101
|
Chu LM, Robich MP, Lassaletta AD, Feng J, Laham RJ, Burgess T, Clements RT, Sellke FW. Resveratrol supplementation abrogates pro-arteriogenic effects of intramyocardial vascular endothelial growth factor in a hypercholesterolemic swine model of chronic ischemia. Surgery 2011; 150:390-9. [PMID: 21783219 DOI: 10.1016/j.surg.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/13/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND Clinical trials of therapeutic angiogenesis with vascular endothelial growth factor (VEGF) have been disappointing, owing likely to endothelial dysfunction. We used a swine model of chronic ischemia and endothelial dysfunction to determine whether resveratrol coadministration would improve the angiogenic response to VEGF therapy. METHODS Yorkshire swine fed a high-cholesterol diet underwent left circumflex ameroid constrictor placement, and were given either no drug (high cholesterol control [HCC], n = 8), perivascular VEGF (2 μg sustained release [high cholesterol VEGF-treated; HCV], n = 8), or VEGF plus oral resveratrol (10 mg/kg, [high cholesterol VEGF- and resveratrol-treated; HCVR], n = 8). After 7 weeks, myocardial contractility, perfusion, and microvessel reactivity in the ischemic territory were assessed. Tissue was analyzed for vessel density, oxidative stress, and protein expression. RESULTS Myocardial perfusion was significantly improved in the HCV group compared with the HCC group; resveratrol coadministration abrogated this improvement. There were no differences in regional myocardial contractility between groups. Endothelium-dependent microvessel relaxation was improved in the HCVR group, and endothelium-independent relaxation response was similar between groups. Arteriolar density was greatest in the HCV group, whereas capillary density was similar between groups. Expression of Akt and phospho-endothelial nitric oxide synthase were increased in the HCVR group. Total protein oxidative stress and myeloperoxidase expression were reduced in the HCVR group, but so was the oxidative-stress dependent phosphorylation of vascular endothelial cadherin (VE-cadherin) and β-catenin. CONCLUSION Although resveratrol coadministration decreases oxidative stress and improves endothelial function, it abolishes improvements in myocardial perfusion and arteriolar density afforded by VEGF treatment alone. This effect is due likely to inhibition of the oxidative stress-dependent phosphorylation of VE-cadherin, an essential step in the initiation of arteriogenesis.
Collapse
Affiliation(s)
- Louis M Chu
- Department of Surgery, Division of Cardiothoracic Surgery, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Chu LM, Robich MP, Lassaletta A, Burgess T, Liu Y, Sellke N, Sellke FW. Hypercholesterolemia and chronic ischemia alter myocardial responses to selective cyclooxygenase-2 inhibition. J Thorac Cardiovasc Surg 2011; 142:675-81. [PMID: 21762932 DOI: 10.1016/j.jtcvs.2011.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/23/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cyclooxygenase-2 inhibitors have been implicated in adverse cardiac events. We hypothesize that hypercholesterolemia and ischemia may alter the myocardial response to the cyclooxygenase-2 inhibitor celecoxib. METHODS Yorkshire swine fed normal chow (CX, n = 6) or high-cholesterol diet (HCX, n = 6) underwent placement of an Ameroid constrictor on the left circumflex artery and were started on celecoxib (200 mg/day). After 7 weeks, ischemic and nonischemic myocardium was analyzed for thrombogenic ratio (thromboxane content divided by prostacyclin content), total protein oxidative stress, and expression of prostacyclin synthase, thromboxane synthase, myeloperoxidase, and superoxide dismutase. Cardiac function, tissue perfusion, and vessel density were measured. RESULTS HCX animals were significantly hypercholesterolemic compared with CX animals. Thrombogenic ratio was significantly higher in the HCX group than in the CX group, but prostacyclin and thromboxane synthase expression was similar in all tissues. Myocardial perfusion was decreased in the HCX group compared with the CX group. Total oxidative stress, myeloperoxidase, and superoxide dismutase were increased in ischemic tissue compared with nonischemic tissues, but there was no diet-induced difference between groups. There was no difference in capillary or arteriolar density between groups. Left ventricular contractility was greater in the HCX group than in the CX group, but there was no significant difference in heart rate, mean arterial pressure, or left ventricular pressure. CONCLUSIONS Hypercholesterolemic patients using celecoxib may be at higher risk for thrombotic events than those with normal cholesterol, but the relationship between dyslipidemia, ischemia, and cyclooxygenase-2 inhibition is likely much more complicated than originally thought.
Collapse
Affiliation(s)
- Louis M Chu
- Division of Cardiothoracic Surgery, Department of Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury. Shock 2011; 35:156-63. [PMID: 20661185 DOI: 10.1097/shk.0b013e3181f0dc91] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In rodents, inhaled H2S and injection of H2S donors protected against kidney ischemia/reperfusion (I/R) injury. During porcine aortic occlusion, the H2S donor Na2S (sulfide) reduced energy expenditure and decreased the noradrenaline requirements needed to maintain hemodynamic targets during early reperfusion. Therefore, we tested the hypothesis whether sulfide pretreatment may also ameliorate organ function in porcine aortic occlusion-induced kidney I/R injury. Anesthetized, ventilated, and instrumented pigs randomly received either sulfide or vehicle and underwent 90 min of kidney ischemia using intraaortic balloon-occlusion, and 8 h of reperfusion. During reperfusion, noradrenaline was titrated to maintain blood pressure at baseline levels. Sulfide attenuated the fall in creatinine clearance and the rise in creatinine blood levels, whereas renal blood flow and fractional Na+ excretion were comparable. Sulfide also lowered the blood IL-6, IL-1β, and nitrite + nitrate concentrations, which coincided with reduced kidney oxidative DNA base damage and iNOS expression, and attenuated glomerular histological injury as assessed by the incidence of glomerular tubularization. While expression of heme oxygenase 1 and cleaved caspase 3 did not differ, sulfide reduced the expression Bcl-xL and increased the activation of nuclear transcription factor κB. During porcine aortic occlusion-induced kidney I/R injury, sulfide pretreatment attenuated tissue injury and organ dysfunction as a result of reduced inflammation and oxidative and nitrosative stress. The higher nuclear transcription factor κB activation was probably due to the drop in temperature.
Collapse
|
104
|
Knapp J, Heinzmann A, Schneider A, Padosch SA, Böttiger BW, Teschendorf P, Popp E. Hypothermia and neuroprotection by sulfide after cardiac arrest and cardiopulmonary resuscitation. Resuscitation 2011; 82:1076-80. [PMID: 21550709 DOI: 10.1016/j.resuscitation.2011.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Poor neurological outcome remains a major problem in patients suffering cardiac arrest. Recent data have demonstrated potent neuroprotective effects of the administration of sulfide donor compounds after ischaemia/reperfusion injury following cardiac arrest and resuscitation. Therefore, we sought to evaluate the impact of sodium sulfide (Na(2)S), a liquid hydrogen sulfide donor on core body temperature and neurological outcome after cardiac arrest in rats. METHODS Fifty male Wistar rats were randomized into two groups (sulfide vs. placebo, n=25 per group). Cardiac arrest was induced by transoesophageal ventricular fibrillation during general anaesthesia. After 6 min of global cerebral ischaemia, animals were resuscitated by external chest compressions combined with defibrillation. An investigator blinded bolus of either Na(2)S (0.5 mg/kg body weight) or placebo 1 min before the beginning of CPR, followed by a continuous infusion of Na(2)S (1 mg/kg body weight/h) or placebo for 6 h, was administered intravenously. 1 day, 3 days, and 7 days after restoration of spontaneous circulation, neurological outcome was evaluated by a tape removal test. After 7 days of reperfusion, coronal brain sections were analyzed by TUNEL- and Nissl-staining. A caspase activity assay was used to determine antiapoptotic properties of Na(2)S. RESULTS Temperature course was similar in both groups (mean minimal temperature in the sulfide group 31.3±1.2°C vs. 30.8±1.9°C in the placebo group; p=0.29). Despite significant neuroprotection demonstrated by the tape removal test after 3 days of reperfusion in the sulfide treated group, there was no significant difference in neuronal survival at day 7. Likewise results from TUNEL-staining revealed no differences in the amount of apoptotic cell death between the groups after 7 days of reperfusion. CONCLUSION In our rat model of cardiac arrest, sulfide therapy was associated with only a short term beneficial effect on neurological outcome.
