101
|
Hakala T, Bialas F, Toprakcioglu Z, Bräuer B, Baumann KN, Levin A, Bernardes GJL, Becker CFW, Knowles TPJ. Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32951-32960. [PMID: 32589387 PMCID: PMC7383928 DOI: 10.1021/acsami.0c09226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Compartmentalization and selective transport of molecular species are key aspects of chemical transformations inside the cell. In an artificial setting, the immobilization of a wide range of enzymes onto surfaces is commonly used for controlling their functionality but such approaches can restrict their efficacy and expose them to degrading environmental conditions, thus reducing their activity. Here, we employ an approach based on droplet microfluidics to generate enzyme-containing microparticles that feature an inorganic silica shell that forms a semipermeable barrier. We show that this porous shell permits selective diffusion of the substrate and product while protecting the enzymes from degradation by proteinases and maintaining their functionality over multiple reaction cycles. We illustrate the power of this approach by synthesizing microparticles that can be employed to detect glucose levels through simultaneous encapsulation of two distinct enzymes that form a controlled reaction cascade. These results demonstrate a robust, accessible, and modular approach for the formation of microparticles containing active but protected enzymes for molecular sensing applications and potential novel diagnostic platforms.
Collapse
Affiliation(s)
- Tuuli
A. Hakala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Friedrich Bialas
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Zenon Toprakcioglu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Birgit Bräuer
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Kevin N. Baumann
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Aviad Levin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Medicina Molecular, Faculdade de Medicina
de Universidad de Lisboa, 1649-028 Lisboa, Portugal
| | - Christian F. W. Becker
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
102
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
103
|
Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red. Int J Biol Macromol 2020; 161:78-87. [PMID: 32505629 DOI: 10.1016/j.ijbiomac.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Laccases which are considered as "green tools" in biotechnology have potential to degrade toxic contaminants/synthetic dyes present in industrial effluents. The loss in activity and stability of laccases are key challenges faced in their potential industrial applications. Here, laccase from Trametes versicolor (polypore mushroom) was immobilized on Sepharose-linked antibody support to carry out the decolourization of phenol red. This support was prepared by covalent linking of anti-laccase antibodies to CNBr activated Sepharose at pH 8.5, and then laccase was immobilized on this affinity support at pH 5.0. The amount of laccase immobilized was approximately 33 mg per gram of the affinity support, giving an immobilization yield of 83.4%. The immobilized enzyme displayed an activity of 3.88 U with an effectiveness factor (η) of 0.90. Immobilization of laccase led to significant enhancement in thermal and storage stability. The immobilized enzyme retained 44% of its activity after 10 cycles of continuous use. The decolourization of phenol red dye obtained by immobilized and soluble laccase after 6 h of incubation at 50 °C was 80 and 56%, respectively. Thus, immobilization of laccase on Sepharose-linked antibody support leads to remarkable improvement in its various properties, making it more versatile for industrial applications.
Collapse
|
104
|
Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107574] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
105
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
106
|
Buergler MB, Dennig A, Nidetzky B. Process intensification for cytochrome P450 BM3-catalyzed oxy-functionalization of dodecanoic acid. Biotechnol Bioeng 2020; 117:2377-2388. [PMID: 32369187 PMCID: PMC7384007 DOI: 10.1002/bit.27372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Selective oxy‐functionalization of nonactivated C‐H bonds is a long‐standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono‐oxygenase enzymes are promising catalysts for such oxy‐functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3‐catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co‐immobilized enzymes in O2‐gassed and pH‐controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2‐limited conditions at up to 500‐ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl‐acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy‐functionalization and show their integration into a coherent strategy for process intensification.
