101
|
Effect of crosslinking agent to design nanostructured hyaluronic acid-based hydrogels with improved relaxometric properties. Carbohydr Polym 2019; 222:114991. [DOI: 10.1016/j.carbpol.2019.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
102
|
Kotla NG, Burke O, Pandit A, Rochev Y. An Orally Administrated Hyaluronan Functionalized Polymeric Hybrid Nanoparticle System for Colon-Specific Drug Delivery. NANOMATERIALS 2019; 9:nano9091246. [PMID: 31480704 PMCID: PMC6780722 DOI: 10.3390/nano9091246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023]
Abstract
There is a pressing clinical need for advanced colon-specific local drug delivery systems that can provide major advantages in treating diseases associated with the colon, such as inflammatory bowel disease (IBD) and colon cancer. A precise colon targeted drug delivery platform is expected to reduce drug side effects and increase the therapeutic response at the intended disease site locally. In this study, we report the fabrication of hyaluronan (HA) functionalized polymeric hybrid nanoparticulate system (Cur-HA NPs) by using curcumin as a model fluorescent drug. The Cur-HA NPs were about 200–300 nm in size, −51.3 mV overall surface charge after HA functionalization, with 56.0% drug released after 72 h in simulated gastrointestinal fluids. The Cur-HA NPs did not exhibit any cytotoxicity by AlamarBlue, PicoGreen and Live/Dead assays. Following the Cur-HA NPs use on HT-29 monolayer cell cultures demonstrating, the efficacy of HA functionalization increases cellular interaction, uptake when compared to uncoated nanoparticulate system. These findings indicate that HA functionalized nano-hybrid particles are effective in delivering drugs orally to the lower gastrointestinal tract (GIT) in order to treat local colonic diseases.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Orla Burke
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| |
Collapse
|
103
|
|
104
|
Sun Y, Wu H, Dong W, Zhou J, Zhang X, Liu L, Zhang X, Cheng H, Guan J, Zhao R, Mao S. Molecular simulation approach to the rational design of self-assembled nanoparticles for enhanced peroral delivery of doxorubicin. Carbohydr Polym 2019; 218:279-288. [DOI: 10.1016/j.carbpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
|
105
|
Menopausal urogenital changes: welcome expansion of management options over the past 25 years. Menopause 2019; 25:471-475. [PMID: 29652737 DOI: 10.1097/gme.0000000000001092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
106
|
Choi CA, Ryplida B, In I, Park SY. Selective redox-responsive theragnosis nanocarrier for breast tumor cells mediated by MnO2/fluorescent carbon nanogel. Eur J Pharm Sci 2019; 134:256-265. [DOI: 10.1016/j.ejps.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/25/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023]
|
107
|
Pramanik N, Ranganathan S, Rao S, Suneet K, Jain S, Rangarajan A, Jhunjhunwala S. A Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy. ACS OMEGA 2019; 4:9284-9293. [PMID: 31460017 PMCID: PMC6648023 DOI: 10.1021/acsomega.9b00870] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) nanoparticles have been developed for a variety of biomedical applications as a number of different therapeutic modalities may be added onto them. Here, we report the development and testing of such a multifunctional GO nanoparticle platform that contains a grafted cell-targeting functionality, active pharmaceutical ingredients, and particulates that enable the use of magnetothermal therapy. Specifically, we demonstrate the ability to covalently attach hyaluronic acid (HA) onto GO, and the resultant nanoparticulates (GO-HA) exhibited low inherent toxicity toward two different breast cancer cell lines, BT-474 and MDA-MB-231. Doxorubicin (Dox) and paclitaxel (Ptx) were successfully loaded onto GO-HA with high and moderate efficiencies, respectively. A GO-HA-Dox/Ptx system was significantly better than the GO-Dox/Ptx system at specifically killing CD44-expressing MDA-MB-231 cells but not BT-474 cells that do not express CD44. Further, modified iron oxide nanoparticles were loaded onto the GO-HA-Dox system, enabling the use of magnetic hyperthermia. Hyperthermia in combination with Dox treatment through the GO-HA system showed significantly better performance in reducing viable tumor cell numbers when compared to the individual systems. In summary, we showcase a multifunctional GO nanoparticle system that demonstrates improved efficacy in killing tumor cells.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Santhalakshmi Ranganathan
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sunaina Rao
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Kaushik Suneet
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Shilpee Jain
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Annapoorni Rangarajan
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Siddharth Jhunjhunwala
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
108
|
Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal targeting ofCentella asiaticaextract using hyaluronic acid surface modified niosomes. J Liposome Res 2019; 30:197-207. [DOI: 10.1080/08982104.2019.1614952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Panikchar Wichayapreechar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Pharmaceutical Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Wandee Rungseevijitprapa
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center for Pharmaceutical Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
109
|
Tripodo G, Mandracchia D. Inulin as a multifaceted (active) substance and its chemical functionalization: From plant extraction to applications in pharmacy, cosmetics and food. Eur J Pharm Biopharm 2019; 141:21-36. [PMID: 31102649 DOI: 10.1016/j.ejpb.2019.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
This review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota. Other than in food industry, the number of INU applications increases dramatically in the pharmaceutical field especially due to its simple chemical functionalization. Thus, aim of this review is also to give practical examples of chemical functionalization performed on INU also by including critical comments based on the direct experience of the Authors. With this aim, a full paragraph is dedicated to practical chemical experiences useful to reduce the efforts when establishing new experimental conditions. Moreover, the pharmaceutical technology is also taken in special consideration by underlining the aspects leading at the preparation of formulations based on INU. At the end of the review, a critical paragraph is intended to feed the scientists' curiosity on this versatile polysaccharide.