Collapse
Affiliation(s)
- Jürgen Knapp
- Department of Anaesthesiology, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
105
|
He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18:22. [PMID: 21406115 PMCID: PMC3066105 DOI: 10.1186/1423-0127-18-22] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background Ischemic postconditioning (IPost) has aroused much attention since 2003 when it was firstly reported. The role of microRNAs (miRNAs or miRs) in IPost has rarely been reported. The present study was undertaken to investigate whether miRNAs were involved in the protective effect of IPost against myocardial ischemia-reperfusion (IR) injury and the probable mechanisms involved. Methods Thirty SD rats weighing 250-300 g were equally randomized to three groups: Control group, where the rats were treated with thoracotomy only; IR group, where the rats were treated with ischemia for 60 min and reperfusion for 180 min; and IPost group, where the rats were treated with 3 cycles of transient IR just before reperfusion. The extent of myocardial infarction, LDH and CK activities were measured immediately after treatment. Myocardial apoptosis was detected by TUNEL assay. The myocardial tissue was collected after IR or IPost stimulation to evaluate the miRNAs expression level by miRNA-microarray and quantitative real-time RT-PCR. Real-time PCR was conducted to identify changes in mRNA expression of apoptosis-related genes such as Bcl-2, Bax and Caspase-9 (CASP9), and Western blot was used to compare the protein expression level of CASP9 in the three groups. The miRNA mimics and anti-miRNA oligonucleotides (AMO) were transferred into the cultured neonatal cardiomyocytes and myocardium before they were treated with IR. The effect of miRNAs on apoptosis was determined by flow cytometry and TUNEL assay. CASP9, as one of the candidate target of miR-133a, was compared during IR after the miR-133a mimic or AMO-133a was transferred into the myocardium. Results IPost reduced the IR-induced infarct size of the left ventricle, and decreased CK and LDH levels. TUNEL assay showed that myocardial apoptosis was attenuated by IPost compared with IR. MiRNA-microarray and RT-PCR showed that myocardial-specific miR-1 and miR-133a were down-regulated by IR, and up-regulated by IPost compared with IR. Furthermore, IPost up-regulated the mRNA expression of Bcl-2, down-regulated that of Bax and CASP9. Western blot showed that IPost also down-regulated the CASP9 protein expression compared with IR. The results of flow cytometry and TUNEL assay showed that up-regulation of miR-1 and miR-133a decreased apoptosis of cardiomyocytes. MiR-133a mimic down-regulated CASP9 protein expression and attenuated IR-induced apoptosis. Conclusion MiRNAs are associated with the protective effect of IPost against myocardial IR injury. IPost can up-regulate miR-1 and miR-133a, and decrease apoptosis of cardiomyocyte. Myocardial-specific miR-1 and miR-133a may play an important role in IPost protection by regulating apoptosis-related genes. MiR-133a may attenuate apoptosis of myocardiocytes by targeting CASP9.
Collapse
Affiliation(s)
- Bin He
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang Road, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Gao Y, Yao X, Zhang Y, Li W, Kang K, Sun L, Sun X. The protective role of hydrogen sulfide in myocardial ischemia-reperfusion-induced injury in diabetic rats. Int J Cardiol 2011; 152:177-83. [PMID: 21316771 DOI: 10.1016/j.ijcard.2010.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/28/2010] [Accepted: 07/02/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hydrogen sulfide (H(2)S) displays anti-inflammatory and cytoprotective activities to attenuate myocardial ischemia-reperfusion (MIR)-induced injury, but its role in MIR in diabetics is not known. This study was undertaken to investigate whether H(2)S plays a protective role in MIR in diabetic rats. METHODS Diabetes was induced by streptozocin in Wistar rats, which were subjected to myocardial ischemia by blocking the left circumflex artery for 30 min, followed by 2h reperfusion. dl-propargylglycine (PAG) and sodium hydrosulfide (NaHS) were administered to the rats to investigate their effects on severity of MIR-induced injury. RESULTS Diabetic rats had smaller myocardial infarct sizes and higher serum levels of H(2)S (both P < 0.05) than non-diabetics when they underwent MIR. MIR significantly increased the serum level of H(2)S (49.5 ± 7.1 μM), H(2)S-synthesizing activity (7.4 ± 1.6 nmol/mg) and the myocardial infarct size (44.0 ± 7.2%), compared with sham-operated diabetic rats (21.7 ± 2.1 μM, 0.15 ± 0.4 nmol/mg and 1.2 ± 0.4%, respectively). Administration of NaHS increased the H(2)S level (65.8 ± 6.9 μM) and had little effect on H(2)S production activity (6.5 ± 2.2 nmol/mg), while PAG reduced both the H(2)S level (29.2 ± 5.0 μM) and H(2)S-synthesizing activity (2.2 ± 1.8 nmol/mg). NaHS significantly reduced the myocardial infarct size (31.2 ± 4.7%), inhibited the production of lipid peroxidation, MPO activity, and cell apoptosis, and downregulated expression of caspase-3, Fas, FasL, and TNF-α, which had been elevated by MIR, while PAG further increased the myocardial infarct size (58.3 ± 5.9%), and displayed opposite effects. CONCLUSIONS The study indicates that H(2)S may play a protective role in MIR-induced myocardial injury in diabetics by its anti-apoptotic, anti-oxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yan Gao
- Department of ICU, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Derwall M, Francis RCE, Kida K, Bougaki M, Crimi E, Adrie C, Zapol WM, Ichinose F. Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects. Crit Care 2011; 15:R51. [PMID: 21299857 PMCID: PMC3221981 DOI: 10.1186/cc10016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/15/2010] [Accepted: 02/07/2011] [Indexed: 11/28/2022] Open
Abstract
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm H2S for intervals of 1 hour. Metabolic rate was estimated on the basis of total CO2 production (V˙CO2) and O2 consumption (V˙O2). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results V˙CO2, V˙O2, and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm H2S. Administration of 100, 200 and 300 ppm H2S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/cm5, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm H2S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm H2S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/cm5 (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm H2S impaired arterial oxygenation (PaO2 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with H2S; P ≤ 0.05). Conclusions Administration of up to 300 ppm H2S via ventilation of an extracorporeal membrane lung does not reduce V˙CO2 and V˙O2, but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of H2S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects.
Collapse
Affiliation(s)
- Matthias Derwall
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Toombs CF, Insko MA, Wintner EA, Deckwerth TL, Usansky H, Jamil K, Goldstein B, Cooreman M, Szabo C. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol 2010; 69:626-36. [PMID: 20565454 DOI: 10.1111/j.1365-2125.2010.03636.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Hydrogen sulphide (H(2)S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H(2)S to the tissues. In the current study, we have measured H(2)S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. METHODS We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H(2)S concentrations using a custom-made device based on a sulphide gas detector (Interscan). RESULTS Administration of IK-1001, a parenteral formulation of Na(2)S (0.005-0.20 mg kg(-1), i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1-5 min following administration of IK-1001 at 0.10 mg kg(-1) dose and higher. In all subjects, basal exhaled H(2)S was observed to be higher than the ambient concentration of H(2)S gas in room air, indicative of on-going endogenous H(2)S production in human subjects. Upon intravenous administration of Na(2)S, a rapid elevation of exhaled H(2)S concentrations was observed. The amount of exhaled H(2)S rapidly decreased after discontinuation of the infusion of Na(2)S. CONCLUSION Exhaled H(2)S represents a detectable route of elimination after parenteral administration of Na(2)S.
Collapse
|
109
|
Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clin Sci (Lond) 2010; 120:219-29. [DOI: 10.1042/cs20100462] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
H2S (hydrogen sulfide), viewed with dread for more than 300 years, is rapidly becoming a ubiquitously present and physiologically relevant signalling molecule. Knowledge of the production and metabolism of H2S has spurred interest in delineating its functions both in physiology and pathophysiology of disease. Although its role in blood pressure regulation and interaction with NO is controversial, H2S, through its anti-apoptotic, anti-inflammatory and antioxidant effects, has demonstrated significant cardioprotection. As a result, a number of sulfide-donor drugs, including garlic-derived polysulfides, are currently being designed and investigated for the treatment of cardiovascular conditions, specifically myocardial ischaemic disease. However, huge gaps remain in our knowledge about this gasotransmitter. Only by additional studies will we understand more about the role of this intriguing molecule in the treatment of cardiovascular disease.