Collapse
Affiliation(s)
- Moritz B Buergler
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
107
|
Magro M, Venerando A, Macone A, Canettieri G, Agostinelli E, Vianello F. Nanotechnology-Based Strategies to Develop New Anticancer Therapies. Biomolecules 2020; 10:E735. [PMID: 32397196 PMCID: PMC7278173 DOI: 10.3390/biom10050735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The blooming of nanotechnology has made available a limitless landscape of solutions responding to crucial issues in many fields and, nowadays, a wide choice of nanotechnology-based strategies can be adopted to circumvent the limitations of conventional therapies for cancer. Herein, the current stage of nanotechnological applications for cancer management is summarized encompassing the core nanomaterials as well as the available chemical-physical approaches for their surface functionalization and drug ligands as possible therapeutic agents. The use of nanomaterials as vehicles to delivery various therapeutic substances is reported emphasizing advantages, such as the high drug loading, the enhancement of the pay-load half-life and bioavailability. Particular attention was dedicated to highlight the importance of nanomaterial intrinsic features. Indeed, the ability of combining the properties of the transported drug with the ones of the nano-sized carrier can lead to multifunctional theranostic tools. In this view, fluorescence of carbon quantum dots, optical properties of gold nanoparticle and superparamagnetism of iron oxide nanoparticles, are fundamental examples. Furthermore, smart anticancer devices can be developed by conjugating enzymes to nanoparticles, as in the case of bovine serum amine oxidase (BSAO) and gold nanoparticles. The present review is aimed at providing an overall vision on nanotechnological strategies to face the threat of human cancer, comprising opportunities and challenges.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
| | - Alberto Macone
- Department of Biochemical Sciences, A. Rossi Fanelli’, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy;
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences, A. Rossi Fanelli’, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| |
Collapse
|
108
|
Miniaturized technologies for high-throughput drug screening enzymatic assays and diagnostics – A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
109
|
Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts 2020. [DOI: 10.3390/catal10050466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the performance of a commercial protease (Novo-Pro D (NPD)), both in soluble and immobilized forms, in the hydrolysis of proteins (using casein as model protein). Immobilization of the protease NPD on 6% agarose activated with glyoxyl groups for 24 h at 20 °C and pH 10.0 allowed preparing immobilized biocatalyst with around 90% immobilization yield, 92% recovered activity versus small substrate, and a thermal stability 5.3-fold higher than the dialyzed soluble enzyme at 50 °C and pH 8.0. Immobilization times longer than 24 h lead to a decrease in the recovered activity and did not improve the biocatalyst stability. At 50 °C and pH 6.5, the immobilized NPD was around 20-fold more stable than the dialyzed soluble protease. Versus casein, the immobilized NDP presented a 10% level of activity, but it allowed hydrolyzing casein (26 g/L) at 50 °C and pH 6.5 up to a 40% degree of hydrolysis (DH) after 2 h reaction, while under the same conditions, only a 34% DH was achieved with soluble NPD. In addition, the immobilized NPD showed good reusability, maintaining the DH of casein for at least ten 2h-reaction batches.
Collapse
|
110
|
Bhavaniramya S, Vanajothi R, Vishnupriya S, Premkumar K, Al-Aboody MS, Vijayakumar R, Baskaran D. Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry. Curr Pharm Des 2020; 25:2661-2676. [PMID: 31309885 DOI: 10.2174/1381612825666190712181403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| | - Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Trichy-620024, Tamil Nadu, India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Trichy-620024, Tamil Nadu, India
| | - Mohammad S Al-Aboody
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Dharmar Baskaran
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| |
Collapse
|
111
|
Design and Construction of an Effective Expression System with Aldehyde Tag for Site-Specific Enzyme Immobilization. Catalysts 2020. [DOI: 10.3390/catal10040410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In recent years, the development and application of site-specific immobilization technology for proteins have undergone significant advances, which avoids the unwanted and random covalent linkage between the support and active site of protein in the covalent immobilization. Formylglycine generating enzyme (FGE) can transform the cysteine from a conversed 6-amino-acid sequence CXPXR into formylglycine with an aldehyde group (also termed as “aldehyde tag”). Based on the frame of pET-28a, the His-tags were replaced with aldehyde tags. Afterward, a set of plasmids were constructed for site-specific covalent immobilization, their His-tags were knock out (DH), or were replaced at different positions: N-terminal (NQ), C-terminal (CQ), or both (DQ) respectively. Three different enzymes, thermophilic acyl aminopeptidase (EC 3.4.19.1) from Sulfolobus tokodaii (ST0779), thermophilic dehalogenase (EC 3.8.1.2) from Sulfolobus tokodaii (ST2570), and Lipase A (EC 3.1.1.3) from Bacillus subtilis (BsLA) were chosen as model enzymes to connect with these plasmid systems. The results showed that different aldehyde-tagged enzymes can be successfully covalently attached to different carriers modified with an amino group, proving the universality of the method. The new immobilized enzyme also presented better thermostability and reutilization than those of the free enzyme.
Collapse
|
112
|
A Green and Simple Protocol for Extraction and Application of a Peroxidase-Rich Enzymatic Extract. Methods Protoc 2020; 3:mps3020025. [PMID: 32224955 PMCID: PMC7359449 DOI: 10.3390/mps3020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Recently there is a great social expectation that scientists should produce more sustainable and environmentally friendly chemical processes. Within this necessity, biocatalysis presents many attractive features because reactions are often performed in water, under mild conditions, the catalyst is biodegradable and can be obtained from renewable raw materials. In this work, we propose a simple, rapid and low-cost method for the preparation and application of an enzymatic extract from turnip root. The protocol described includes (1) the preparation of the enzymatic extract, (2) the procedure for the assessment of the more favorable working parameters (temperature, pH) and (3) the methodology for the application of the extract as the catalyst for biotransformation reactions. We anticipate that the protocol in this research will provide a simple way for obtaining an enzymatic extract which can operate efficiently under mild conditions and can effectively catalyze the biotransformation of simple phenols.
