101
|
Lisitza N, Muradian I, Frederick E, Patz S, Hatabu H, Chekmenev EY. Toward 13C hyperpolarized biomarkers produced by thermal mixing with hyperpolarized 129Xe. J Chem Phys 2009; 131:044508. [PMID: 19655895 PMCID: PMC2730707 DOI: 10.1063/1.3181062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/23/2009] [Indexed: 11/15/2022] Open
Abstract
The (13)C NMR signal of acetic acid 1-(13)C-AcH is enhanced by polarization transfer from hyperpolarized (129)Xe using a thermal mixing procedure. 1-(13)C-AcH acid and hyperpolarized (129)Xe are mixed as gases to disperse (129)Xe in the acetic acid. The mixture is frozen with liquid N(2) at 0.5 T. The magnetic field is then momentarily dropped to allow for exchange of spin polarization between (13)C and (129)Xe. After polarization exchange the magnetic field is raised to its original value and the mixture is thawed, resulting in a solution of polarization enhanced 1-(13)C-AcH. A (13)C nuclear spin polarization enhancement of 10 is observed compared to its thermal polarization at 4.7 T. This polarization enhancement is approximately three orders of magnitude lower than that predicted by theory. The discrepancy is attributed to the formation of either an inhomogeneous solid matrix and/or spin dynamics during polarization transfer. Despite the low polarization enhancement, this is the first report of polarization transfer from (129)Xe to (13)C nuclear spins achieved by thermal mixing for a proton-containing molecule of biomedical importance. If future work can increase the enhancement, this method will be useful in hyperpolarizing a wide range of (13)C enriched compounds important in biomedical and biophysical research.
Collapse
Affiliation(s)
- Natalia Lisitza
- Enhanced Magnetic Resonance Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Schlundt A, Kilian W, Beyermann M, Sticht J, Günther S, Höpner S, Falk K, Roetzschke O, Mitschang L, Freund C. A xenon-129 biosensor for monitoring MHC-peptide interactions. Angew Chem Int Ed Engl 2009; 48:4142-5. [PMID: 19408266 DOI: 10.1002/anie.200806149] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caged in: The formation of a complex between a peptide ligand and a major histocompatibility complex (MHC) class II protein is detected by a (129)Xe biosensor. Cryptophane molecules that trap Xe atoms are modified with a hemagglutinin (HA) peptide, which binds to the MHC protein. The interaction can be monitored by an NMR chemical shift change of cage-HA bound (129)Xe.
Collapse
Affiliation(s)
- Andreas Schlundt
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie und FU Berlin, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Schlundt A, Kilian W, Beyermann M, Sticht J, Günther S, Höpner S, Falk K, Roetzschke O, Mitschang L, Freund C. A Xenon-129 Biosensor for Monitoring MHC-Peptide Interactions. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
104
|
Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal 2008; 12:752-63. [PMID: 18501665 PMCID: PMC2692217 DOI: 10.1016/j.media.2008.03.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 11/22/2022]
Abstract
The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation and regional specific volume change. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian (a function of local partial derivatives) of the registration displacement field, which we show is directly related to specific volume change. We compare the ventral-dorsal patterns of lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation in five anesthetized sheep studied in the supine orientation. Using 3D image registration to match images acquired at 10 cm H(2)O and 15 cm H(2)O airway pressures gave the best match between the average Jacobian and the xenon CT specific ventilation (linear regression, average r(2)=0.73).