Collapse
|
110
|
Study of Anti-Myocardial Cell Oxidative Stress Action and Effect of Tanshinone IIA on Prohibitin Expression. J TRADIT CHIN MED 2010; 30:259-64. [DOI: 10.1016/s0254-6272(10)60053-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
111
|
Szabó G, Veres G, Radovits T, Gero D, Módis K, Miesel-Gröschel C, Horkay F, Karck M, Szabó C. Cardioprotective effects of hydrogen sulfide. Nitric Oxide 2010; 25:201-10. [PMID: 21094267 DOI: 10.1016/j.niox.2010.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 01/19/2023]
Abstract
The gaseous mediator hydrogen sulfide (H(2)S) is synthesized mainly by cystathionine γ-lyase in the heart and plays a role in the regulation of cardiovascular homeostasis. Here we first overview the state of the art in the literature on the cardioprotective effects of H(2)S in various models of cardiac injury. Subsequently, we present original data showing the beneficial effects of parenteral administration of a donor of H(2)S on myocardial and endothelial function during reperfusion in a canine experimental model of cardiopulmonary bypass. Overview of the literature demonstrates that various formulations of H(2)S exert cardioprotective effects in cultured cells, isolated hearts and various rodent and large animal models of regional or global myocardial ischemia and heart failure. In addition, the production of H(2)S plays a role in myocardial pre- and post-conditioning responses. The pathways implicated in the cardioprotective action of H(2)S are multiple and involve K(ATP) channels, regulation of mitochondrial respiration, and regulation of cytoprotective genes such as Nrf-2. In the experimental part of the current article, we demonstrate the cardioprotective effects of H(2)S in a canine model of cardiopulmonary bypass surgery. Anesthetized dogs were subjected hypothermic cardiopulmonary bypass with 60 min of hypothermic cardiac arrest in the presence of either saline (control, n=8), or H(2)S infusion (1 mg/kg/h for 2 h). Left ventricular hemodynamic variables (via combined pressure-volume-conductance catheter) as well as coronary blood flow, endothelium-dependent vasodilatation to acetylcholine and endothelium-independent vasodilatation to sodium nitroprusside were measured at baseline and after 60 min of reperfusion. Ex vivo vascular function and high-energy phosphate contents were also measured. H(2)S led to a significantly better recovery of preload recruitable stroke work (p<0.05) after 60 min of reperfusion. Coronary blood flow was also significantly higher in the H(2)S group (p<0.05). While the vasodilatory response to sodium nitroprusside was similar in both groups, acetylcholine resulted in a significantly higher increase in coronary blood flow in the H(2)S-treated group (p<0.05) both in vivo and ex vivo. Furthermore, high-energy phosphate contents were better preserved in the H(2)S group. Additionally, the cytoprotective effects of H(2)S were confirmed also using in vitro cell culture experiments in H9c2 cardiac myocytes exposed to hypoxia and reoxygenation or to the cytotoxic oxidant hydrogen peroxide. Thus, therapeutic administration of H(2)S exerts cardioprotective effects in a variety of experimental models, including a significant improvement of the recovery of myocardial and endothelial function in a canine model of cardiopulmonary bypass with hypothermic cardiac arrest.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheiemer Feld 110, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P, Insko MA, Dumpit R, VandenEkart E, Toombs CF, Szabo C. A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br J Pharmacol 2010; 160:941-57. [PMID: 20590590 DOI: 10.1111/j.1476-5381.2010.00704.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2)S) is a labile, endogenous metabolite of cysteine, with multiple biological roles. The development of sulphide-based therapies for human diseases will benefit from a reliable method of quantifying H(2)S in blood and tissues. EXPERIMENTAL APPROACH Concentrations of reactive sulphide in saline and freshly drawn whole blood were quantified by reaction with the thio-specific derivatization agent monobromobimane, followed by reversed-phase fluorescence HPLC and/or mass spectrometry. In pharmacokinetic studies, male rats were exposed either to intravenous infusions of sodium sulphide or to H(2)S gas inhalation, and levels of available blood sulphide were measured. Levels of dissolved H(2)S/HS(-) were concomitantly measured using an amperometric sensor. KEY RESULTS Monobromobimane was found to rapidly and quantitatively derivatize sulphide in saline or whole blood to yield the stable small molecule sulphide dibimane. Extraction and quantification of this bis-bimane derivative were validated via reversed-phase HPLC separation coupled to fluorescence detection, and also by mass spectrometry. Baseline levels of sulphide in blood were in the range of 0.4-0.9 microM. Intravenous administration of sodium sulphide solution (2-20 mg x kg(-1) x h(-1)) or inhalation of H(2)S gas (50-400 ppm) elevated reactive sulphide in blood in a dose-dependent manner. Each 1 mg x kg(-1) x h(-1) of sodium sulphide infusion into rats was found to be pharmacokinetically equivalent to approximately 30 ppm of H(2)S gas inhalation. CONCLUSIONS AND IMPLICATIONS The monobromobimane derivatization method is a sensitive and reliable means to measure reactive sulphide species in whole blood. Using this method, we have established a bioequivalence between infused sodium sulphide and inhaled H(2)S gas.
Collapse
|
113
|
Chu LM, Osipov RM, Robich MP, Feng J, Sheller MR, Sellke FW. Effect of thrombin fragment (TP508) on myocardial ischemia reperfusion injury in a model of type 1 diabetes mellitus. Circulation 2010; 122:S162-9. [PMID: 20837908 DOI: 10.1161/circulationaha.109.928374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the efficacy of novel thrombin fragment TP508 on ischemia-reperfusion injury using a porcine model of type 1 diabetes mellitus. METHODS AND RESULTS Alloxan-induced diabetic male Yucatan swine underwent 60 minutes of mid-left anterior descending coronary artery occlusion, followed by 120 minutes of reperfusion. Fifty minutes into ischemia, animals received either placebo (DM; n=8) or TP508 as a bolus of 1 mg/kg followed by infusion at 2.5 mg/kg per hour (DMT; n=8). Hemodynamic parameters and myocardial function were monitored. Monastryl blue/triphenyl tetrazolium chloride staining was used to assess sizes of the areas at risk and infarction. Coronary microvascular reactivity was measured and expression of cell survival and proapoptotic proteins quantified. Preoperative serum glucose values were similar between groups (309±57 mg/dL in DM versus 318±67 mg/dL in DMT; P=0.92). Infarct size was smaller in the TP508-treated group (5.3±1.9% in DMT versus 19.4±5.6% in DM; P=0.03). There was no statistically significant difference in global or regional left ventricular function between groups. Endothelium-dependent microvessel relaxation was moderately improved in the DMT group (P=0.09), whereas endothelium-independent relaxation was similar between groups. The expression of cell survival proteins Akt, phospho-p38, and mammalian target of rapamycin was higher in the areas at risk of DMT animals compared with DM animals (P<0.05), and expressions of proapoptotic glycogen synthase kinase 3β and caspase 3 were lower in the DMT group (P<0.05). CONCLUSIONS This study demonstrates that, in type 1 diabetic swine, TP508 reduces infarct size after ischemia-reperfusion. Thus, TP508 may offer a novel approach in cardioprotection from ischemia-reperfusion injury in diabetic patients.
Collapse
Affiliation(s)
- Louis M Chu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
114
|
Ganster F, Burban M, de la Bourdonnaye M, Fizanne L, Douay O, Loufrani L, Mercat A, Calès P, Radermacher P, Henrion D, Asfar P, Meziani F. Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R165. [PMID: 20836847 PMCID: PMC3219260 DOI: 10.1186/cc9257] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 05/15/2010] [Accepted: 09/13/2010] [Indexed: 01/15/2023]
Abstract
Introduction Hydrogen sulfide (H2S) has been shown to improve survival in rodent models of lethal hemorrhage. Conversely, other authors have reported that inhibition of endogenous H2S production improves hemodynamics and reduces organ injury after hemorrhagic shock. Since all of these data originate from unresuscitated models and/or the use of a pre-treatment design, we therefore tested the hypothesis that the H2S donor, sodium hydrosulfide (NaHS), may improve hemodynamics in resuscitated hemorrhagic shock and attenuate oxidative and nitrosative stresses. Methods Thirty-two rats were mechanically ventilated and instrumented to measure mean arterial pressure (MAP) and carotid blood flow (CBF). Animals were bled during 60 minutes in order to maintain MAP at 40 ± 2 mm Hg. Ten minutes prior to retransfusion of shed blood, rats randomly received either an intravenous bolus of NaHS (0.2 mg/kg) or vehicle (0.9% NaCl). At the end of the experiment (T = 300 minutes), blood, aorta and heart were harvested for Western blot (inductible Nitric Oxyde Synthase (iNOS), Nuclear factor-κB (NF-κB), phosphorylated Inhibitor κB (P-IκB), Inter-Cellular Adhesion Molecule (I-CAM), Heme oxygenase 1(HO-1), Heme oxygenase 2(HO-2), as well as nuclear respiratory factor 2 (Nrf2)). Nitric oxide (NO) and superoxide anion (O2-) were also measured by electron paramagnetic resonance. Results At the end of the experiment, control rats exhibited a decrease in MAP which was attenuated by NaHS (65 ± 32 versus 101 ± 17 mmHg, P < 0.05). CBF was better maintained in NaHS-treated rats (1.9 ± 1.6 versus 4.4 ± 1.9 ml/minute P < 0.05). NaHS significantly limited shock-induced metabolic acidosis. NaHS also prevented iNOS expression and NO production in the heart and aorta while significantly reducing NF-kB, P-IκB and I-CAM in the aorta. Compared to the control group, NaHS significantly increased Nrf2, HO-1 and HO-2 and limited O2- release in both aorta and heart (P < 0.05). Conclusions NaHS is protective against the effects of ischemia reperfusion induced by controlled hemorrhage in rats. NaHS also improves hemodynamics in the early resuscitation phase after hemorrhagic shock, most likely as a result of attenuated oxidative stress. The use of NaHS hence appears promising in limiting the consequences of ischemia reperfusion (IR).