Collapse
|
113
|
Liang S, Wu XL, Xiong J, Zong MH, Lou WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213149] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
114
|
|
115
|
Alnadari F, Xue Y, Zhou L, Hamed YS, Taha M, Foda MF. Immobilization of β-Glucosidase from Thermatoga maritima on Chitin-functionalized Magnetic Nanoparticle via a Novel Thermostable Chitin-binding Domain. Sci Rep 2020; 10:1663. [PMID: 32015452 PMCID: PMC6997207 DOI: 10.1038/s41598-019-57165-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Enzyme immobilization is a powerful tool not only as a protective agent against harsh reaction conditions but also for the enhancement of enzyme activity, stability, reusability, and for the improvement of enzyme properties as well. Herein, immobilization of β-glucosidase from Thermotoga maritima (Tm-β-Glu) on magnetic nanoparticles (MNPs) functionalized with chitin (Ch) was investigated. This technology showed a novel thermostable chitin-binding domain (Tt-ChBD), which is more desirable in a wide range of large-scale applications. This exclusive approach was fabricated to improve the Galacto-oligosaccharide (GOS) production from a cheap and abundant by-product such as lactose through a novel green synthesis route. Additionally, SDS-PAGE, enzyme activity kinetics, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) revealed that among the immobilization strategies for Thermotoga maritime-β-Glucosidase thermostable chitin-binding domain (Tm-β-Glu-Tt-ChBD) on the attractive substrate; Ch-MNPs had the highest enzyme binding capacity and GOS production ratio when compared to the native enzyme. More interestingly, a magnetic separation technique was successfully employed in recycling the immobilized Tm-β-Glu for repetitive batch-wise GOS without significant loss or reduction of enzyme activity. This immobilization system displayed an operative stability status under various parameters, for instance, temperature, pH, thermal conditions, storage stabilities, and enzyme kinetics when compared with the native enzyme. Conclusively, the GOS yield and residual activity of the immobilized enzyme after the 10th cycles were 31.23% and 66%, respectively. Whereas the GOS yield from native enzyme synthesis was just 25% after 12 h in the first batch. This study recommends applying Tt-ChBD in the immobilization process of Tm-β-Glu on Ch-MNPs to produce a low-cost GOS as a new eco-friendly process besides increasing the biostability and efficiency of the immobilized enzyme.
Collapse
Affiliation(s)
- Fawze Alnadari
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China.,Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Yemin Xue
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China
| | - Liang Zhou
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Taha
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.,Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.
| |
Collapse
|
116
|
Siar EH, Morellon-Sterling R, Zidoune MN, Fernandez-Lafuente R. Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. Int J Biol Macromol 2020; 144:419-426. [DOI: 10.1016/j.ijbiomac.2019.12.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
|
117
|
Afzal HA, Ghorpade RV, Thorve AK, Nagaraja S, Al-Dhubiab BE, Meravanige G, Rasool ST, Roopashree TS. Epoxy functionalized polymer grafted magnetic nanoparticles by facile surface initiated polymerization for immobilization studies of Candida Antarctica lipase B. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
118
|
Tyrosinase-mediated dopamine polymerization modified magnetic alginate beads for dual-enzymes encapsulation: Preparation, performance and application. Colloids Surf B Biointerfaces 2020; 188:110800. [PMID: 31958620 DOI: 10.1016/j.colsurfb.2020.110800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023]
Abstract
In this study, a simple and efficient method to obtain entrapment of mixtures of double enzymes is developed. As a proof of principle, double enzymes (tyrosinase (TYR) and β-glucosidase (β-Glu)) were co-immobilized in magnetic alginate-polydopamine (PDA) beads using in situ TYR-mediated dopamine polymerization and internal setting strategy-mediated magnetic alginate-PDA gelation. The leakage of enzymes from the magnetic alginate beads was significantly reduced by exploiting the double network cross-linking of alginate and PDA, which was induced by the d-(+)-Gluconic acid δ-lactone (GDL) and TYR, respectively. The physicochemical properties of the prepared magnetic alginate beads were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. After that, the enzymatic reaction conditions and the performance of the entrapped TYR and β-Glu, such as enzyme kinetics and inhibition kinetics, were investigated. The Michaelis-Menten constants (Km) of the entrapped TYR and β-Glu were determined as 2.72 and 3.45 mM, respectively. The half-maximal inhibitory concentrations (IC50) of kojic acid and castanospermine for the entrapped TYR and β-Glu were determined as 13.04 and 56.23 μM, respectively. Finally, the entrapped double enzymes magnetic alginate beads were successfully applied to evaluate the inhibitory potency of six kinds of tea polyphenols extracts. Black tea and white tea showed high inhibition activity against TYR were (36.14 ± 1.43)% and (36.76 ± 2.35)%, respectively, while the black tea and dark tea showed high inhibition activity against β-Glu were (37.89 ± 6.70)% and (21.28 ± 4.68)%, respectively.