Collapse
Affiliation(s)
- Joseph M Reinhardt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
105
|
VAN BEEK EJR, TCHATALBACHEV V, WILD JM. Lung magnetic resonance imaging – an update. IMAGING 2008. [DOI: 10.1259/imaging/63202218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
106
|
Imai H, Kimura A, Ito T, Fujiwara H. Hyperpolarized (129)Xe dynamic study in mouse lung under spontaneous respiration: application to murine tumor B16BL6 melanoma. Eur J Radiol 2008; 73:196-205. [PMID: 19010631 DOI: 10.1016/j.ejrad.2008.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 07/26/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
This is a study on the analysis of hyperpolarized (HP) (129)Xe dynamics applied in the lung of a pathological model mouse under spontaneous respiration. A novel parameter k(1)k(2) - a product of the rate constant for Xe transfer from gas to dissolved phase (k(1)) and from dissolved to gas phase (k(2)) - was shown to be derived successfully from the analysis of the HP (129)Xe dynamic MR experiment in the mouse lung under spontaneous respiration with the aid of a selective pre-saturation technique. A comparative study using healthy mice and model mice induced with lung cancer (by injection of murine tumor B16BL6 melanoma) was performed and a significant difference was found in the k(1)k(2) values of the two groups, that is, 0.020+/-0.007s(-2) (n=4) for healthy mice and 0.032+/-0.04s(-2) (n=3) for lung cancer model mice (p=0.04). Thus, the parameter obtained by our proposed method is considered useful for detection of lung tumors.
Collapse
Affiliation(s)
- Hirohiko Imai
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
107
|
Matsuoka S, Hunsaker AR, Gill RR, Jacobson FL, Ohno Y, Patz S, Hatabu H. Functional MR imaging of the lung. Magn Reson Imaging Clin N Am 2008; 16:275-89, ix. [PMID: 18474332 DOI: 10.1016/j.mric.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent development of MR techniques has overcome many problems, such as susceptibility artifacts or motion artifact, allowing both static and dynamic MR lung imaging and providing quantitative information of pulmonary function, including perfusion, ventilation, and respiratory motion. Dynamic contrast-enhanced MR perfusion imaging is suitable for the evaluation of angiogenesis of pulmonary solitary nodules. (129)Xe MR imaging is potentially a robust technique for the evaluation of various pulmonary function and may replace (3)He. The information provided by these new MR imaging methods is proving useful in research and in clinical applications in various lung diseases.
Collapse
Affiliation(s)
- Shin Matsuoka
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Patz S, Muradian I, Hrovat MI, Ruset IC, Topulos G, Covrig SD, Frederick E, Hatabu H, Hersman FW, Butler JP. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol 2008; 15:713-27. [PMID: 18486008 PMCID: PMC2475597 DOI: 10.1016/j.acra.2008.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES Using a novel (129)Xe polarizer with high throughput (1-2 L/hour) and high polarization (approximately 55%), our objective was to demonstrate and characterize human pulmonary applications at 0.2T. Specifically, we investigated the ability of (129)Xe to measure the alveolar surface area per unit volume of gas, S(A)/V(gas). MATERIALS AND METHODS Variable spin echo time (TE) gradient and radiofrequency (RF) echoes were used to obtain estimates of the lung's contribution to both T(2)* and T(2). Standard multislice ventilation images were obtained and signal-to-noise ratio (SNR) determined. Whole-lung, time-dependent measurements of (129)Xe diffusion from gas to septal tissue were obtained with a chemical shift saturation recovery (CSSR) method. Four healthy subjects were studied, and the Butler et al CSSR formalism (J Phys Condensed Matter 2002; 14:L297-L304) was used to calculate S(A)/V(gas). A single-breath version of the xenon transfer contrast (SB-XTC) method was implemented and used to image (129)Xe diffusion between alveolar gas and septal tissue. A direct comparison of CSSR and SB-XTC was performed. RESULTS T(2)*=135+/-29 ms amd T(2)=326.2+/-9.5 ms. Maximum SNR=36 for ventilation images from inhalation of 1L 86% (129)Xe and voxel volume =0.225 mL. CSSR analysis showed S(A)/V(gas) decreased with increasing lung volume in a manner very similar to that observed from histology measurements; however, the absolute value of S(A)/V(gas) was approximately 40% smaller than histology values. SB-XTC images in different postures demonstrate gravitationally dependent values. Initial comparison of CSSR with XTC showed fairly good agreement with expected ratios. CONCLUSIONS Hyperpolarized (129)Xe human imaging and spectroscopy are very promising methods to provide functional information about the lung.