Collapse
Affiliation(s)
- Frédérique Ganster
- Laboratoire HIFIH, UPRES EA 3859, IFR 132, Université d'Angers, Rue Haute de Reculée, Angers, F-49035 France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Hydrogen sulphide attenuates renal and cardiac injury after total hepatic ischemia and reperfusion. J Surg Res 2010; 164:e305-13. [PMID: 20888584 DOI: 10.1016/j.jss.2010.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/20/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND There are few studies that focus on the important organs injuries induced by total hepatic ischemia and reperfusion (THIR), which is a key to save the lives of hepatic surgery patients. We evaluated changes in the hydrogen sulphide production system and injuries to the heart and kidney. The aim of this study was to assess whether sodium hydrosulphide (NaHS) has protective effects against THIR injury. MATERIALS AND METHODS Under anaesthesia of the Wistar rats, the hepatic artery, the portal vein, and the inferior vena cava above and below the liver were clamped with nontraumatic arterial clamps. Hepatic reperfusion was achieved by removing the clamps. RESULTS Hydrogen sulphide production system was down-regulated after THIR, which caused severe damage to the heart and kidney, apart from the liver. In treated animals, CK-MB and LDH were lower by 26.9% and 14.2% (P < 0.05), respectively. The kidney showed similar change. Hematoxylin and eosin staining demonstrated fewer injuries in NaHS treated animals. The results indicated that the damage was abolished by exogenous NaHS. CONCLUSIONS The observed protection of exogenous NaHS is associated with reduced myocardial and renal inflammation and oxidative potential after THIR. The current results suggest that hydrogen sulphide is protective during the evolution of THIR and that either direct hydrogen sulphide administration or the modulation of endogenous production may be of clinical importance.
Collapse
|
116
|
Robich MP, Osipov RM, Chu LM, Feng J, Burgess TA, Oyamada S, Clements RT, Laham RJ, Sellke FW. Temporal and spatial changes in collateral formation and function during chronic myocardial ischemia. J Am Coll Surg 2010; 211:470-80. [PMID: 20729101 DOI: 10.1016/j.jamcollsurg.2010.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND We investigated time dependence and spatial progression of cardiac function and angiogenesis signaling in a porcine model of chronic myocardial ischemia. STUDY DESIGN Yorkshire mini-swine (n = 7/group) were subjected to chronic myocardial ischemia by placing an ameroid constrictor on the left circumflex coronary artery under general anesthesia. Swine were sacrificed after either 4 or 7 weeks of ischemia. Myocardial function, angiographic evidence of angiogenesis, microvessel function, molecular signaling, and levels of apoptosis and oxidative stress were assessed. RESULTS Flow reserve was significantly increased at 7 versus 4 weeks. Myocardial function (+dP/dt) improved 1.5-fold by 7 weeks. In the ischemic territory, microvessels at 4 weeks displayed abnormal contraction responses to serotonin, which diminished at 7 weeks. Delta-like ligand 4 protein expression decreased at 7 weeks; expression of vascular endothelial growth factor (VEGF) and phospho-endothelial nitric acid synthase (eNOS) increased. The number of apoptotic cells was decreased at 7 weeks, and antiapoptotic markers heat shock protein (HSP) 27 and HSP 90 were upregulated at 7 weeks. There was an increase in proliferating endothelial cells at 7 weeks as compared with 4 weeks. In the adjacent normal ventricle, microvessels demonstrated smaller contraction responses to endothelin-1 and serotonin at 7 weeks. There was an increase in protein peroxidation in the ischemic territory at 7 weeks. CONCLUSIONS Over time, myocardial perfusion, function, and angiogenic signaling improved in the ischemic myocardium and adjacent normal territory compared with what is observed shortly after coronary occlusion.
Collapse
Affiliation(s)
- Michael P Robich
- Department of Surgery, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
HYDROGEN SULFIDE DOES NOT INCREASE RESUSCITABILITY IN A PORCINE MODEL OF PROLONGED CARDIAC ARREST. Shock 2010; 34:190-5. [DOI: 10.1097/shk.0b013e3181d0ee3d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
118
|
Ren C, Du A, Li D, Sui J, Mayhan WG, Zhao H. Dynamic change of hydrogen sulfide during global cerebral ischemia–reperfusion and its effect in rats. Brain Res 2010; 1345:197-205. [DOI: 10.1016/j.brainres.2010.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 11/28/2022]
|
119
|
Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 2010; 122:11-9. [PMID: 20566952 DOI: 10.1161/circulationaha.109.920991] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hydrogen sulfide (H(2)S) is an endogenous signaling molecule with potent cytoprotective effects. The present study evaluated the therapeutic potential of H(2)S in murine models of heart failure. METHODS AND RESULTS Heart failure was induced by subjecting mice either to permanent ligation of the left coronary artery for 4 weeks or to 60 minutes of left coronary artery occlusion followed by reperfusion for 4 weeks. Transgenic mice with cardiac-restricted overexpression of the H(2)S-generating enzyme cystathione gamma-lyase (alphaMHC-CGL-Tg(+)) displayed a clear protection against left ventricular structural and functional impairment as assessed by echocardiography in response to ischemia-induced heart failure, as well as improved survival in response to permanent myocardial ischemia. Exogenous H(2)S therapy (Na(2)S; 100 microg/kg) administered at the time of reperfusion (intracardiac) and then daily (intravenous) for the first 7 days after myocardial ischemia also protected against the structural and functional deterioration of the left ventricle by attenuating oxidative stress and mitochondrial dysfunction. Additional experiments aimed at elucidating some of the protective mechanisms of H(2)S therapy found that 7 days of H(2)S therapy increased the phosphorylation of Akt and increased the nuclear localization of 2 transcription factors, nuclear respiratory factor 1 and nuclear factor-E2-related factor (Nrf2), that are involved in increasing the levels of endogenous antioxidants, attenuating apoptosis, and increasing mitochondrial biogenesis. CONCLUSIONS The results of the present study suggest that either the administration of exogenous H(2)S or the modulation of endogenous H(2)S production may be of therapeutic benefit in the treatment of ischemia-induced heart failure.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30308, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Nicholson CK, Calvert JW. Hydrogen sulfide and ischemia-reperfusion injury. Pharmacol Res 2010; 62:289-97. [PMID: 20542117 DOI: 10.1016/j.phrs.2010.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 12/20/2022]
Abstract
Gasotransmitters are lipid soluble, endogenously produced gaseous signaling molecules that freely permeate the plasma membrane of a cell to directly activate intracellular targets, thus alleviating the need for membrane-bound receptors. The gasotransmitter family consists of three members: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). H(2)S is the latest gasotransmitter to be identified and characterized and like the other members of the gasotransmitter family, H(2)S was historically considered to be a toxic gas and an environmental/occupational hazard. However with the discovery of its presence and enzymatic production in mammalian tissues, H(2)S has gained much attention as a physiological signaling molecule. Also, much like NO and CO, H(2)S's role in ischemia/reperfusion (I/R) injury has recently begun to be elucidated. As such, modulation of endogenous H(2)S and administration of exogenous H(2)S has now been demonstrated to be cytoprotective in various organ systems through diverse signaling mechanisms. This review will provide a detailed description of the role H(2)S plays in different model systems of I/R injury and will also detail some of the mechanisms involved with its cytoprotection.
