylogeny. In the second half, we discuss their enzymology and biophysics and give an overview of their known cellular functions. This discussion highlights the fact that MT-depolymerizing kinesins exhibit a diverse range of design principles, which in turn increases their functional versatility in cells.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences, Indiana University, Bloomington, Indiana 47405;
| | | | | |
Collapse
|
111
|
Kurup N, Sharifnia P, Jin Y. Spatial and temporal dynamics of neurite regrowth. Curr Opin Neurobiol 2013; 23:1011-7. [PMID: 23856616 DOI: 10.1016/j.conb.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
Injury to mature neurites triggers a series of events that have both growth promoting and inhibitory roles. Recent evidence from a variety of experimental models has revealed new neuronal re-growth modulators. The action of these modulators must be precisely regulated both in time and space, and involves multiple cellular processes including retrograde signaling and local translation in the injured neurite. New genetic techniques, in combination with pharmacological approaches, have served to advance mechanistic dissection of neuronal response to injury. Better understanding of the spatio-temporal cues would greatly aid in the development of effective regenerative therapies.
Collapse
Affiliation(s)
- Naina Kurup
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
112
|
Saijilafu, Zhang BY, Zhou FQ. Signaling pathways that regulate axon regeneration. Neurosci Bull 2013; 29:411-20. [PMID: 23846598 DOI: 10.1007/s12264-013-1357-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/25/2013] [Indexed: 10/26/2022] Open
Abstract
Neurons in the mammalian central nervous system (CNS) cannot regenerate axons after injury. in contrast, neurons in the mammalian peripheral nervous system and in some non-mammalian models, such as C. elegans and Drosophila, are able to regrow axons. Understanding the molecular mechanisms by which these neurons support axon regeneration will help us find ways to enhance mammalian CNS axon regeneration. Here, recent studies in which signaling pathways regulating naturally-occurring axon regeneration that have been identified are reviewed, focusing on how these pathways control gene expression and growth-cone function during axon regeneration.
Collapse
Affiliation(s)
- Saijilafu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
113
|
Abstract
Axon regeneration after damage is widespread in the animal kingdom, and the nematode Caenorhabditis elegans has recently emerged as a tractable model in which to study the genetics and cell biology of axon regrowth in vivo. A key early step in axon regrowth is the conversion of part of a mature axon shaft into a growth cone-like structure, involving coordinated alterations in the microtubule, actin, and neurofilament systems. Recent attention has focused on microtubule dynamics as a determinant of axon-regrowth ability in several organisms. Live imaging studies have begun to reveal how the microtubule cytoskeleton is remodeled after axon injury, as well as the regulatory pathways involved. The dual leucine zipper kinase family of mixed-lineage kinases has emerged as a critical sensor of axon damage and plays a key role in regulating microtubule dynamics in the damaged axon.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
114
|
Baas PW, Ahmad FJ. Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. ACTA ACUST UNITED AC 2013; 136:2937-51. [PMID: 23811322 DOI: 10.1093/brain/awt153] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contemporary research has revealed a great deal of information on the behaviours of microtubules that underlie critical events in the lives of neurons. Microtubules in the neuron undergo dynamic assembly and disassembly, bundling and splaying, severing, and rapid transport as well as integration with other cytoskeletal elements such as actin filaments. These various behaviours are regulated by signalling pathways that affect microtubule-related proteins such as molecular motor proteins and microtubule severing enzymes, as well as a variety of proteins that promote the assembly, stabilization and bundling of microtubules. In recent years, translational neuroscientists have earmarked microtubules as a promising target for therapy of injury and disease of the nervous system. Proof-of-principle has come mainly from studies using taxol and related drugs to pharmacologically stabilize microtubules in animal models of nerve injury and disease. However, concerns persist that the negative consequences of abnormal microtubule stabilization may outweigh the positive effects. Other potential approaches include microtubule-active drugs with somewhat different properties, but also expanding the therapeutic toolkit to include intervention at the level of microtubule regulatory proteins.
Collapse
Affiliation(s)
- Peter W Baas
- 1 Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
115
|
Tedeschi A, Bradke F. The DLK signalling pathway--a double-edged sword in neural development and regeneration. EMBO Rep 2013; 14:605-14. [PMID: 23681442 DOI: 10.1038/embor.2013.64] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
Dual leucine zipper kinase (DLK), a mitogen-activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold- and warm-blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK-dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine-tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Laboratory for Axon Growth & Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | | |
Collapse
|
116
|
Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 2013; 451:353-64. [DOI: 10.1042/bj20121807] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Major trauma to the mammalian spinal cord often results in irreversible loss of function, i.e. paralysis, and current therapies ranging from drugs, implantations of stem cells and/or biomaterials, and electrically stimulated nerve regrowth, have so far offered very limited success in improving quality-of-life. However, in marked contrast with this basic shortcoming of ours, certain vertebrate species, including fish and salamanders, display the amazing ability to faithfully regenerate various complex body structures after injury or ablation, restoring full functionality, even in the case of the spinal cord. Despite the inherently strong and obvious translational potential for improving treatment strategies for human patients, our in-depth molecular-level understanding of these decidedly more advanced repair systems remains in its infancy. In the present review, we will discuss the current state of this field, focusing on recent progress in such molecular analyses using various regenerative species, and how these so far relate to the mammalian situation.
Collapse
|
117
|
Zhang J, Twelvetrees AE, Lazarus JE, Blasier KR, Yao X, Inamdar NA, Holzbaur ELF, Pfister KK, Xiang X. Establishing a novel knock-in mouse line for studying neuronal cytoplasmic dynein under normal and pathologic conditions. Cytoskeleton (Hoboken) 2013; 70:215-27. [PMID: 23475693 PMCID: PMC3670090 DOI: 10.1002/cm.21102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein plays important roles in mitosis and the intracellular transport of organelles, proteins, and mRNAs. Dynein function is particularly critical for survival of neurons, as mutations in dynein are linked to neurodegenerative diseases. Dynein function is also implicated in neuronal regeneration, driving the active transport of signaling molecules following injury of peripheral neurons. To enhance our understanding of dynein function and regulation in neurons, we established a novel knock-in mouse line in which the neuron-specific cytoplasmic dynein 1 intermediate chain 1 (IC-1) is tagged with both GFP and a 3xFLAG tag at its C-terminus. The fusion gene is under the control of IC-1's endogenous promoter and is integrated at the endogenous locus of the IC-1-encoding gene Dync1i1. The IC-1-GFP-3xFLAG fusion protein is incorporated into the endogenous dynein complex, and movements of GFP-labeled dynein expressed at endogenous levels can be observed in cultured neurons for the first time. The knock-in mouse line also allows isolation and analysis of dynein-bound proteins specifically from neurons. Using this mouse line we have found proteins, including 14-3-3 zeta, which physically interact with dynein upon injury of the brain cortex. Thus, we have created a useful tool for studying dynein function in the central nervous system under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Alison E. Twelvetrees
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob E. Lazarus
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kiev R. Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xuanli Yao
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nirja A. Inamdar
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Erika L. F. Holzbaur
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - K. Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|