Collapse
Affiliation(s)
- Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
110
|
Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00448-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
111
|
Sahiner N, Suner SS, Ayyala RS. Mesoporous, degradable hyaluronic acid microparticles for sustainable drug delivery application. Colloids Surf B Biointerfaces 2019; 177:284-293. [DOI: 10.1016/j.colsurfb.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
112
|
A hyaluronan-based polysaccharide peptide generated by a genetically modified Streptococcus zooepidemicus. Carbohydr Res 2019; 478:25-32. [DOI: 10.1016/j.carres.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
|
113
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
114
|
Sagbas Suner S, Ari B, Onder FC, Ozpolat B, Ay M, Sahiner N. Hyaluronic acid and hyaluronic acid: Sucrose nanogels for hydrophobic cancer drug delivery. Int J Biol Macromol 2019; 126:1150-1157. [DOI: 10.1016/j.ijbiomac.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
115
|
Lee SE, Lee CD, Ahn JB, Kim DH, Lee JK, Lee JY, Choi JS, Park JS. Hyaluronic acid-coated solid lipid nanoparticles to overcome drug-resistance in tumor cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
116
|
Das D, Cho H, Kim N, Pham TTH, Kim IG, Chung EJ, Noh I. A terpolymeric hydrogel of hyaluronate-hydroxyethyl acrylate-gelatin methacryloyl with tunable properties as biomaterial. Carbohydr Polym 2019; 207:628-639. [DOI: 10.1016/j.carbpol.2018.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
|
117
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
118
|
De Sarno F, Ponsiglione AM, Russo M, Grimaldi AM, Forte E, Netti PA, Torino E. Water-Mediated Nanostructures for Enhanced MRI: Impact of Water Dynamics on Relaxometric Properties of Gd-DTPA. Theranostics 2019; 9:1809-1824. [PMID: 31037140 PMCID: PMC6485182 DOI: 10.7150/thno.27313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogels), have received considerable attention in Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been adopted to improve relaxivity without chemical modification of the commercial CAs, however, understanding the MRI enhancement mechanism remains a challenge. Methods: A multidisciplinary approach is used to highlight the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA. Changes in polymer conformation and thermodynamic interactions of CAs and polymers in aqueous solutions are detected by isothermal titration calorimetric (ITC) measurements and later, these interactions are investigated at the molecular level using NMR to better understand the involved phenomena. Water molecular dynamics of these systems is also studied using Differential Scanning Calorimetry (DSC). To observe relaxometric properties variations, we have monitored the MRI enhancement of the examined structures over all the experiments. The study of polymer-CA solutions reveals that thermodynamic interactions between biopolymers and CAs could be used to improve MRI Gd-based CA efficiency. High-Pressure Homogenization is used to obtain nanoparticles. Results: The effect of the hydration of the hydrogel structure on the relaxometric properties, called Hydrodenticity and its application to the nanomedicine field, is exploited. The explanation of this concept takes place through several key aspects underlying biopolymer-CA's interactions mediated by the water. In addition, Hydrodenticity is applied to develop Gadolinium-based polymer nanovectors with size around 200 nm with improved MRI relaxation time (10-times). Conclusions: The experimental results indicate that the entrapment of metal chelates in hydrogel nanostructures offers a versatile platform for developing different high performing CAs for disease diagnosis.
Collapse
Affiliation(s)
- Franca De Sarno
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Maria Russo
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | | | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
119
|
Marchenko I, Borodina T, Trushina D, Rassokhina I, Volkova Y, Shirinian V, Zavarzin I, Gogin A, Bukreeva T. Mesoporous particle-based microcontainers for intranasal delivery of imidazopyridine drugs. J Microencapsul 2019; 35:657-666. [PMID: 30669903 DOI: 10.1080/02652048.2019.1571642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to develop mesoporous containers for entrapment of imidazopyridines, such as sedative-hypnotic medicine zolpidem, anxiolytic agent alpidem and their derivatives. For this purpose, calcium carbonate (size 1.2 µm (PDI: 0.6), zeta potential: -10 mV), manganese carbonate (2.5 µm (PDI: 0.5), zeta potential: -12 mV) and titanium dioxide particles (3.7 µm (PDI: 0.4), zeta potential: -15 mV) were used. The compounds were encapsulated applying two techniques: adsorption on the preformed particles and co-precipitation during the synthesis of the particles. The polymer shell of the containers was formed by electrostatic adsorption of polyelectrolytes on the surface of the particles. The best encapsulation efficacy was shown for zolpidem incorporated into calcium carbonate (5.4%) and manganese carbonate (4.6%) by adsorption. Release of the compounds from the containers based on the proposed particles were characterised by the short time burst effect (<10 min) followed by desorption prolongation by formation of polymer shell. X-ray microtomography results demonstrate the prolonged retention of the containers with the mucoadhesive shell in the nasal cavity.
