101
|
Omardien S, Brul S, Zaat SAJ. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4:111. [PMID: 27790614 PMCID: PMC5063857 DOI: 10.3389/fcell.2016.00111] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.
Collapse
Affiliation(s)
- Soraya Omardien
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
102
|
Murray B, Pearson CS, Aranjo A, Cherupalla D, Belfort G. Mechanism of Four de Novo Designed Antimicrobial Peptides. J Biol Chem 2016; 291:25706-25715. [PMID: 27738105 DOI: 10.1074/jbc.m116.733816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
As pathogenic bacteria become resistant to traditional antibiotics, alternate approaches such as designing and testing new potent selective antimicrobial peptides (AMP) are increasingly attractive. However, whereas much is known regarding the relationship between the AMP sequence and potency, less research has focused on developing links between AMP properties, such as design and structure, with mechanisms. Here we use four natural AMPs of varying known secondary structures and mechanisms of lipid bilayer disruption as controls to determine the mechanisms of four rationally designed AMPs with similar secondary structures and rearranged amino acid sequences. Using a Quartz Crystal Microbalance with Dissipation, we were able to differentiate between molecular models of AMP actions such as barrel-stave pore formation, toroidal pore formation, and peptide insertion mechanisms by quantifying differential frequencies throughout an oscillating supported lipid bilayer. Barrel-stave pores were identified by uniform frequency modulation, whereas toroidal pores possessed characteristic changes in oscillation frequency throughout the bilayer. The resulting modes of action demonstrate that rearrangement of an amino acid sequence of the AMP resulted in identical overall mechanisms, and that a given secondary structure did not necessarily predict mechanism. Also, increased mass addition to Gram-positive mimetic membranes from AMP disruption corresponded with lower minimum inhibitory concentrations against the Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Brian Murray
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - C Seth Pearson
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alexa Aranjo
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Dinesh Cherupalla
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Georges Belfort
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
103
|
Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol 2016; 7:1436. [PMID: 27672387 PMCID: PMC5019075 DOI: 10.3389/fmicb.2016.01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.
Collapse
Affiliation(s)
- Mei-Perng Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaBangi, Malaysia; Malaysia Genome InstituteKajang, Malaysia
| |
Collapse
|
104
|
Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Sci Rep 2016; 6:32499. [PMID: 27581352 PMCID: PMC5007486 DOI: 10.1038/srep32499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural “anti-chaperones”, i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins – the intrinsically low thermodynamic protein stability.
Collapse
|
105
|
Ulm H, Schneider T. Targeting bactoprenol-coupled cell envelope precursors. Appl Microbiol Biotechnol 2016; 100:7815-25. [PMID: 27495122 DOI: 10.1007/s00253-016-7732-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially.
Collapse
Affiliation(s)
- Hannah Ulm
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany
| | - Tanja Schneider
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany. .,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
106
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s106816201604004x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
107
|
Ng V, Chan WC. New Found Hope for Antibiotic Discovery: Lipid II Inhibitors. Chemistry 2016; 22:12606-16. [PMID: 27388768 DOI: 10.1002/chem.201601315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/14/2022]
Abstract
Research into antibacterial agents has recently gathered pace in light of the disturbing crisis of antimicrobial resistance. The development of modern tools offers the opportunity of reviving the fallen era of antibacterial discovery through uncovering novel lead compounds that target vital bacterial cell components, such as lipid II. This paper provides a summary of the role of lipid II as well as an overview and insight into the structural features of macrocyclic peptides that inhibit this bacterial cell wall component. The recent discovery of teixobactin, a new class of lipid II inhibitor has generated substantial research interests. As such, the significant progress that has been achieved towards its development as a promising antibacterial agent is discussed.