Collapse
Affiliation(s)
- Chad K Nicholson
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, United States
| | | |
Collapse
|
121
|
Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide--mediated cytoprotection. Antioxid Redox Signal 2010; 12:1203-17. [PMID: 19769484 PMCID: PMC2864658 DOI: 10.1089/ars.2009.2882] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H(2)S) is a colorless, water soluble, flammable gas that has the characteristic smell of rotten eggs. Like other members of the gasotransmitter family (nitric oxide and carbon monoxide), H(2)S has traditionally been considered to be a highly toxic gas and environmental hazard. However, much like for nitric oxide and carbon monoxide, the initial negative perception of H(2)S has evolved with the discovery that H(2)S is produced enzymatically in mammals under normal conditions. As a result of this discovery, there has been a great deal of work to elucidate the physiological role of H(2)S. H(2)S is now recognized to be cytoprotective in various models of cellular injury. Specifically, it has been demonstrated that the acute administration of H(2)S, either prior to ischemia or at reperfusion, significantly ameliorates in vitro or in vivo myocardial and hepatic ischemia-reperfusion injury. These studies have also demonstrated a cardioprotective role for endogenous H(2)S. This review article summarizes the current body of evidence demonstrating the cytoprotective effects of H(2)S with an emphasis on the cardioprotective effects. This review also provides a detailed description of the current signaling mechanisms shown to be responsible for these cardioprotective actions.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
122
|
Elsey DJ, Fowkes RC, Baxter GF. Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S). Cell Biochem Funct 2010; 28:95-106. [PMID: 20104507 DOI: 10.1002/cbf.1618] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since the discovery of endogenously-produced hydrogen sulfide (H(2)S) in various tissues, there has been an explosion of interest in H(2)S as a biological mediator alongside other gaseous mediators, nitric oxide and carbon monoxide. The identification of enzyme-regulated H(2)S synthetic pathways in the cardiovascular system has led to a number of studies examining specific regulatory actions of H(2)S. We review evidence showing that endogenously-generated and exogenously-administered H(2)S exerts a wide range of actions in vascular and myocardial cells including vasodilator/vasoconstrictor effects via modification of the smooth muscle tone, induction of apoptosis and anti-proliferative responses in the smooth muscle cells, angiogenic actions, effects relevant to inflammation and shock, and cytoprotection in models of myocardial ischemia-reperfusion injury. Several molecular mechanisms of action of H(2)S have been described. These include interactions of H(2)S with NO, redox regulation of multiple signaling proteins and regulation of K(ATP) channel opening. The gaps in our current understanding of precise mechanisms, the absence of selective pharmacological tools and the limited availability of H(2)S measurement techniques for living tissues, leave many questions about physiological and pathophysiological roles of H(2)S unanswered at present. Nevertheless, this area of investigation is advancing rapidly. We believe H(2)S holds promise as an endogenous mediator controlling a wide range of cardiovascular cell functions and integrated responses under both physiological and pathological conditions and may be amenable to therapeutic manipulation.
Collapse
|
123
|
Osipov RM, Robich MP, Feng J, Chan V, Clements RT, Deyo RJ, Szabo C, Sellke FW. Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 2010; 10:506-12. [PMID: 20051450 DOI: 10.1510/icvts.2009.219535] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the impact of hydrogen sulfide (H(2)S) on myocardium in the setting of cold crystalloid cardioplegia and cardiopulmonary bypass (CP/CPB). Eighteen male Yorkshire pigs underwent 1 h CP/CPB followed by 2 h of reperfusion. Pigs received either: placebo (control, n=9), or H(2)S (as NaHS) as a bolus/infusion (bolus/infusion, n=6), or as an infusion (infusion, n=6). The expression pattern of various myocardial effector pathways was investigated. Coronary microvascular relaxation to endothelium-dependent and -independent agonists was assessed. No differences in cardiac function were observed among groups. Endothelium-dependent microvascular relaxation to adenosine diphosphate was improved in the H(2)S bolus/infusion group only (P<0.05). The expression of hemeoxygenase-1, phospho-heat shock proteins27 and phospho-p44/42 MAPK extracellular signal-regulated kinase were higher in H(2)S-treated groups (P<0.05). Phospho-endothelial nitric oxide synthase (P=0.08), phospho-B-cell lymphoma 2 (P=0.09), and phospho-Bad (P=0.06) all displayed a trend to be higher with H(2)S treatment. The expressions of apoptosis inducing factor and Bcl 2/adenovirus E1B 19 kDa-interacting protein were lower in H(2)S treated groups (P<0.05). The microtubule-associated protein 1 light chain 3 ratio was lower in the infusion group vs. control animals (P<0.05). There was a trend for lower phospho-mammalian target of rapamycin expression in the infusion group (P=0.07), whereas phosphorylation of p70S6K1 was higher with H(2)S-treatment (P=0.09). This study demonstrates that H(2)S-treatment may offer biochemical myocardial protection via attenuation of caspase-independent apoptosis and autophagy in the setting of CP/CPB.
Collapse
Affiliation(s)
- Robert M Osipov
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, DANA 801, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 2010; 105:513-22. [DOI: 10.1007/s00395-010-0093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/18/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
|
125
|
Hosgood SA, Nicholson ML. Hydrogen sulphide ameliorates ischaemia-reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. Br J Surg 2010; 97:202-9. [PMID: 20034052 DOI: 10.1002/bjs.6856] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND : Therapies to alleviate ischaemia-reperfusion (IR) injury have an important role in kidney transplantation. This study used a porcine model of non-heart-beating (NHB) donor kidneys to investigate the effects of hydrogen sulphide on IR injury. METHODS : Porcine kidneys were subjected to 25 min of warm ischaemia and 18 h of cold storage. They were reperfused ex vivo with autologous oxygenated blood to assess renal function. A group treated with hydrogen sulphide (0.5 mmol/l) infused 10 min before and after reperfusion (n = 6) was compared with an untreated control group (n = 7). RESULTS : Hydrogen sulphide significantly improved renal blood flow compared with control values (mean(s.d.) area under the curve (AUC) 614.9(165.5) versus 270.3(86.7) ml per min per 100 g.h; P = 0.001) and renal function (AUC creatinine: 1640(248) versus 2328(154) micromol/l.h; P = 0.001; AUC creatinine clearance: 6.94(5.03) versus 0.96(0.32) ml per min per 100 g.h; P = 0.004). Oxidative damage was also reduced by hydrogen sulphide (urinary 8-isoprostane at 1 h of reperfusion: 478.9(237.1) versus 1605.6(632.7) pg/ml per mmol/l creatinine; P = 0.032). CONCLUSION : Hydrogen sulphide ameliorated the renal dysfunction associated with ischaemic damage, and has potential as a therapy against IR injury in NHB donor kidney transplantation.
Collapse
Affiliation(s)
- S A Hosgood
- Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | | |
Collapse
|
126
|
Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide. Curr Opin Anaesthesiol 2009; 22:168-76. [PMID: 19390245 DOI: 10.1097/aco.0b013e328328d22f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Nitric oxide, carbon monoxide, and hydrogen sulfide (H2S) are gases that have received attention as signaling molecules regulating many biological processes. All of them were reported to have beneficial effects in inflammatory states, in particular for microcirculatory perfusion and tissue energy balance. Thus, this review will highlight the most important results with a focus on resuscitated, clinically relevant experimental models and, if available, human studies. RECENT FINDINGS There is ample evidence that nitric oxide, carbon monoxide, and H2S may exert cytoprotective effects in shock states due to their vasomotor, antioxidant, and anti-inflammatory properties as well as their potential to induce a hibernation-like metabolic state called 'suspended animation' resulting from inhibition of cytochrome-c-oxidase. It must be emphasized, however, that the three molecules may also be cytotoxic, not only because of their inhibition of cellular respiration but also because of their marked pro-inflammatory effects. SUMMARY It is still a matter of debate whether manipulating nitric oxide, carbon monoxide, or H2S tissue concentrations, either by using the inhaled gas itself or by administering donor molecules or inhibitors of their endogenous production, is a useful therapeutic approach to improve microcirculatory blood flow, tissue oxygenation, and cellular respiration. This is mainly due to their 'friend and foe character' documented in various experimental models, but also to the paucity of data from long-term, resuscitated large animal experiments that fulfil the criteria of clinically relevant models.
Collapse
|
127
|
Esechie A, Enkhbaatar P, Traber DL, Jonkam C, Lange M, Hamahata A, Djukom C, Whorton EB, Hawkins HK, Traber LD, Szabo C. Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br J Pharmacol 2009; 158:1442-53. [PMID: 19845680 DOI: 10.1111/j.1476-5381.2009.00411.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE The present study investigated whether the pathophysiological changes induced by burn and smoke inhalation are modulated by parenteral administration of Na(2)S, a H(2)S donor. EXPERIMENTAL APPROACH The study used a total of 16 chronically instrumented, adult female sheep. Na(2)S was administered 1 h post injury, as a bolus injection at a dose of 0.5 mg.kg(-1) and subsequently, as a continuous infusion at a rate of 0.2 mg.kg(-1).h(-1) for 24 h. Cardiopulmonary variables (mean arterial and pulmonary arterial blood pressure, cardiac output, ventricular stroke work index, vascular resistance) and arterial and mixed venous blood gases were measured. Lung wet-to-dry ratio and myeloperoxidase content and protein oxidation and nitration were also measured. In addition, lung inducible nitric oxide synthase expression and cytochrome c were measured in lung homogenates via Western blotting and enzyme-linked immunosorbent assay (elisa) respectively. KEY RESULTS The H(2)S donor decreased mortality during the 96 h experimental period, improved pulmonary gas exchange and lowered further increase in inspiratory pressure and fluid accumulation associated with burn- and smoke-induced acute lung injury. Further, the H(2)S donor treatment reduced the presence of protein oxidation and 3-nitrotyrosine formation following burn and smoke inhalation injury. CONCLUSIONS AND IMPLICATIONS Parenteral administration of the H(2)S donor ameliorated the pulmonary pathophysiological changes associated with burn- and smoke-induced acute lung injury. Based on the effect of H(2)S observed in this clinically relevant model of disease, we propose that treatment with H(2)S or its donors may represent a potential therapeutic strategy in managing patients with acute lung injury.