Collapse
Affiliation(s)
- Irina Marchenko
- a National Research Centre "Kurchatov Institute" , Moscow , Russia.,b Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Moscow , Russia
| | - Tatiana Borodina
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Moscow , Russia.,c Institute of Molecular Medicine Sechenov First Moscow State Medical University , Moscow , Russia
| | - Daria Trushina
- a National Research Centre "Kurchatov Institute" , Moscow , Russia.,b Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Moscow , Russia.,c Institute of Molecular Medicine Sechenov First Moscow State Medical University , Moscow , Russia
| | - Irina Rassokhina
- d N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences , Moscow , Russia
| | - Yulia Volkova
- d N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences , Moscow , Russia
| | - Valerii Shirinian
- d N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences , Moscow , Russia
| | - Igor Zavarzin
- d N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences , Moscow , Russia
| | - Andrey Gogin
- a National Research Centre "Kurchatov Institute" , Moscow , Russia
| | - Tatiana Bukreeva
- a National Research Centre "Kurchatov Institute" , Moscow , Russia.,b Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
120
|
Lee HY, Kim HE, Jeong SH. One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization. Colloids Surf B Biointerfaces 2019; 174:308-315. [DOI: 10.1016/j.colsurfb.2018.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
|
121
|
Paşcalău V, Pall E, Tertis M, Suciu M, Cristea C, Borodi G, Bodoki A, Topală T, Stiufiuc R, Moldovan A, Pavel C, Marinca T, Popa C. In vitro study of BSA gel/polyelectrolite complexes core shell microcapsules encapsulating doxorubicin for antitumoral targeted treatment. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Violeta Paşcalău
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Emoke Pall
- Clinical Department, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Maria Suciu
- Electron Microscopy Integrated Laboratory Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Molecular Biology and Biotechnology Department, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Borodi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andreea Bodoki
- General and Inorganic Chemistry Department, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Tamara Topală
- General and Inorganic Chemistry Department, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Nanobioscopy Department, MedFuture Research Center for Advanced Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
- Physics - Biophysics Department, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Alin Moldovan
- Nanobioscopy Department, MedFuture Research Center for Advanced Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Codruta Pavel
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Traian Marinca
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Catalin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
122
|
Kim J, Nafiujjaman M, Nurunnabi M, Lim S, Lee YK, Park HK. Effects of polymer-coated boron nitrides with increased hemorheological compatibility on human erythrocytes and blood coagulation. Clin Hemorheol Microcirc 2019; 70:241-256. [PMID: 29710679 DOI: 10.3233/ch-170307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Boron nitride (BN) nanomaterials are promising in biomedical research owing to their large surface area, graphene-like structure, and chemical and thermal properties. However, the toxicological effects of BN on erythrocytes and blood coagulation remain uninvestigated. OBJECTIVE The aims of our study were to synthesize glycol chitosan (GC)- and hyaluronic acid (HA)-coated BNs, and to investigate the effects of these BNs on human cancer cells, erythrocytes, and whole blood. METHODS We prepared hemocompatible forms of BN coated with GC and HA, and evaluated them using cell uptake/viability tests, hemolysis analysis and FE-SEM, as well as through hemorheological evaluation methods such as RBC deformability and aggregation, and blood coagulation. RESULTS GC/BN and HA/BN were both ∼200 nm, were successfully taken into cells, and emitted blue fluorescence. Both BNs were less toxic than bare BN, even at higher concentrations. The aggregation index of human red blood cells (RBCs) after 2 h incubation with BN, GC/BN, and HA/BN was greatly influenced, whereas RBC deformability did not dramatically change. CONCLUSIONS We found that GC/BN affected the intrinsic coagulation pathway, whereas both GC/BN and HA/BN affected the extrinsic pathway. Therefore, HA/BN is less detrimental to RBCs and blood coagulation dynamics than bare BN and GC/BN.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Md Nafiujjaman
- Department of Green Bioengineering, Korea National University of Transportation, Chunbuk, Republic of Korea
| | - Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Sinye Lim
- Department of Occupational & Environmental Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chunbuk, Republic of Korea.,Department of Chemical & Biological Engineering, Korea National University of Transportation, Chunbuk, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
123
|
Neamtu I, Chiriac AP, Nita LE, Diaconu A, Rusu AG. Nanogels Containing Polysaccharides for Bioapplications. POLYMERIC NANOMATERIALS IN NANOTHERAPEUTICS 2019:387-420. [DOI: 10.1016/b978-0-12-813932-5.00011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
124
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|
125
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
126
|
Lee SY, Hong EH, Jeong JY, Cho J, Seo JH, Ko HJ, Cho HJ. Esterase-sensitive cleavable histone deacetylase inhibitor-coupled hyaluronic acid nanoparticles for boosting anticancer activities against lung adenocarcinoma. Biomater Sci 2019; 7:4624-4635. [DOI: 10.1039/c9bm00895k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Phenylbutyric acid (PBA)-installed hyaluronic acid (HA)-based nanoparticles (NPs) were developed for amplifying the anticancer potential of curcumin (CUR) for lung cancer therapy.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Eun-Hye Hong
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Jae Young Jeong
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Ji-Hye Seo
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| |
Collapse
|
127
|
Chen L, Zheng Y, Feng L, Liu Z, Guo R, Zhang Y. Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin. Int J Biol Macromol 2018; 126:254-261. [PMID: 30584933 DOI: 10.1016/j.ijbiomac.2018.12.215] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