Collapse
Affiliation(s)
- Vivian Ng
- School of Pharmacy, Centre of Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Weng C Chan
- School of Pharmacy, Centre of Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
108
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
109
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
110
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
111
|
Ma L, Wang Y, Wang M, Tian Y, Kang W, Liu H, Wang H, Dou J, Zhou C. Effective antimicrobial activity of Cbf-14, derived from a cathelin-like domain, against penicillin-resistant bacteria. Biomaterials 2016; 87:32-45. [DOI: 10.1016/j.biomaterials.2016.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
|
112
|
Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43-57. [DOI: 10.1016/j.drup.2016.04.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
113
|
Wilmes M, Stockem M, Bierbaum G, Schlag M, Götz F, Tran DQ, Schaal JB, Ouellette AJ, Selsted ME, Sahl HG. Killing of staphylococci by θ-defensins involves membrane impairment and activation of autolytic enzymes. Antibiotics (Basel) 2016; 3:617-31. [PMID: 25632351 PMCID: PMC4306331 DOI: 10.3390/antibiotics3040617] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin.
Collapse
Affiliation(s)
- Miriam Wilmes
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53105 Bonn, Germany; E-Mails: (M.S.); (G.B.); (H.-G.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-228-28711397
| | - Marina Stockem
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53105 Bonn, Germany; E-Mails: (M.S.); (G.B.); (H.-G.S.)
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53105 Bonn, Germany; E-Mails: (M.S.); (G.B.); (H.-G.S.)
| | - Martin Schlag
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Genetics, University of Tübingen, 72076 Tübingen, Germany; E-Mails: (M.S.); (F.G.)
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Genetics, University of Tübingen, 72076 Tübingen, Germany; E-Mails: (M.S.); (F.G.)
| | - Dat Q. Tran
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9601, USA; E-Mails: (D.Q.T.); (J.B.S.); (A.J.O.); (M.E.S.)
| | - Justin B. Schaal
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9601, USA; E-Mails: (D.Q.T.); (J.B.S.); (A.J.O.); (M.E.S.)
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9601, USA; E-Mails: (D.Q.T.); (J.B.S.); (A.J.O.); (M.E.S.)
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9601, USA; E-Mails: (D.Q.T.); (J.B.S.); (A.J.O.); (M.E.S.)
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53105 Bonn, Germany; E-Mails: (M.S.); (G.B.); (H.-G.S.)
| |
Collapse
|
114
|
Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides. Antimicrob Agents Chemother 2016; 60:2222-31. [PMID: 26810659 PMCID: PMC4808223 DOI: 10.1128/aac.02699-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are an essential part of the innate immune system. Some Gram-negative enteric pathogens, such as Salmonella enterica, show intrinsic resistance to CAMPs. However, the molecular basis of intrinsic resistance is poorly understood, largely due to a lack of information about the genes involved. In this study, using a microarray-based genomic technique, we screened the Keio collection of 3,985 Escherichia coli mutants for altered susceptibility to human neutrophil peptide 1 (HNP-1) and identified envC and zapB as novel genetic determinants of intrinsic CAMP resistance. In CAMP killing assays, an E. coli ΔenvCEc or ΔzapBEc mutant displayed a distinct profile of increased susceptibility to both LL-37 and HNP-1. Both mutants, however, displayed wild-type resistance to polymyxin B and human β-defensin 3 (HBD3), suggesting that the intrinsic resistance mediated by EnvC or ZapB is specific to certain CAMPs. A corresponding Salmonella ΔenvCSe mutant showed similarly increased CAMP susceptibility. The envC mutants of both E. coli and S. enterica displayed increased surface negativity and hydrophobicity, which partly explained the increased CAMP susceptibility. However, the ΔenvCEc mutant, but not the ΔenvCSe mutant, was defective in outer membrane permeability, excluding this defect as a common factor contributing to the increased CAMP susceptibility. Animal experiments showed that the Salmonella ΔenvCSe mutant had attenuated virulence. Taken together, our results indicate that the role of envC in intrinsic CAMP resistance is likely conserved among Gram-negative enteric bacteria, demonstrate the importance of intrinsic CAMP resistance for full virulence of S. enterica, and provide insight into distinct mechanisms of action of CAMPs.