Collapse
Affiliation(s)
- Aimalohi Esechie
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, 77550, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Osipov RM, Bianchi C, Feng J, Clements RT, Liu Y, Robich MP, Glazer HP, Sodha NR, Sellke FW. Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion. Circulation 2009; 120:S22-30. [PMID: 19752371 DOI: 10.1161/circulationaha.108.842724] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypercholesterolemia is prevalent in patients who experience myocardial ischemia-reperfusion injury (IR). We investigate the impact of dietary-induced hypercholesterolemia on the myocardium in the setting of acute IR. METHODS AND RESULTS In normocholesterolemic (NC, n=7) and hypercholesterolemic (HC, n=7) Yucatan male pigs, the left anterior descending coronary artery was occluded for 60 minutes, followed by reperfusion for 120 minutes. Hemodynamic values were recorded, and TTC staining was used to assess necrosis. Oxidative stress was measured. Specific cell death and survival signaling pathways were assessed by Western blot and TUNEL staining. Infarct size was 45% greater in HC versus NC (42% versus 61%, P<0.05), whereas the area at risk (AAR) was similar in both groups (P=0.61). Whereas global LV function (+dP/dt, P<0.05) was higher during entire period of IR in HC versus NC, regional function deteriorated more following reperfusion in HC (P<0.05). Ischemia increased indices of myocardial oxidative stress such as protein oxidation (P<0.05), lipid peroxidation (P<0.05), and nitrotyrosylation in HC versus NC, as well as the expression of phospho-eNOS (P<0.05). The expression of myeloperoxidase, p38 MAPK, and phospho-p38 MAPK was higher in HC versus NC (all P<05). Ischemia caused higher expression of the proapoptotic protein PARP (P<0.05), and lower expression of the prosurvival proteins Bcl2 (P<0.05), phospho-Akt, (P<0.05), and phospho-PKCepsilon (P<0.05) in the HC versus NC. TUNEL-positive cell count was 3.8-fold (P<0.05) higher in the AAR of HC versus NC. CONCLUSIONS This study demonstrates that experimental hypercholesterolemia is associated with increased myocardial oxidative stress and inflammation, attenuation of cell survival pathways, and induction of apoptosis in the ischemic territory, which together may account for the expansion of myocardial necrosis in the setting of acute IR.
Collapse
Affiliation(s)
- Robert M Osipov
- Alpert School of Medicine at Brown University, Rhode Island Hospital, Providence, 02905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Osipov RM, Robich MP, Feng J, Liu Y, Clements RT, Glazer HP, Sodha NR, Szabo C, Bianchi C, Sellke FW. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 2009; 54:287-97. [PMID: 19620880 DOI: 10.1097/fjc.0b013e3181b2b72b] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigate the impact of different regimens of parenteral hydrogen sulfide (H2S) administration on myocardium during ischemia-reperfusion (IR) and the molecular pathways involved in its cytoprotective effects. METHODS Eighteen male Yorkshire pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either placebo (control, n = 6) or H2S as a bolus (bolus group, n = 6, 0.2 mg/kg over 10 seconds at the start of reperfusion) or as an infusion (infusion group, n = 6, 2 mg.kg.h initiated at the onset of ischemia and continued into the reperfusion period). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis was determined by Monastral blue/triphenyl tetrazolium chloride staining. Apoptosis and the expression pattern of various intracellular effector pathways were investigated in the ischemic territory. Coronary microvascular reactivity to endothelium-dependent and endothelium-independent factors was measured. RESULTS H2S infusion but not bolus administration markedly reduce myocardial infarct size (P < 0.05) and improve regional left ventricular function, as well as endothelium-dependent and endothelium-independent microvascular reactivity (P < 0.05). The expression of B-cell lymphoma 2 (P = 0.059), heat shock protein 27 and alphaB-crystallin (P < 0.05) were lower in H2S-treated groups. Infusion of H2S caused higher expression of phospho-glycogen synthase kinase-3 beta isoform(P < 0.05) and lower expression of mammalian target of rapamycin and apoptosis-inducing factor (P < 0.05). Bolus of H2S caused higher expression of phospho-p44/42 MAPK extracellular signal-regulated kinase and lower expression of Beclin-1 (P < 0.05). The expression of caspase 3 and cleaved caspase 3 were lower (P < 0.05), whereas the expression of phospho-Bad(Ser136) was higher in the bolus group versus control and infusion groups (P < 0.05). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell count was lower in both H2S-treated groups compared with the control (P < 0.05). CONCLUSIONS This study demonstrates that infusion of H2S is superior to a bolus alone in reducing myocardial necrosis after IR injury, even though some markers of apoptosis and autophagy were affected in both H2S-treated groups. Thus, the current results indicate that infusion of H2S throughout IR may offer better myocardial protection from IR injury.
Collapse
Affiliation(s)
- Robert M Osipov
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 2009; 120:888-96. [PMID: 19704099 DOI: 10.1161/circulationaha.108.833491] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H(2)S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse. METHODS AND RESULTS Mice were subjected to 8 minutes of normothermic CA and resuscitated with chest compression and mechanical ventilation. Seven minutes after the onset of CA (1 minute before CPR), mice received sodium sulfide (Na(2)S) (0.55 mg/kg IV) or vehicle 1 minute before CPR. There was no difference in the rate of return of spontaneous circulation, CPR time to return of spontaneous circulation, and left ventricular function at return of spontaneous circulation between groups. Administration of Na(2)S 1 minute before CPR markedly improved survival rate at 24 hours after CPR (15/15) compared with vehicle (10/26; P=0.0001 versus Na(2)S). Administration of Na(2)S prevented CA/CPR-induced oxidative stress and ameliorated left ventricular and neurological dysfunction 24 hours after CPR. Delayed administration of Na(2)S at 10 minutes after CPR did not improve outcomes after CA/CPR. Cardioprotective effects of Na(2)S were confirmed in isolated-perfused mouse hearts subjected to global ischemia and reperfusion. Cardiomyocyte-specific overexpression of cystathionine gamma-lyase (an enzyme that produces H(2)S) markedly improved outcomes of CA/CPR. Na(2)S increased phosphorylation of nitric oxide synthase 3 in left ventricle and brain cortex, increased serum nitrite/nitrate levels, and attenuated CA-induced mitochondrial injury and cell death. Nitric oxide synthase 3 deficiency abrogated the protective effects of Na(2)S on the outcome of CA/CPR. CONCLUSIONS These results suggest that administration of Na(2)S at the time of CPR improves outcome after CA possibly via a nitric oxide synthase 3-dependent signaling pathway.
Collapse
Affiliation(s)
- Shizuka Minamishima
- Anesthesia Center for Critical Care Research, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting with cardiopulmonary bypass. J Thorac Cardiovasc Surg 2009; 139:1033-40. [PMID: 19660281 DOI: 10.1016/j.jtcvs.2009.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/16/2009] [Accepted: 05/31/2009] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We evaluated roles of serotonin 1B and 2A receptors, thromboxane synthase and receptor, and phospholipases A(2) and C in response to cardiopulmonary bypass. METHODS Patients' atrial tissues were harvested before and after cardiopulmonary bypass with cardioplegia (n = 13). Coronary microvessels were assessed for vasoactive response to serotonin with and without inhibitors of serotonin 1B and 2A receptors and phospholipases A(2) and C. Expressions of serotonin receptor messenger RNA were determined with reverse transcriptase polymerase chain reaction. Expressions of serotonin receptors and thromboxane A(2) receptor and synthase proteins were determined with immunoblotting and immunohistochemistry. RESULTS Microvessel exposure to serotonin elicited 7.3% +/- 2% relaxation before bypass, changing to contraction of -19.2% +/- 2% after bypass (P <.001). Additions of specific serotonin 1B receptor antagonist and inhibitor of phospholipase A(2) resulted in significantly decreased contraction, -8.6% +/- 1% (P < .001) and 2.8% +/- 3% (P = .001), respectively. Serotonin 1B receptor messenger RNA expression increased 1.82 +/- 0.34-fold after bypass (p = .044); serotonin 2A receptor messenger RNA expression did not change. Serotonin 1B but not 2A receptor protein expression increased after bypass by 1.35 +/- 0.7-fold (P = .0413). Thromboxane synthase and receptor expressions were unchanged after bypass. Serotonin 1B receptor increased mainly in arterial smooth muscle. There were no appreciable differences in arterial expressions of thromboxane synthase or receptor. CONCLUSIONS Serotonin-induced vascular dysfunction after cardiopulmonary bypass with cardioplegic arrest may be mediated by increased expression of serotonin 1B receptor and subsequent phospholipase A(2) activation in myocardial coronary smooth muscle.