Collapse
|
119
|
Li H, Yin Y, Wang A, Li N, Wang R, Zhang J, Chen X, Pei X, Xie T. Stable immobilization of aldehyde ketone reductase mutants containing nonstandard amino acids on an epoxy resin via strain-promoted alkyne-azide cycloaddition. RSC Adv 2020; 10:2624-2633. [PMID: 35496112 PMCID: PMC9049136 DOI: 10.1039/c9ra09067c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/09/2020] [Indexed: 01/30/2023] Open
Abstract
To avoid random chemical linkage and achieve precisely directed immobilization, mutant enzymes were obtained and immobilized using an incorporated reactive nonstandard amino acid (NSAA). For this purpose, aldehyde ketone reductase (AKR) was used as a model enzyme, and 110Y, 114Y, 143Y, 162Q and 189Q were each replaced with p-azido-l-phenylalanine (pAzF). Then, the mutant AKR was coupled to the functionalized support by strain-promoted alkyne-azide cycloaddition (SPAAC). The effects of the incorporation number and site of NSAAs on the loading and thermal stability of the immobilized AKR were examined. The results show that the mutant enzymes presented better specific activity than the wild type, except for AKR-110Y, and AKR-114Y showed 1.16-fold higher activity than the wild type. Moreover, the half-life (t 1/2) of the five-point immobilized AKR reached 106 h and 45 h, 13 and 7 times higher than that of the free enzyme at 30 °C and 60 °C, respectively. Comparison of these three types of enzymes shows that multi-point immobilization provides improved loading and thermal stability and facilitates one-step purification. We expect this platform to facilitate a fundamental understanding of precisely oriented and controllable covalent immobilization and enable bio-manufacturing paradigms for fine chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Huimin Li
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Youcheng Yin
- Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University Hangzhou Zhejiang China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Ningning Li
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Ru Wang
- Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University Hangzhou Zhejiang China
| | - Jing Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Xinxin Chen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 310014 P. R. China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University Hangzhou Zhejiang China
| |
Collapse
|
120
|
Tavares TS, da Rocha EP, Esteves Nogueira FG, Torres JA, Silva MC, Kuca K, Ramalho TC. Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules 2020; 25:E259. [PMID: 31936386 PMCID: PMC7024332 DOI: 10.3390/molecules25020259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/04/2022] Open
Abstract
Owing to their high surface area, stability, and functional groups on the surface, iron oxide hydroxide nanoparticles have attracted attention as enzymatic support. In this work, a chemometric approach was performed, aiming at the optimization of the horseradish peroxidase (HRP) immobilization process on Δ-FeOOH nanoparticles (NPs). The enzyme/NPs ratio (X1), pH (X2), temperature (X3), and time (X4) were the independent variables analyzed, and immobilized enzyme activity was the response variable (Y). The effects of the factors were studied using a factorial design at two levels (-1 and 1). The biocatalyst obtained was evaluated for the ferulic acid (FA) removal, a pollutant model. The materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM images indicated changes in material morphology. The independent variables X1 (-0.57), X2 (0.71), and X4 (0.42) presented the significance effects estimate. The variable combinations resulted in two significance effects estimates, X1*X2 (-0.57) and X2*X4 (0.39). The immobilized HRP by optimized conditions (X1 = 1/63 (enzyme/NPs ratio, X2 = pH 8, X4 = 60 °C, and 30 min) showed high efficiency for FA oxidation (82%).
Collapse
Affiliation(s)
- Tássia Silva Tavares
- Department of Chemistry, Federal University of Lavras, N° 37, Lavras, MG 37200-000, Brazil; (T.S.T.); (E.P.d.R.); (J.A.T.); (M.C.S.)
| | - Eduardo Pereira da Rocha
- Department of Chemistry, Federal University of Lavras, N° 37, Lavras, MG 37200-000, Brazil; (T.S.T.); (E.P.d.R.); (J.A.T.); (M.C.S.)
| | | | - Juliana Arriel Torres
- Department of Chemistry, Federal University of Lavras, N° 37, Lavras, MG 37200-000, Brazil; (T.S.T.); (E.P.d.R.); (J.A.T.); (M.C.S.)
| | - Maria Cristina Silva
- Department of Chemistry, Federal University of Lavras, N° 37, Lavras, MG 37200-000, Brazil; (T.S.T.); (E.P.d.R.); (J.A.T.); (M.C.S.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, N° 37, Lavras, MG 37200-000, Brazil; (T.S.T.); (E.P.d.R.); (J.A.T.); (M.C.S.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
121
|
Chen Q, Man H, Zhu L, Guo Z, Wang X, Tu J, Jin G, Lou J, Zhang L, Ci L. Enhanced plant antioxidant capacity and biodegradation of phenol by immobilizing peroxidase on amphoteric nitrogen-doped carbon dots. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
122
|
Abstract
Flow microreactors are emergent engineering tools for the development of continuous biocatalytic transformations. Exploiting enzymes in continuous mode requires their retention for multiple rounds of conversions. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach. However, protein immobilization within closed structures is difficult. Here, we describe a methodology based on the confluent design of enzyme and microreactor; fusion to the silica-binding module Zbasic2 is used to engineer enzymes for high-affinity-oriented attachment to the plain wall surface of glass microchannels. As a practical case, the methodology is described using a sucrose phosphorylase; the assayed reaction is synthesis of α-D-glucose 1-phosphate (αGlc 1-P) from sucrose and phosphate using the immobilized enzyme microreactor. Procedures of enzyme immobilization, reactor characterization, and operation are described. The methodology is applicable for any other enzymes fused to Zbasic2 and silica (glass)-based microfluidic reactors.