Collapse
Affiliation(s)
- Samuel Patz
- Center for Pulmonary Functional Imaging, 221 Longwood Avenue, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Hersman FW, Ruset IC, Ketel S, Muradian I, Covrig SD, Distelbrink J, Porter W, Watt D, Ketel J, Brackett J, Hope A, Patz S. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 2008; 15:683-92. [PMID: 18486005 PMCID: PMC2475596 DOI: 10.1016/j.acra.2007.09.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/06/2007] [Accepted: 09/19/2007] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES Hyperpolarized gases such as (129)Xe and (3)He have high potential as imaging agents for functional lung magnetic resonance imaging (MRI). We present new technology offering (129)Xe production rates with order-of-magnitude improvement over existing systems, to liter per hour at 50% polarization. Human lung imaging studies with xenon, initially limited by the modest quantity and quality of hyperpolarized gas available, can now be performed with multiliter quantities several times daily. MATERIALS AND METHODS The polarizer is a continuous-flow system capable of producing large quantities of highly-polarized (129)Xe through rubidium spin-exchange optical pumping. The low-pressure, high-velocity operating regime takes advantage of the enhancement in the spin exchange rate provided by van der Waals molecules dominating the atomic interactions. The long polarizing column moves the flow of the gas opposite to the laser direction, allowing efficient extraction of the laser light. Separate sections of the system assure full rubidium vapor saturation and removal. RESULTS The system is capable of producing 64% polarization at 0.3 L/hour Xe production rate. Increasing xenon flow reduces output polarization. Xenon polarization was studied as a function of different system operating parameters. A novel xenon trapping design was demonstrated to allow full recovery of the xenon polarization after the freeze-thaw cycle. Delivery methods of the gas to an offsite MRI facility were demonstrated in both frozen and gas states. CONCLUSIONS We demonstrated a new concept for producing large quantities of highly polarized xenon. The system is operating in an MRI facility producing liters of hyperpolarized gas for human lung imaging studies.
Collapse
Affiliation(s)
- F. William Hersman
- Department of Physics, University of New Hampshire and Xemed LLC, 131 Main Street, Nesmith Hall, Durham, NH 03824, Phone: 603-862-3512,
| | - Iulian C. Ruset
- Xemed LLC and Department of Physics, University of New Hampshire, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 113,
| | - Stephen Ketel
- Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824, Phone: 603-868-1888 ext. 107,
| | - Iga Muradian
- Department of Radiology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, Phone: 617-732-8698,
| | - Silviu D. Covrig
- Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824, Phone: 603-862-1691,
| | - Jan Distelbrink
- Xemed LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 105,
| | - Walter Porter
- Xemed LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 103,
| | - David Watt
- Xemed LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 108,
| | - Jeffrey Ketel
- Xemed LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 104,
| | - John Brackett
- Xemed, LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 129,
| | - Aaron Hope
- Xemed, LLC, 16 Strafford Avenue, Durham, NH 03824, Phone: 603-868-1888 ext. 128,
| | - Samuel Patz
- Department of Radiology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, Phone: 617-278-0610,
| |
Collapse
|
110
|
Advancing CT and MR imaging of the lungs and airways in children: imaging into practice. Pediatr Radiol 2008; 38 Suppl 2:S208-12. [PMID: 18401613 DOI: 10.1007/s00247-008-0767-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
111
|
Abstract
Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled multi-detector row CT allow for quantification of presence and distribution of parenchymal and airway pathology; xenon gas can be employed to assess regional ventilation of the lungs, and rapid bolus injections of iodinated contrast agent can provide a quantitative measure of regional parenchymal perfusion. Advances in MRI of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized gas imaging, which allow functional assessment, including ventilation/perfusion, microscopic air space measurements, and gas flow and transport dynamics.
Collapse
Affiliation(s)
- Edwin J R van Beek
- Department of Radiology, Carver College of Medicine, University of Iowa, C-751 GH, 200 Hawkins Drive, Iowa City, IA 52242-1077, USA.
| | | |
Collapse
|