The aim of this work was to examine the formation and properties of a novel polyelectrolyte complex of drug carrier system for the delivery of doxorubicin (DOX), which consists of hyaluronic acid (HA) coated hydrophobically modified chitosan (CS). Various batches of polyelectrolyte complexes with the molar ratio of deoxycholic acid (DCA) and chitosan (CS) of 0.1, 0.2, 0.3 were prepared, and were termed as CS-DCA10, CS-DCA20, and CS-DCA30 respectively. The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), nuclear magnetic resonance hydrogen spectrum (1H NMR) and dynamic light scattering (DLS). Particle sizes of synthesized polyelectrolyte complex nanoparticles (PCNs) were found to be in the range of 280-310 nm, larger than those of uncoated nanoparticles (~150 nm). The PCNs have large zeta potentials (about 26 mV) which make them stable and no sizes' change was determined. DOX could be easily incorporated into the PCNs with encapsulation efficiency (56%) and kept a sustained release manner without burst effect when exposed to PBS (pH 7.4) at 37 °C. Overall, these findings confirmed the potential of these PCNs for drug carrier and prolonged and sustained delivery in the bloodstream.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yuanming Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
128
|
Wang X, Wang J, Li J, Huang H, Sun X, Lv Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
129
|
Tripodo G, Trapani A, Rosato A, Di Franco C, Tamma R, Trapani G, Ribatti D, Mandracchia D. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr Polym 2018; 198:124-130. [DOI: 10.1016/j.carbpol.2018.06.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
|
130
|
Debele TA, Yu LY, Yang CS, Shen YA, Lo CL. pH- and GSH-Sensitive Hyaluronic Acid-MP Conjugate Micelles for Intracellular Delivery of Doxorubicin to Colon Cancer Cells and Cancer Stem Cells. Biomacromolecules 2018; 19:3725-3737. [PMID: 30044910 DOI: 10.1021/acs.biomac.8b00856] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A dual-sensitive polymeric drug conjugate (HA-SS-MP) was synthesized by conjugating hydrophobic 6-mercaptopurine (MP) to thiolated hyaluronic acid (HA) as the carrier and ligand to deliver doxorubicin (Dox) to parental colon cancer and colon cancer stem cells. Because of the amphiphilic nature of HA-SS-MP, it was self-assembled in the aqueous media, and Dox was physically encapsulated in the core of the micelles. The particle size and the zeta potential of the micelle were analyzed by dynamic light scattering (DLS), and the morphology of the micelle was investigated using transmission electron microscopy (TEM). Drug release study results revealed more drug release at pH 5.0 in the presence of GSH than that at the physiological pH value. The cytotoxicity of free Dox was slightly greater than that of Dox-loaded HA-SS-MP micelles. In vitro cytotoxicity of HA-SS-MP and Dox-loaded HA-SS-MP micelles was greater for cancer stem cells (HCT116-CSCs) than for parental HCT116 colon cancer cells and L929 normal fibroblast cells. The MTT and flow cytometry results confirmed that free HA competitively inhibited Dox-loaded HA-SS-MP uptake. Similarly, flow cytometry results revealed anti-CD44 antibody competitively inhibited cellular uptake of Rhodamine B isothiocyanate conjugated micelles, which confirms that the synthesized micelle is uptaken via CD44 receptor. Cell cycle analysis revealed that free drugs and Dox-loaded HA-SS-MP arrested parental HCT116 colon cancer cells at the S phase, while cell arrest was observed at the G0G1 phase in HCT116-CSCs. In addition, ex vivo biodistribution study showed that Dox-loaded HA-SS-MP micelles were accumulated more in the tumor region than in any other organ. Furthermore, the in vivo results revealed that Dox-loaded HA-SS-MP micelles exhibited more therapeutic efficacy than the free drugs in inhibiting tumor growth in BALB/C nude mice. Overall, the results suggested that the synthesized micelles could be promising as a stimuli carrier and ligand for delivering Dox to colon cancer cells and also to eradicate colon cancer stem cells.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Department of Biomedical Engineering , National Yang-Ming University , Taipei 112 , Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering , National Yang-Ming University , Taipei 112 , Taiwan
| | - Cheng-Sheng Yang
- Department of Biomedical Engineering , National Yang-Ming University , Taipei 112 , Taiwan
| | - Yao-An Shen
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins Medical Institutions , Baltimore , Maryland 21205 , United States
| | - Chun-Liang Lo
- Department of Biomedical Engineering , National Yang-Ming University , Taipei 112 , Taiwan.,Center for Advanced Pharmaceutics and Drug Delivery Research , National Yang-Ming University , Taipei 112 , Taiwan.,Biomedical Engineering Research and Development Center (BERDC) , National Yang-Ming University , Taipei 112 , Taiwan
| |
Collapse
|
131
|
Gamarra A, Muñoz-Guerra S, Martínez de Ilarduya A, Thérien-Aubin H, Landfester K. Comblike Ionic Complexes of Hyaluronic Acid and Alkanoylcholine Surfactants as a Platform for Drug Delivery Systems. Biomacromolecules 2018; 19:3669-3681. [PMID: 30037226 DOI: 10.1021/acs.biomac.8b00783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nontoxic alkanoylcholine soaps ( nACh) were synthesized from choline and fatty acids with numbers of carbons n equal to 12, 14, 16, and 18, the latter including both saturated and 9- cis unsaturated alkanoyl chains. Coupling of nACh with hyaluronic acid (HyA) rendered comblike ionic complexes nACh·HyA that were non-water-soluble. The complexes were thermally stable up to temperatures above 200 °C but readily degraded by water, in particular when hyaluronidases were present in the aqueous medium. In the solid state, these complexes were self-assembled in a biphasic layered structure in which the surfactant and the polysaccharide phases were alternating regularly with a periodicity dependent on the length of the alkanoyl chain. The paraffinic phase was found to be crystallized in saturated complexes with n ≥ 14, but only 18ACh·HyA showed reversible melting crystallization when subjected to cyclic heating-cooling treatment. Nanoparticles with diameters in the 50-150 nm range were prepared by ionotropic gelation from unbalanced 18ACh·HyA complexes with surfactant:HyA ratios of 0.5 and 0.25. These nanoparticles were also structured in layers, swelled slowly in water, and shown to be noncytotoxic in in vitro assays against macrophages cells. It was also shown that the anticancer drug doxorubicin was efficiently encapsulated in both films and NPs of 18ACh·HyA, and its release was shown to be almost linear and complete after one day of incubation in physiological medium. The nACh·HyA complexes constitute a highly promising biocompatible/biodegradable platform for the design of systems suitable for drug transport and targeting delivery in anticancer chemotherapy.