Collapse
|
123
|
Sabeela NI, Almutairi TM, Al-Lohedan HA, Ezzat AO, Atta AM. Reactive Mesoporous pH-Sensitive Amino-Functionalized Silica Nanoparticles for Efficient Removal of Coomassie Blue Dye. NANOMATERIALS 2019; 9:nano9121721. [PMID: 31810331 PMCID: PMC6955940 DOI: 10.3390/nano9121721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023]
Abstract
In this work, new smart mesoporous amine-functionalized silica nanoparticles were prepared from hydrolyzing microgels based on N-isopropyl acrylamide-co-vinyltrimethoxysilane microgels with tetraethoxysilicate and 3-aminopropyltriethoxysilane by sol-gel method. The thermal stability and Fourier transform infrared were used to determine the amine contents of the silica nanoparticles. The pH sensitivity of the synthesized silica nanoparticles in their aqueous solutions was evaluated by using dynamic light scattering (DLS) and zeta potential measurements. The porosity of the amine-functionalized silica nanoparticles was evaluated from a transmittance electron microscope and Brunauer-Emmett-Teller (BET) plot. The results have positively recommended the pH-sensitive amine-functionalized silica nanoparticles as one of the effective nano-adsorbent to remove 313 mg·g−1 of CB-R250 water pollutant.
Collapse
Affiliation(s)
- Nourah I. Sabeela
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.I.S.); (A.O.E.)
| | - Tahani M. Almutairi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hamad A. Al-Lohedan
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.I.S.); (A.O.E.)
| | - Abdelrahman O. Ezzat
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.I.S.); (A.O.E.)
| | - Ayman M. Atta
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.I.S.); (A.O.E.)
- Correspondence:
| |
Collapse
|
124
|
Mahmoodi NM, Abdi J. Metal-organic framework as a platform of the enzyme to prepare novel environmentally friendly nanobiocatalyst for degrading pollutant in water. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
125
|
Pinheiro MP, Monteiro RR, Silva FF, Lemos TL, Fernandez-Lafuente R, Gonçalves LR, dos Santos JC. Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
126
|
Bolivar JM, Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140333. [PMID: 31778816 DOI: 10.1016/j.bbapap.2019.140333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
The integration of enzymes with solid materials is important in many biotechnological applications, including the use of immobilized enzymes for biocatalytic synthesis. The development of functional enzyme-material composites is restrained by the lack of molecular-level insight into the behavior of enzymes in confined, surface-near environments. Here, we review recent advances in surface-sensitive spectroscopic techniques that push boundaries for the determination of enzyme structure and orientation at the solid-liquid interface. We discuss recent evidence from single-molecule studies showing that analyses sensitive to the temporal and spatial heterogeneities in immobilized enzymes can succeed in disentangling the effects of conformational stability and active-site accessibility on activity. Different immobilization methods involve distinct trade-off between these effects, thus emphasizing the need for a holistic (systems) view of immobilized enzymes for the rational development of practical biocatalysts.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria; Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
127
|
Sánta-Bell E, Molnár Z, Varga A, Nagy F, Hornyánszky G, Paizs C, Balogh-Weiser D, Poppe L. "Fishing and Hunting"-Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules 2019; 24:E4146. [PMID: 31731791 PMCID: PMC6891789 DOI: 10.3390/molecules24224146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
Collapse
Affiliation(s)
- Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Fermentia Microbiological Ltd., 1405 Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, 1117 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| |
Collapse
|
128
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
129
|
Duan W, Zhao Z, An H, Zhang Z, Cheng P, Chen Y, Huang H. State-of-the-Art and Prospects of Biomolecules: Incorporation in Functional Metal–Organic Frameworks. Top Curr Chem (Cham) 2019; 377:34. [DOI: 10.1007/s41061-019-0258-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|
130
|
Morales AH, Hero JS, Navarro MC, Farfán EM, Martínez MA, Lamas DL, Gómez MI, Romero CM. Design of an Immobilized Biohybrid Catalyst by Adsorption Interactions onto Magnetic Srebrodolskite Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201903306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrés H. Morales
- PROIMI-CONICET Av. Belgrano y Pasaje Caseros San Miguel de Tucumán Argentina
| | - Johan S. Hero
- PROIMI-CONICET Av. Belgrano y Pasaje Caseros San Miguel de Tucumán Argentina
| | - María C. Navarro
- Facultad de BioquímicaQuímica y FarmaciaUniversidad Nacional de Tucumán Ayacucho 471, San Miguel de Tucumán Argentina
| | | | - María A. Martínez
- PROIMI-CONICET Av. Belgrano y Pasaje Caseros San Miguel de Tucumán Argentina
- Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de Tucumán Av. Independencia 1800 San Miguel de Tucumán Argentina
| | - Daniela L. Lamas
- INIDEP-CONICET Paseo Victoria Ocampo N°1 Mar del Plata Argentina
| | - María I. Gómez
- Facultad de BioquímicaQuímica y FarmaciaUniversidad Nacional de Tucumán Ayacucho 471, San Miguel de Tucumán Argentina
| | - Cintia M. Romero
- PROIMI-CONICET Av. Belgrano y Pasaje Caseros San Miguel de Tucumán Argentina
- Facultad de BioquímicaQuímica y FarmaciaUniversidad Nacional de Tucumán Ayacucho 471, San Miguel de Tucumán Argentina
| |
Collapse
|
131
|