Collapse
|
132
|
Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL, Sellke FW. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 2009; 138:977-84. [PMID: 19660398 DOI: 10.1016/j.jtcvs.2008.08.074] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/02/2008] [Accepted: 08/07/2008] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hydrogen sulfide is produced endogenously in response to myocardial ischemia and thought to be cardioprotective. The mechanism underlying this protection has yet to be fully elucidated, but it may be related to sulfide's ability to limit inflammation. This study investigates the cardioprotection provided by exogenous hydrogen sulfide and its potential anti-inflammatory mechanism of action. METHODS The mid left anterior descending coronary artery in 14 Yorkshire swine was acutely occluded for 60 minutes, followed by reperfusion for 120 minutes. Controls (n = 7) received placebo, and treatment animals (n = 7) received sulfide 10 minutes before and throughout reperfusion. Hemodynamic and functional measurements were obtained. Evans blue and triphenyl tetrazolium chloride staining identified the area at risk and infarction. Coronary microvascular reactivity was assessed. Tissue was assayed for myeloperoxidase activity and proinflammatory cytokines. RESULTS Pre-ischemia/reperfusion hemodynamics were similar between groups, whereas post-ischemia/reperfusion mean arterial pressure was reduced by 28.7 +/- 5.0 mm Hg in controls versus 6.7 +/- 6.2 mm Hg in treatment animals (P = .03). Positive first derivative of left ventricular pressure over time was reduced by 1325 +/- 455 mm Hg/s in controls versys 416 +/- 207 mm Hg/s in treatment animals (P = .002). Segmental shortening in the area at risk was better in treatment animals. Infarct size (percent of area at risk) in controls was 41.0% +/- 7.8% versus 21.2% +/- 2.5% in the treated group (P = .036). Tissue levels of interleukin 6, interleukin 8, tumor necrosis factor-alpha, and myeloperoxidase activity decreased in the treatment group. Treated animals demonstrated improved microvascular reactivity. CONCLUSIONS Therapeutic sulfide provides protection in response to ischemia/reperfusion injury, improving myocardial function, reducing infarct size, and improving coronary microvascular reactivity, potentially through its anti-inflammatory properties. Exogenous sulfide may have therapeutic utility in clinical settings in which ischemia/reperfusion injury is encountered.
Collapse
Affiliation(s)
- Neel R Sodha
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Wagner F, Asfar P, Calzia E, Radermacher P, Szabó C. Bench-to-bedside review: Hydrogen sulfide--the third gaseous transmitter: applications for critical care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:213. [PMID: 19519960 PMCID: PMC2717401 DOI: 10.1186/cc7700] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogen sulfide (H2S), a gas with the characteristic odor of rotten eggs, is known for its toxicity and as an environmental hazard, inhibition of mitochondrial respiration resulting from blockade of cytochrome c oxidase being the main toxic mechanism. Recently, however, H2S has been recognized as a signaling molecule of the cardiovascular, inflammatory and nervous systems, and therefore, alongside nitric oxide and carbon monoxide, is referred to as the third endogenous gaseous transmitter. Inhalation of gaseous H2S as well as administration of inhibitors of its endogenous production and compounds that donate H2S have been studied in various models of shock. Based on the concept that multiorgan failure secondary to shock, inflammation and sepsis may represent an adaptive hypometabolic response to preserve ATP homoeostasis, particular interest has focused on the induction of a hibernation-like suspended animation with H2S. It must be underscored that currently only a limited number of data are available from clinically relevant large animal models. Moreover, several crucial issues warrant further investigation before the clinical application of this concept. First, the impact of hypothermia for any H2S-related organ protection remains a matter of debate. Second, similar to the friend and foe character of nitric oxide, no definitive conclusions can be made as to whether H2S exerts proinflammatory or anti-inflammatory properties. Finally, in addition to the question of dosing and timing (for example, bolus administration versus continuous intravenous infusion), the preferred route of H2S administration remains to be settled--that is, inhaling gaseous H2S versus intra-venous administration of injectable H2S preparations or H2S donors. To date, therefore, while H2S-induced suspended animation in humans may still be referred to as science fiction, there is ample promising preclinical data that this approach is a fascinating new therapeutic perspective for the management of shock states that merits further investigation.
Collapse
Affiliation(s)
- Florian Wagner
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästehsiologie, Universitätsklinikum, Parkstrasse 11, 89073 Ulm, Germany.
| | | | | | | | | |
Collapse
|
134
|
Hydrogen Sulfide Attenuates Neuronal Injury Induced by Vascular Dementia Via Inhibiting Apoptosis in Rats. Neurochem Res 2009; 34:1984-92. [DOI: 10.1007/s11064-009-0006-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
135
|
Insko MA, Deckwerth TL, Hill P, Toombs CF, Szabo C. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. Br J Pharmacol 2009; 157:944-51. [PMID: 19422378 DOI: 10.1111/j.1476-5381.2009.00248.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium sulphide (Na(2)S) disassociates to sodium (Na(+)) hydrosulphide, anion (HS(-)) and hydrogen sulphide (H(2)S) in aqueous solutions. Here we have established and characterized a method to detect H(2)S gas in the exhaled breath of rats. EXPERIMENTAL APPROACH Male rats were anaesthetized with ketamine and xylazine, instrumented with intravenous (i.v.) jugular vein catheters, and a tube inserted into the trachea was connected to a pneumotach connected to a H(2)S gas detector. Sodium sulphide, cysteine or the natural polysulphide compound diallyl disulphide were infused intravenously while the airway was monitored for exhaled H(2)S real time. KEY RESULTS Exhaled sulphide concentration was calculated to be in the range of 0.4-11 ppm in response to i.v. infusion rates ranging between 0.3 and 1.1 mg x kg(-1) x min(-1). When nitric oxide synthesis was inhibited with N(omega)-nitro-L-arginine methyl ester the amount of H(2)S exhaled during i.v. infusions of sodium sulphide was significantly increased compared with that obtained with the vehicle control. An increase in circulating nitric oxide using DETA NONOate [3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene] did not alter the levels of exhaled H(2)S during an i.v. infusion of sodium sulphide. An i.v. bolus of L-cysteine, 1 g.kg(-1), and an i.v. infusion of the garlic derived natural compound diallyl disulphide, 1.8 mg x kg(-1) x min(-1), also caused exhalation of H(2)S gas. CONCLUSIONS AND IMPLICATIONS This method has shown that significant amounts of H(2)S are exhaled in rats during sodium sulphide infusions, and the amount exhaled can be modulated by various pharmacological interventions.
Collapse
|
136
|
|
137
|
Osipov RM, Robich MP, Feng J, Clements RT, Liu Y, Glazer HP, Wagstaff J, Bianchi C, Sellke FW. Effect of thrombin fragment (TP508) on myocardial ischemia-reperfusion injury in hypercholesterolemic pigs. J Appl Physiol (1985) 2009; 106:1993-2001. [PMID: 19372304 DOI: 10.1152/japplphysiol.00071.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury occurs frequently in the setting of hypercholesterolemia. We investigated the potential efficacy of a novel thrombin fragment (TP508) on IR injury in a hypercholesterolemic porcine model. Twenty-one hypercholesterolemic male Yucatan pigs underwent 60 min of mid-left anterior descending coronary artery occlusion followed by 120 min of reperfusion. Pigs received either placebo (control, n = 7) or TP508 in two doses (TP508 low dose, n = 7, as bolus of 0.5 mg/kg 50 min into ischemia and an infusion of 1.25 mg.kg(-1).h(-1) during reperfusion period or TP508 high dose, n = 7, a double dose of TP508 low-dose group). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis were determined by Monastryl blue/triphenyl tetrazolium chloride staining. Apoptosis in the ischemic territory was assessed. Coronary microvascular reactivity to endothelium-dependent and -independent factors was measured. Myocardial necrosis was lower in both TP508-treated groups vs. control (P < 0.05). Regional left ventricular function was improved only in the TP508 high-dose group (P < 0.05). Endothelium-dependent coronary microvascular reactivity was greater in both TP508-treated groups (P < 0.05) vs. control. The expression of proteins favoring cell survival, 90-kDa heat shock protein and phospho-Bad (Ser112) was higher in the TP508 high-dose group (P < 0.05). The expression of the cell death signaling proteins, cleaved caspase-3 (P < 0.05), apoptosis-inducing factor (P < 0.05), and poly-ADP ribose polymerase (P = 0.07) was lower in the TP508 low-dose group vs. TP508 high-dose and control. The terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling positive cell count was lower in both TP508 groups compared with the control (P < 0.05). This study demonstrates that, in hypercholesterolemic pigs, TP508 decreases myocardial necrosis and apoptosis after IR. Thus TP508 may offer a novel approach in protecting the myocardium from IR injury.