Collapse
Affiliation(s)
- Ana Gamarra
- Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647 , 08028 Barcelona , Spain
| | | | | | | | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
132
|
Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Samantha J Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
133
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
134
|
Kaya D, Alemdar N. Electroconductive hyaluronic acid/gelatin/poly(ethylene oxide) polymeric film reinforced by reduced graphene oxide. J Appl Polym Sci 2018. [DOI: 10.1002/app.46905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Duygu Kaya
- Marmara University; Department of Chemical Engineering; 34722 Istanbul Turkey
- T. C. Atasehir Adiguzel Vocational School; 34779 Istanbul Turkey
| | - Neslihan Alemdar
- Marmara University; Department of Chemical Engineering; 34722 Istanbul Turkey
| |
Collapse
|
135
|
Li S, Cong W, Hakamivala A, Huang Y, Borrelli J, Tang L. Hyaluronic Acid-Based Optical Probe for the Diagnosis of Human Osteoarthritic Cartilage. Nanotheranostics 2018; 2:347-359. [PMID: 30148052 PMCID: PMC6107780 DOI: 10.7150/ntno.26119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis is typically caused by cartilage injury, followed by localized inflammatory responses and tissue deterioration. Early treatment of osteoarthritis is often impossible due to the lack of diagnostic options. Recent studies have supported that different imaging probes can be used for arthritis detection in mice. However, none of these diagnostic tools have been tested on human articular cartilage. To fill this gap, an optical imaging probe was developed to target activated macrophages and the accumulation of imaging probes on tissue was used to assess the severity of human osteoarthritis. Methods: The probe was fabricated using hyaluronic acid (HA) particles conjugated with near-infrared dye and folic acid (FA). The ability of the FA-HA probes to detect activated macrophages and quantify cartilage injury was evaluated using a cell culture model in vitro and human osteoarthritic cartilage explants ex vivo. Results: Our cell study results supported that the FA-HA probes are cell compatible (up to 0.5mg/mL) and can detect activated macrophages in 30 minutes. Using human articular cartilage, we verified the existence of activated macrophages on osteoarthritic cartilage with highly up-regulated expression of folate receptors (~13 folds by comparison with healthy control). In addition, we found that FA-HA probes had higher binding amounts (~3 folds) to osteoarthritic tissue than healthy ones. Histological analyses confirmed that there was a strong linear relationship (R=0.933) between the fluorescent intensity of tissue-associated probe and the extent of folate receptors on osteoarthritic cartilage. Finally, the co-localization of the imaging probe, folate receptors and cartilage degeneration on the tissue sections indicated the extraordinary accuracy and efficiency of this osteoarthritis diagnostic probe. Conclusions: Our results support the probe as an effective diagnostic tool to detect the area and severity of osteoarthritic human articular cartilage.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wei Cong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Oral Anatomy, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Amirhossein Hakamivala
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - YiHui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
136
|
Yang Y, Zhao Y, Lan J, Kang Y, Zhang T, Ding Y, Zhang X, Lu L. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. Int J Nanomedicine 2018; 13:4361-4378. [PMID: 30100720 PMCID: PMC6065576 DOI: 10.2147/ijn.s165359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction A reduction-sensitive CD44-positive tumor-targetable drug delivery system for doxorubicin (DOX) delivery was developed based on hyaluronic acid (HA)-grafted polymers. Materials and methods HA was conjugated with folic acid (FA) via a reduction-sensitive disulfide linkage to form an amphiphilic polymer (HA-ss-FA). The chemical structure of HA-ss-FA was analyzed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of HA-ss-FA was determined by high-performance gel permeation chromatography. Blank HA-ss-FA micelles and DOX-loaded micelles were prepared and characterized. The reduction responsibility, cellular uptake, and in vivo biodistribution of HA-ss-FA micelles were investigated. Results DOX-loaded micelles were of high encapsulation efficiency (88.09%), high drug-loading content (22.70%), appropriate mean diameter (100-120 nm), narrow size distribution, and negative zeta potential (-6.7 to -31.5 mV). The DOX release from the micelles was significantly enhanced in reduction environment compared to normal environment. The result of in vitro cytotoxicity assay indicated that the blank micelles were of low toxicity and good biocompatibility and the cell viabilities were >100% with the concentration of HA-ss-FA from 18.75 to 600.00 μg/mL. Cellular uptake and in vivo biodistribution studies showed that DOX-loaded micelles were tumor-targetable and could significantly enhance cellular uptake by CD44 receptor-mediated endocytosis, and the cellular uptake of DOX in CD44-positve A549 cells was 1.6-fold more than that in CD44-negative L02 cells. In vivo biodistribution of HA-ss-FA micelles showed that micelles were of good in vivo tumor targetability and the fluorescence of indocyanine green (ICG)-loaded micelles was 4- to 6.6-fold stronger than free ICG within 6 h in HCCLM3 tumor-bearing nude mice. Conclusion HA-ss-FA is a promising nanocarrier with excellent biocompatibility, tumor targetability, and controlled drug release capability for delivery of chemotherapy drugs in cancer therapy.