Feng Y, Zhong L, Hou Y, Jia S, Cui J. Acid-resistant enzyme@MOF nanocomposites with mesoporous silica shells for enzymatic applications in acidic environments. J Biotechnol 2019; 306:54-61. [PMID: 31550490 DOI: 10.1016/j.jbiotec.2019.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Zeolitic imidazole frameworks (ZIFs) with tunable pore sizes and high surface areas have recently used as an effective support for immobilizing enzymes. However, the instability in the aqueous acidic environment has limited their practical applications in some cases. In this work, we develop a novel catalase/ZIFs composite with mesoporous silica shell (mSiO2@CAT/ZIFs) via co-precipitation, and controlled self-assembly of silanes. During preparation, the cetyltrimethylammonium bromide induced the formation of the mesostructured silica layer on the outer surface of CAT/ZIFs. The resultant mSiO2@CAT/ZIFs exhibited high activity recovery (92%). Compared with the conventional CAT/ZIFs and free CAT, mSiO2@CAT/ZIFs exhibited excellent acid resistance. For example, after 30 min in acetate buffer solution (pH 3.0), the CAT/ZIFs and free CAT almost lost activity whereas the mSiO2@CAT/ZIFs still retained 35% of original activity. Meanwhile, the thermostability of the mSiO2@CAT/ZIFs was enhanced significantly compared with conventional CAT/ZIFs. In addition, the mSiO2@CAT/ZIFs displayed excellent storage stability, and retained 60% of its initial activity after 15 days storage period. Furthermore, the mSiO2@CAT/ZIFs could maintain 70% of its initial activity after 8 continuous uses, demonstrating superior reusability than the free CAT and CAT/ZIFs. These results demonstrated that the mSiO2@CAT/ZIFs are potential for practical applications even in the acidic environment.
Collapse
Affiliation(s)
- Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China.
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China.
| |
Collapse
|
132
|
Nair AR, Chellapan G. Improving operational stability of thermostable Pythium myriotylum secretory serine protease by preparation of cross-linked enzyme aggregates (CLEAs). Prep Biochem Biotechnol 2019; 50:107-115. [DOI: 10.1080/10826068.2019.1663537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aswati R. Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala (CUK), Kasaragod, Kerala, India
| | - Geethu Chellapan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
133
|
Huang A, Paloni JM, Wang A, Obermeyer AC, Sureka HV, Yao H, Olsen BD. Predicting Protein-Polymer Block Copolymer Self-Assembly from Protein Properties. Biomacromolecules 2019; 20:3713-3723. [PMID: 31502834 PMCID: PMC6794641 DOI: 10.1021/acs.biomac.9b00768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protein–polymer
bioconjugate self-assembly has attracted
a great deal of attention as a method to fabricate protein nanomaterials
in solution and the solid state. To identify protein properties that
affect phase behavior in protein–polymer block copolymers,
a library of 15 unique protein-b-poly(N-isopropylacrylamide) (PNIPAM) copolymers comprising 11 different
proteins was compiled and analyzed. Many attributes of phase behavior
are found to be similar among all studied bioconjugates regardless
of protein properties, such as formation of micellar phases at high
temperature and low concentration, lamellar ordering with increasing
temperature, and disordering at high concentration, but several key
protein-dependent trends are also observed. In particular, hexagonal
phases are only observed for proteins within the molar mass range
20–36 kDa, where ordering quality is also significantly enhanced.
While ordering is generally found to improve with increasing molecular
weight outside of this range, most large bioconjugates exhibited weaker
than predicted assembly, which is attributed to chain entanglement
with increasing polymer molecular weight. Additionally, order–disorder
transition boundaries are found to be largely uncorrelated to protein
size and quality of ordering. However, the primary finding is that
bioconjugate ordering can be accurately predicted using only protein
molecular weight and percentage of residues contained within β
sheets. This model provides a basis for designing protein–PNIPAM
bioconjugates that exhibit well-defined self-assembly and a modeling
framework that can generalize to other bioconjugate chemistries.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Justin M Paloni
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Amy Wang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Allie C Obermeyer
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Hursh V Sureka
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Helen Yao
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
134
|
Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
136
|
de Andrades D, Graebin NG, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC. Preparation of immobilized/stabilized biocatalysts of β-glucosidases from different sources: Importance of the support active groups and the immobilization protocol. Biotechnol Prog 2019; 35:e2890. [PMID: 31374157 DOI: 10.1002/btpr.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022]
Abstract
β-Glucosidases from two different commercial preparations, Pectinex Ultra SP-L and Celluclast® 1.5L, were immobilized on divinylsulfone (DVS) supports at pH 5.0, 7.0, 9.0, and 10. In addition, the biocatalysts were also immobilized in agarose beads activated by glyoxyl, and epoxide as reagent groups. The best immobilization results were observed using higher pH values on DVS-agarose, and for Celluclast® 1.5L, good results were also obtained using the glyoxil-agarose immobilization. The biocatalyst obtained using Pectinex Ultra SP-L showed the highest thermal stability, at 65°C, and an operational stability of 67% of activity after 10 reuses cycles when immobilized on DVS-agarose immobilized at pH 10 and blocked with ethylenediamine. The β-glucosidase from Celluclast® 1.5L produced best results when immobilized on DVS-agarose immobilized at pH 9 and blocked with glycine, reaching 7.76-fold higher thermal stability compared to its free form and maintaining 76% of its activity after 10 successive cycles. The new biocatalysts obtained by these protocols showed reduction of glucose inhibition of enzymes, demonstrating the influence of immobilization protocols, pH, and blocking agent.