Collapse
|
138
|
Osipov RM, Bianchi C, Clements RT, Feng J, Liu Y, Xu SH, Robich MP, Wagstaff J, Sellke FW. Thrombin fragment (TP508) decreases myocardial infarction and apoptosis after ischemia reperfusion injury. Ann Thorac Surg 2009; 87:786-93. [PMID: 19231390 DOI: 10.1016/j.athoracsur.2008.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury may lead to cardiac dysfunction or death. This study investigates the potential efficacy of a novel thrombin fragment (TP508) on myocardial ischemia-reperfusion injury. METHODS Fourteen male Yucatan pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either saline vehicle (control, n = 7) or thrombin fragment TP508 (n = 7) as a bolus (0.5 mg/kg) 50 minutes into the ischemic period, followed by continuous intravenous infusion (1.25 mg x kg(-1) x h(-1)) during reperfusion. Myocardial function was monitored throughout the experiments. Monastryl blue/triphenyl tetrazolium chloride staining was utilized to measure the area at risk and infarcted tissue. Apoptosis was assessed by Western blotting and dUTP nick-end labeling (TUNEL) staining. Coronary microvascular reactivity to endothelium-dependent factors (adenosine diphosphate, substance P, A23187) and endothelium-independent factor (sodium nitroprusside) was examined. RESULTS Global and regional left ventricular function was not significantly different between groups. Endothelium-dependent coronary microvascular relaxation was greater in the TP508 group and associated with higher endothelial nitric oxide synthase phosphorylation. Both infarct size and TUNEL staining was significantly decreased in the TP508 group compared with the control group (p < 0.05). Expression of the cell survival proteins B-cell lymphoma 2 (2.2-fold, p < 0.05) and heat shock protein-73 (1.6-fold, p < 0.05) was higher in the TP508 group. Expression of the cell-death-signaling proteins poly adenosine diphosphate-ribose polymerase (1.6-fold, p < 0.05), cleaved poly adenosine diphosphate-ribose polymerase (6.4-fold, p < 0.05), and B-cell lymphoma 2/adenovirus E1B 19 kDa-interacting protein 3 (3.8-fold, p < 0.05) was significantly higher in the TP508 group in the ischemic territory. CONCLUSIONS This study demonstrates that TP508 decreases infarct size, improves endothelial microvascular function, and induces cell-survival signaling in the setting of ischemia-reperfusion injury. Thus, TP508 may be a useful agent to attenuate myocardial reperfusion injury.
Collapse
Affiliation(s)
- Robert M Osipov
- Department of General Surgery, Cardiothoracic Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Zhang N, Zheng Y, Wang YL, Li R, Sun K, Chang XY, Chen WG, Zhao J, Li HA. Role of endogenous hydrogen sulfide in rats with hepatic cirrhosis at different stages. Shijie Huaren Xiaohua Zazhi 2009; 17:307-311. [DOI: 10.11569/wcjd.v17.i3.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes of cystathionine gamma-lyase/hydrogen sulfide (CSE/H2S) on the liver of rats with hepatic cirrhosis at different stages, so as to investigate the role H2S plays in development of hepatic cirrhosis.
METHODS: H2S density in portal vein blood of model rats with carbon tetrachloride-induced hepatic cirrhosis was measured on the 15th day, the 30th day and the 52th day, respectively. The expression of CSE and CSEmRNA in liver was measured using immunohistochemisty and RT-PCR.
RESULTS: The blood H2S density in rats with hepatic cirrhosis was significantly lower in early-stage, the mid-stage, and the later stage group than in control group (F = 126.208, P = 0.000). H2S density was on a decline with disease development (r = -0.777, P < 0.05). The Grey of liver CSE with hepatic cirrhosis at different stages were lower than the control (F = 156.04, P = 0.000). The expression of protein CSE was enhanced. The expression of CSEmRNA of liver with hepatic cirrhosis at different stages were all higher than control (F = 23.927, P = 0.000), and the expression increased gradually with the disease development.
CONCLUSION: H2S system has an important effect which maintains the state of diastolic blood vessels on the occurrence and development in rats with hepatic cirrhosis.
Collapse
|
140
|
Hydrogen Sulfide: A Metabolic Modulator and a Protective Agent in Animal Models of Reperfusion Injury. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
141
|
Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2008; 44:1-13. [PMID: 19177183 PMCID: PMC2613492 DOI: 10.3164/jcbn.08-193r] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/05/2008] [Indexed: 12/12/2022] Open
Abstract
Medical gases are pharmaceutical gaseous molecules which offer solutions to medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases with recently discovered roles as biological messenger molecules, such as carbon monoxide, nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of medicine; however, a recent increasing in the number of publications on medical gas therapies clearly indicate that there are significant opportunities for use of gases as therapeutic tools for a variety of disease conditions. In this article, we review the recent advances in research on medical gases with antioxidant properties and discuss their clinical applications and therapeutic properties.
Collapse
Affiliation(s)
- Atsunori Nakao
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
142
|
Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 2008; 295:H1330-H1340. [PMID: 18660450 DOI: 10.1152/ajpheart.00244.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present study aimed to investigate the role of hydrogen sulphide (H2S) in the cardioprotection induced by ischemic postconditioning and to examine the underlying mechanisms. Cardiodynamics and myocardial infarction were measured in isolated rat hearts. Postconditioning with six episodes of 10-s ischemia (IPostC) significantly improved cardiodynamic function, which was attenuated by the blockade of endogenous H2S production with d-l-propargylglycine. Moreover, IPostC significantly stimulated H2S synthesis enzyme activity during the early period of reperfusion. However, d-l-propargylglycine only attenuated the IPostC-induced activation of PKC-alpha and PKC-epsilon but not that of PKC-delta, Akt, and endothelial nitric oxide synthase (eNOS). These data suggest that endogenous H2S contributes partially to the cardioprotection of IPostC via stimulating PKC-alpha and PKC-epsilon. Postconditioning with six episodes of a 10-s infusion of NaHS (SPostC) or 2 min continuous NaHS infusion (SPostC2) stimulated activities of Akt and PKC, improved the cardiodynamic performances, and reduced myocardial infarct size. The blockade of Akt with LY-294002 (15 microM) or PKC with chelerythrine (10 microM) abolished the cardioprotection induced by H2S postconditioning. SPostC2, but not SPostC, also additionally stimulated eNOS. We conclude that endogenous H2S contributes to IPostC-induced cardioprotection. H2S postconditioning confers the protective effects against ischemia-reperfusion injury through the activation of Akt, PKC, and eNOS pathways.
Collapse
Affiliation(s)
- Qian Chen Yong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | |
Collapse
|
143
|
Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 2008; 295:H801-6. [PMID: 18567706 DOI: 10.1152/ajpheart.00377.2008] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrogen sulfide (H(2)S) is an endogenously produced gaseous signaling molecule with diverse physiological activity. The potential protective effects of H(2)S have not been evaluated in the liver. The purpose of the current study was to investigate if H(2)S could afford hepatoprotection in a murine model of hepatic ischemia-reperfusion (I/R) injury. Hepatic injury was achieved by subjecting mice to 60 min of ischemia followed by 5 h of reperfusion. H(2)S donor (IK1001) or vehicle were administered 5 min before reperfusion. H(2)S attenuated the elevation in serum alanine aminotransferase (ALT) by 68.6% and aspartate aminotransferase (AST) by 70.8% compared with vehicle group. H(2)S-mediated cytoprotection was associated with an improved balance between reduced glutathione (GSH) vs. oxidized glutathione (GSSG), an attenuated formation of lipid hydroperoxides, and an increased expression of thioredoxin-1 (Trx-1). Furthermore, H(2)S inhibited the progression of apoptosis after I/R injury by increasing the protein expression of heat shock protein (HSP-90) and Bcl-2. These results indicate that H(2)S protects the murine liver against I/R injury through an upregulation of intracellular antioxidant and antiapoptotic signaling pathways.
Collapse
Affiliation(s)
- Saurabh Jha
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|