Collapse
Affiliation(s)
- Yishun Yang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yuan Zhao
- Experiment Centre for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yanan Kang
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yue Ding
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Xinyu Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Lu Lu
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
137
|
Sun Z, Yi Z, Cui X, Chen X, Su W, Ren X, Li X. Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. NANOSCALE 2018; 10:12109-12122. [PMID: 29915821 DOI: 10.1039/c8nr03265c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of safe and effective nano-drug delivery systems to deliver anticancer drugs to targeted cells and organs is crucial to enhance the therapeutic efficacy and overcome unwanted side effects of chemotherapy. Herein, we prepared CD44-targeted dual-stimuli responsive human hair keratin and hyaluronic acid nanogels (KHA-NGs) through a simple crosslinking method. KHA-NGs, which consisted of spheres 50 nm in diameter, were used as carriers to load the anticancer drug doxorubicin hydrochloride (DOX). The drug release, cellular uptake, cytotoxicity, and targeting ability of DOX-loaded KHA-NGs (DOX@KHA-NGs) were assessed in vitro and the anticancer effects were further evaluated in vivo. The DOX@KHA-NGs had a super-high drug loading capacity (54.1%, w/w) and were stable under physiological conditions (10 μM glutathione (GSH)), with the drug being rapidly released under a tumor cell microenvironment of trypsin and 10 mM GSH. Cellular uptake and in vitro cytotoxicity results indicated that DOX@KHA-NGs specifically targeted cancer cells and effectively inhibited their growth. Furthermore, KHA-NGs were capable of improving intracellular nitric oxide levels, which sensitizes the cells and enhances the anticancer efficacy of chemotherapeutic drugs. In vivo experiments showed that DOX@KHA-NGs had a better anti-tumor effect and lower side effects compared to free DOX. These results suggest that the bio-responsive KHA-NGs have potential applications for targeted cancer therapy.
Collapse
Affiliation(s)
- Zhe Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
138
|
Bartheldyová E, Effenberg R, Mašek J, Procházka L, Knötigová PT, Kulich P, Hubatka F, Velínská K, Zelníčková J, Zouharová D, Fojtíková M, Hrebík D, Plevka P, Mikulík R, Miller AD, Macaulay S, Zyka D, Drož L, Raška M, Ledvina M, Turánek J. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem 2018; 29:2343-2356. [PMID: 29898364 DOI: 10.1021/acs.bioconjchem.8b00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Lubomír Procházka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavlína Turánek Knötigová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Jaroslava Zelníčková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Darina Zouharová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center of St. Anne's University Hospital Brno , 656 91 Brno , Czech Republic
| | - Andrew D Miller
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Stuart Macaulay
- Malvern Instruments , Great Malvern WR14 1XZ , United Kingdom
| | - Daniel Zyka
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Ladislav Drož
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic.,Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry , Palacky University Olomouc , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| |
Collapse
|
139
|
Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 2018; 13:1495-1512. [DOI: 10.2217/nnm-2018-0040] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have promising biomedical applications for drug delivery, tumor imaging and tumor treatment. Pharmacokinetics are important for the in vivo application of nanoparticles. Biodistribution and clearance are largely defined as the key points of pharmacokinetics to maximize therapeutic efficacy and to minimize side effects. Different engineered nanoparticles have different biodistribution and clearance processes. The interactions of organs with nanoparticles, which are determined by the characteristics of the organs and the biochemical/physical properties of the nanoparticles, are a major factor influencing biodistribution and clearance. In this review, the clearance functions of organs and the properties related to pharmacokinetics, including nanoparticle size, shape, biodegradation and surface modifications are discussed.