Collapse
Affiliation(s)
- Diandra de Andrades
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália G Graebin
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marco A Z Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Rafael C Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
137
|
Filho DG, Silva AG, Guidini CZ. Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 2019; 103:7399-7423. [DOI: 10.1007/s00253-019-10027-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
138
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
139
|
Ma S, Laurent CVFP, Meneghello M, Tuoriniemi J, Oostenbrink C, Gorton L, Bartlett PN, Ludwig R. Direct Electron-Transfer Anisotropy of a Site-Specifically Immobilized Cellobiose Dehydrogenase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Marta Meneghello
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jani Tuoriniemi
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | | | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Philip N. Bartlett
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | | |
Collapse
|
140
|
Zhang H, Wu ZY, Yang YY, Yang FQ, Li SP. Recent applications of immobilized biomaterials in herbal analysis. J Chromatogr A 2019; 1603:216-230. [PMID: 31277949 DOI: 10.1016/j.chroma.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Immobilization of biomaterials developed rapidly due to the great promise in improving their stability, activity and even selectivity. In this review, the immobilization strategies of biomaterials, including physical adsorption, encapsulation, covalent attachment, cross-linking and affinity linkage, were briefly introduced. Then, the major emphasis was focused on the reported various types of immobilized biomaterials, including proteins, enzymes, cell membrane and artificial membrane, living cells, carbohydrates and bacteria, used in the herbal analysis for bioactive compound screening, drug-target interaction evaluation and chiral separation. In addition, a series of carrier materials applied in biomaterials immobilization, such as magnetic nanoparticles, metal-organic frameworks, silica capillary column, cellulose filter paper, cell membrane chromatography, immobilized artificial membrane chromatography and hollow fiber, were also discussed. Perspectives on further applications of immobilized biomaterials in herbal analysis were finally presented.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China.
| |
Collapse
|
141
|
Wang Z, Shen Y, Shi QH, Sun Y. Insights into the molecular structure of immobilized protein A ligands on dextran-coated nanoparticles: Comprehensive spectroscopic investigation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
142
|
Abstract
Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications.
Collapse
|
143
|
Zhou X, Li H, Zheng L. Directly covalent immobilization of Candida antarctica lipase B on oxidized aspen powder by introducing poly‑lysines: An economical approach to improve enzyme performance. Int J Biol Macromol 2019; 133:226-234. [PMID: 30986456 DOI: 10.1016/j.ijbiomac.2019.04.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
In our previous study, we could achieve high soluble expression of Candida antarctica lipase B (CalB) in E. coli by fusion poly‑amino acid tags on CalB (pCalB). Herein, we are surprised to find that pCalB can be easily and directly covalent binding on a simply oxidized aspen powder (OAP) by the aid of poly‑lysine tags. Under the optimal conditions, 72.9 ± 3.6% of the total protein could be immobilized, and the activity recovery of immobilized pCalB (pCalB-OAP) was 98.9 ± 3.8%. The analysis of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) indicated that OAP was a suitable carrier for enzyme immobilization. The immobilized pCalB-OAP could exhibit excellent thermal stabilities, and it retained a residual activity of 58.4 ± 2.8% at 55 °C, whereas only 21.2 ± 2.2% of its initial activity for free pCalB was observed. And it could also display a nice tolerance for the changes of pH environment, compared with that of free pCalB. The results that pCalB-OAP could retained 73.6 ± 2.9% of their initial activity in (R, S)-NEMPAME hydrolysis after the tenth cycles, suggested that pCalB-OAP could be effectively recycled. The immobilization strategies established here were simple and inexpensive.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Han Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Liangyu Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
144
|
Structure-Guided Immobilization of an Evolved Unspecific Peroxygenase. Int J Mol Sci 2019; 20:ijms20071627. [PMID: 30986901 PMCID: PMC6480235 DOI: 10.3390/ijms20071627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are highly promiscuous biocatalyst with self-sufficient mono(per)oxygenase activity. A laboratory-evolved UPO secreted by yeast was covalently immobilized in activated carriers through one-point attachment. In order to maintain the desired orientation without compromising the enzyme’s activity, the S221C mutation was introduced at the surface of the enzyme, enabling a single disulfide bridge to be established between the support and the protein. Fluorescence confocal microscopy demonstrated the homogeneous distribution of the enzyme, regardless of the chemical nature of the carrier. This immobilized biocatalyst was characterized biochemically opening an exciting avenue for research into applied synthetic chemistry.