Collapse
Affiliation(s)
- Yanchun Wei
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Li Quan
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
| | - Chao Zhou
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Qiuqiang Zhan
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
- Key Laboratory of Optoelectronic Devices & Systems of Ministry of Education & Guangdong Province, Shenzhen University, Shenzhen 518052, PR China
| |
Collapse
|
140
|
Das D, Pham TTH, Noh I. Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids Surf B Biointerfaces 2018; 170:64-75. [PMID: 29879635 DOI: 10.1016/j.colsurfb.2018.05.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
In the present study, a novel terpolymeric hydrogel was developed using sodium hyaluronate (HA), 2-hydroxyethyl acrylate (2-HEA), and poly(ethylene glycol) diacrylate (PEGDA) via free radical polymerization for biomedical applications. To achieve elasticity, swelling ability, porous architecture and sufficient gel strength, hyaluronate was chemically modified by grafting and crosslinking methods using 2-HEA and PEGDA, respectively. The structure and compositions of the fabricated terpolymer (HA-g-p(2-HEA)-x-PEGDA) were verified by FTIR, 1H HR-MAS-NMR, and TGA analyses. The surface morphology and cross-section of the hydrogel was detected by SEM analysis. The gel nature of terpolymer in aqueous medium at 37 °C was confirmed from swelling study, and rheological experiment. Non-cytotoxicity and biocompatibility of the HA-g-p(2-HEA)-x-PEGDA hydrogel were ascertained by in vitro mouse osteoblastic cells (MC3T3) proliferation, and viability studies. Hematoxylin and eosin Y, and Masson's trichrome stainings were performed to show tissue regeneration ability on the prepared hydrogel. In vitro release results of proangiogenic drug-dimethyloxalylglycine (DMOG), and antibiotics-tetracycline (TCN) showed sustained release behaviour from the prepared hydrogel under different pHs at 37 °C. The mathematical models fitted data imply that both DMOG and TCN release follow first order kinetics, while, the release mechanism is primarily controlled by diffusion as well as erosion process. Finally, the novel biocompatible HA-g-p(2-HEA)-x-PEGDA gel, which showed sustained drugs release, and regeneration ability of extracellular matrix and collagen, could be employed in biomedical applications, especially, for the delivery of DMOG/TCN, and in tissue engineering.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Thi Thu Hien Pham
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
141
|
Haney EF, Wuerth KC, Rahanjam N, Safaei Nikouei N, Ghassemi A, Alizadeh Noghani M, Boey A, Hancock REW. Identification of an IDR peptide formulation candidate that prevents peptide aggregation and retains immunomodulatory activity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | - Kelli C. Wuerth
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | | | - Arvin Ghassemi
- The Centre for Drug Research & Development, Formulations Division; Vancouver Canada
| | | | - Anthony Boey
- The Centre for Drug Research & Development, Formulations Division; Vancouver Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| |
Collapse
|
142
|
One-pot synthesis of dopamine-conjugated hyaluronic acid/polydopamine nanocomplexes to control protein drug release. Int J Pharm 2018. [DOI: 10.1016/j.ijpharm.2018.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
143
|
Wang X, Gu X, Wang H, Yang J, Mao S. Enhanced delivery of doxorubicin to the liver through self-assembled nanoparticles formed via conjugation of glycyrrhetinic acid to the hydroxyl group of hyaluronic acid. Carbohydr Polym 2018; 195:170-179. [PMID: 29804965 DOI: 10.1016/j.carbpol.2018.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver-targeted nanoparticles is highly desired for better therapy of liver cancer. In this study, enhanced delivery of doxorubicin (DOX) to the liver cells through self-assembled nanoparticles formed via conjugation of glycyrrhetinic acid (GA) to the hydroxyl group of hyaluronic acid (HA) was investigated. The DOX loaded hyaluronic acid-glycyrrhetinic acid succinate (HSG) conjugates based nanoparticles (HSG/DOX nanoparticles) were sub-spherical in shape with particle size in the range of 180-280 nm, the drug loading was drug-to-carrier ratio and GA graft ratio dependent. In vitro release study suggested that the release of DOX from HSG nanoparticles was sustained and the release rate was pH and GA graft ratio dependent. MTT assay indicated the HSG/DOX nanoparticles presented a GA-dependent cytotoxicity to HepG2 cells. Pharmacokinetics study demonstrated the HSG/DOX nanoparticles could prolong blood circulation time of DOX and had a higher AUC value than that of DOX solution. Furthermore, tissue distribution study revealed the HSG/DOX nanoparticles significantly increased the accumulation of DOX in the liver and meanwhile decreased the cardiotoxicity and nephrotoxicity of DOX. Moreover, the liver targeting enhancing capacity was HSG conjugate structure dependent. The accumulation of HSG-20/DOX, HSG-12/DOX, and HSG-6/DOX nanoparticles in the liver was 4.0-, 3.1-, and 2.6-fold higher than that of DOX solution. In vivo imaging analysis further demonstrated HSG nanoparticles not only had better liver targeting effect, but also presented superior tumor targeting efficiency, and the tumor targeting capacity was also GA-dependent. These results indicated that HSG conjugates prepared via modifying the hydroxyl groups of HA have promising potential as a liver-targeting nanocarrier for the delivery of hydrophobic anti-tumor drugs.