Collapse
|
145
|
de Souza Lima J, Costa FN, Bastistella MA, de Araújo PHH, de Oliveira D. Functionalized kaolin as support for endoglucanase immobilization. Bioprocess Biosyst Eng 2019; 42:1165-1173. [PMID: 30927054 DOI: 10.1007/s00449-019-02113-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/20/2019] [Indexed: 01/30/2023]
Abstract
Endoglucanases are an enzyme of cellulases complex that has a great potential for many technological applications. One of the issues of its use concerns the recovery and reuse of this enzyme. Thus, in this study, the use of a surface-modified kaolin was evaluated to immobilize endoglucanase and evaluate the enzyme activity for its reuse. Kaolin was surface modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA). In addition, the properties of the immobilized enzyme were investigated and compared with those of the free enzyme. Results showed that the optimal pH value of endoglucanase was not affected by the immobilization process but showed a broader range of optimal temperature compared to free enzyme. Immobilization on kaolin allowed fast and easy cellulase recovery with a loss of enzyme activity of only 20% after eight cycles of use. These results indicate that kaolin is a promising substitute to the currently synthetic supports studied for cellulases immobilization with the advantage of being abundant in nature, resistant to microbial attack, chemically and mechanically stable.
Collapse
Affiliation(s)
- Janaina de Souza Lima
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Flávia Nunes Costa
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Marcos Antônio Bastistella
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
146
|
Ren S, Li C, Tan Z, Hou Y, Jia S, Cui J. Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability for Efficient CO 2 Capture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3372-3379. [PMID: 30807136 DOI: 10.1021/acs.jafc.8b06182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, carbonic anhydrase (CA, EC 4.2.1.1) molecules were embedded into metal-organic frameworks (MOFs) via co-precipitation (CA@ZIF-8), and then these CA@ZIF-8 nanocomposites were encapsulated in the poly(vinyl alcohol) (PVA)-chitosan (CS) hydrogel networks to prepare CA@ZIF-8-PVA-CS composite hydrogels (PVA/CS/CA@ZIF-8) with high activity, stability, and reusability. The immobilization efficiency of CA was greater than 70%, suggesting the high immobilization efficiency. The prepared PVA/CS/CA@ZIF-8 composite membranes displayed excellent higher stability against a high temperature, denaturants, and acid than free CA and CA@ZIF-8. Furthermore, these membranes exhibited an excellent performance for CO2 capture. The amount of calcium carbonate obtained by PVA/CS/CA@ZIF-8 hydrogel membranes was 20- and 1.63-fold than free CA and CA@ZIF-8 composites, respectively. Furthermore, the hydrogel membranes exhibited superior reusability and mechanical strength. The hydrogel membrane maitained 50% of its original activity after 11 cycles. However, CA@ZIF-8 completely lost activity. These results indicated that the PVA/CS/CA@ZIF-8 membranes can be efficiently applied to capture CO2 sequestration.
Collapse
Affiliation(s)
- Sizhu Ren
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| | - Conghai Li
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| | - Zhilei Tan
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| | - Ying Hou
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| | - Shiru Jia
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| | - Jiandong Cui
- Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin University of Science and Technology , 29 13th Avenue , Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457 , People's Republic of China
| |
Collapse
|
147
|
Bacteriophage T4 capsid as a nanocarrier for Peptide-N-Glycosidase F immobilization through self-assembly. Sci Rep 2019; 9:4865. [PMID: 30890747 PMCID: PMC6424964 DOI: 10.1038/s41598-019-41378-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/13/2019] [Indexed: 11/12/2022] Open
Abstract
Enzyme immobilization is widely applied in biocatalysis to improve stability and facilitate recovery and reuse of enzymes. However, high cost of supporting materials and laborious immobilization procedures has limited its industrial application and commercialization. In this study, we report a novel self-assembly immobilization system using bacteriophage T4 capsid as a nanocarrier. The system utilizes the binding sites of the small outer capsid protein, Soc, on the T4 capsid. Enzymes as Soc fusions constructed with regular molecular cloning technology expressed at the appropriate time during phage assembly and self-assembled onto the capsids. The proof of principle experiment was carried out by immobilizing β-galactosidase, and the system was successfully applied to the immobilization of an important glycomics enzyme, Peptide-N-Glycosidase F. Production of Peptide-N-Glycosidase F and simultaneous immobilization was finished within seven hours. Characterizations of the immobilized Peptide-N-Glycosidase F indicated high retention of activity and well reserved deglycosylation capacity. The immobilized Peptide-N-Glycosidase F was easily recycled by centrifugation and exhibited good stability that sustained five repeated uses. This novel system uses the self-amplified T4 capsid as the nanoparticle-type of supporting material, and operates with a self-assembly procedure, making it a simple and low-cost enzyme immobilization technology with promising application potentials.
Collapse
|
148
|
Gao F, Hu M, Li S, Zhai Q, Jiang Y. Positional orientating co-immobilization of bienzyme CPO/GOx on mesoporous TiO2 thin film for efficient cascade reaction. Bioprocess Biosyst Eng 2019; 42:1065-1075. [DOI: 10.1007/s00449-019-02105-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
149
|
Enhancing the catalytic performance of chloroperoxidase by co-immobilization with glucose oxidase on magnetic graphene oxide. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
150
|
Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|