Collapse
Affiliation(s)
- Xiaodan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangqin Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
144
|
Huang G, Huang H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J Control Release 2018; 278:122-126. [PMID: 29649528 DOI: 10.1016/j.jconrel.2018.04.015] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/16/2022]
Abstract
Hyaluronic acid (HA) is a natural polysaccharide with good biocompatibility and degradability. HA and its derivatives can be used as sustained-release carriers for drugs, which can delay the release of drugs and have a long-acting effect. They can be used for the delivery of various drugs such as proteins, nucleic acids and anti-tumor drugs. HA and its derivatives can specifically bind to multiple receptors on the cell surface and can be used for targeted drug delivery, especially for the delivery of anti-tumor drugs. Thus, there are different forms of tumor-targeted drug delivery systems based on HA.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Normal University, Chongqing, 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| |
Collapse
|
145
|
Laffleur F. Novel adhesive hyaluronic acid based solid dosage form for pediatric application. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
146
|
Liao J, Zheng H, Fei Z, Lu B, Zheng H, Li D, Xiong X, Yi Y. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int J Biol Macromol 2018; 113:737-747. [PMID: 29505869 DOI: 10.1016/j.ijbiomac.2018.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
In this study, intracellular pH-responsive nanoparticles (NPs) of hyaluronic acid-hydrazone linkage-doxorubicin (HA-hyd-DOX) were designed and prepared for acid-triggered release of doxorubicin through a hydrazone linkage. A series of amphiphilic polymeric prodrugs were obtained, which can be self-assembled in aqueous media, the formed NPs exhibited a spherical core-shell type and the uniform size was ranging from 167 to 220nm. Moreover, the HA-hyd-DOX NPs exhibited a good stability in vitro and the drug release profiles showed that the DOX release was obviously mediated by pH gradient. Additionally, the cell counting assay kit-8 (CCK-8) demonstrated that the drug delivery system in this study performed a lower cytotoxicity on normal cells (Mouse fibroblast cells, L929) and higher inhibition ratio on tumor cells (Human cervical cancer cells, HeLa) in response to drug release with the intracellular pH environment. Furthermore, confocal laser scanning microscopy (CLSM) images and flow cytometric profiles of HeLa cells showed an efficiently cellular uptake due to the receptor-mediated affinity of CD44 for HA with high specificity. These results suggest that this pH dependent drug delivery system based on HA will provide insights into the design of potential prodrugs for the cancer therapy.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haoran Zheng
- Key laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zengming Fei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiong Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
147
|
Mazrad ZAI, Lee K, Chae A, In I, Lee H, Park SY. Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. J Mater Chem B 2018; 6:1149-1178. [PMID: 32254177 DOI: 10.1039/c7tb03323k] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the past decade, fluorescent carbon nanoparticles (FNPs) prepared from natural resources and biomaterials have been attractive due to their various properties, such as unique optical properties, great biocompatibility, water dispersion, and facile surface functionalization. Depending on the properties of the carbon sources and the subsequent carbonization processes, internal/external stimuli responsive carbon nanoparticles have been generated that are useful for theranostic and sensing applications. In this review, we highlight the recent developments in the use of FNPs in nanomedicine in great detail, particularly for FNPs responding to internal stimuli, including redox, pH, and enzymes, and external stimuli, including temperature, light, and magnetic fields, for drug delivery and sensing applications. Furthermore, we hope to provide insight that could stimulate further research aiming for unparalleled useful applications. As a result, there are many possibilities that can be explored from this smart material.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of Chemical & Biological Engineering and Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
148
|
Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 2018; 272:114-144. [DOI: 10.1016/j.jconrel.2017.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
|
149
|
Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G, Chlapanidas T, Torre ML. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. SOFT MATTER 2018; 14:546-557. [PMID: 29327746 DOI: 10.1039/c7sm01631j] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications. Conversely, the potential of silk sericin (SS), which forms the external shell of silk, could still be considered under evaluation. At the best of our knowledge, nanoparticles based on silk sericin "alone" cannot be produced, due to its physicochemical instability influenced by extreme pH, high water solubility and temperature; for these reasons, it almost always needs to be combined with other polymers for the development of drug delivery systems. In this review, we focused on silk proteins as bioactive natural carriers, since they show not only optimal features as inert excipients, but also remarkable intrinsic biological activities. SF has anti-inflammatory properties, while SS presents antioxidant, anti-tyrosine, anti-aging, anti-elastase and anti-bacterial features. Here, we give an overview on SF or SS silk-based nanosystems, with particular attention on the production techniques.
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
150
|
Elamin KM, Yamashita Y, Higashi T, Motoyama K, Arima H. Supramolecular Complex of Methyl-β-cyclodextrin with Adamantane-Grafted Hyaluronic Acid as a Novel Antitumor Agent. Chem Pharm Bull (Tokyo) 2017; 66:277-285. [PMID: 29269686 DOI: 10.1248/cpb.c17-00824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methyl-β-cyclodextrin (M-β-CyD) exhibits cytotoxic activity, and has the potentials as an antitumor agent. However, a tumor-selectivity of M-β-CyD is low, leading to low antitumor activity and the adverse effects. Meanwhile, hyaluronic acid (HA) is known as a promising tumor targeting ligand, because various cancer cells overexpress CD44, a HA-binding glycoprotein. In the present study, to develop a tumor-selective delivery system for M-β-CyD, we designed a supramolecular complex of M-β-CyD with adamantane-grafted HA (Ad-HA/M-β-CyD) and evaluated it as a tumor-selective antitumor agent. M-β-CyD formed a stable complex with Ad-HA (Kc>104 M-1). In addition, Ad-HA/M-β-CyD formed slightly a negative-charged nanoparticle with ca. 140 nm of a particle size, indicating the favorable physicochemical properties for antitumor agents. Ad-HA/M-β-CyD showed the superior cytotoxic activity via CD44-mediated endosomal pathways in HCT116 cells (CD44(+)), a human colon cancer cell line. In addition, cytotoxic activity of Ad-HA/M-β-CyD was induced by apoptosis. These results suggest that Ad-HA/M-β-CyD has the potentials as a tumor-selective supramolecular antitumor agent.
Collapse
Affiliation(s)
- Khaled Mohamed Elamin
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Yamashita
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hidetoshi Arima
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| |
Collapse
|