Collapse
|
115
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
116
|
Oppedijk SF, Martin NI, Breukink E. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:947-57. [PMID: 26523408 DOI: 10.1016/j.bbamem.2015.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023]
Abstract
Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Sabine F Oppedijk
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathaniel I Martin
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
117
|
Schmitt P, Rosa RD, Destoumieux-Garzón D. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:958-70. [PMID: 26498397 DOI: 10.1016/j.bbamem.2015.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Delphine Destoumieux-Garzón
- CNRS, Ifremer, UPVD, Université de Montpellier. Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Place Eugène Bataillon, 34090 Montpellier cedex, France.
| |
Collapse
|
118
|
Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides 2015. [PMID: 26206286 DOI: 10.1016/j.peptides.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
119
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
120
|
Abstract
Body surfaces are colonized by resident microbes that are remarkably resilient to recurrent immune responses. In the latest issue of Science, Cullen et al. (2015) report that, contrary to prevailing assumptions, bacteria of the colonizing microbiota are resistant to antimicrobial peptides, and identify a common mechanism of resistance.
Collapse
Affiliation(s)
- Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| | - Andreas J Bäumler
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
121
|
Münch D, Sahl HG. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3062-71. [PMID: 25934055 DOI: 10.1016/j.bbamem.2015.04.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022]
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by virtually all living organisms. Typically, AMPs are cationic and amphiphilic and first contacts with target microbes involve interactions with negatively charged components of the cell envelope such as lipopolysaccharide (LPS), and wall- or lipoteichoic acids (WTA, LTA). The importance of charge-mediated interactions of AMPs with the cell envelope is reflected by effective microbial resistance mechanisms which are based on reduction of the overall charge of these polymers. The anionic polymers are linked in various ways to the stress-bearing polymer of the cell envelope, the peptidoglycan, which is made of a highly conserved building block, a disaccharide-pentapeptide moiety that also contains charged residues. This structural element, in spite of its conservation throughout the bacterial world, can undergo genus- and species-specific modifications that also impact significantly on the overall charge of the cell envelope and on the binding affinity of AMPs. The modification reactions involved largely occur on the membrane-bound peptidoglycan building block, the so-called lipid II, which is a most prominent target for AMPs. In this review, we focus on modifications of lipid II and peptidoglycan and discuss their consequences for the interactions with various classes of AMPs, such as defensins, lantibiotics and glyco-(lipo)-peptide antibiotics. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Daniela Münch
- AiCuris GmbH & Co. KG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany.
| |
Collapse
|
122
|
Fletcher S, Yu W, Huang J, Kwasny SM, Chauhan J, Opperman TJ, MacKerell AD, de Leeuw EPH. Structure-activity exploration of a small-molecule Lipid II inhibitor. Drug Des Devel Ther 2015; 9:2383-94. [PMID: 25987836 PMCID: PMC4422293 DOI: 10.2147/dddt.s79504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have recently identified low-molecular weight compounds that act as inhibitors of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprises specialized lipid (bactoprenol) linked to a hydrophilic head group consisting of a peptidoglycan subunit (N-acetyl glucosamine [GlcNAc]–N-acetyl muramic acid [MurNAc] disaccharide coupled to a short pentapeptide moiety) via a pyrophosphate. One of our lead compounds, a diphenyl-trimethyl indolene pyrylium, termed BAS00127538, interacts with the MurNAc moiety and the isoprenyl tail of Lipid II. Here, we report on the structure–activity relationship of BAS00127538 derivatives obtained by in silico analyses and de novo chemical synthesis. Our results indicate that Lipid II binding and bacterial killing are related to three features: the diphenyl moiety, the indolene moiety, and the positive charge of the pyrylium. Replacement of the pyrylium moiety with an N-methyl pyridinium, which may have importance in stability of the molecule, did not alter Lipid II binding or antibacterial potency.
Collapse
Affiliation(s)
- Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jing Huang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Erik P H de Leeuw
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
123
|
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 2015; 8:123-50. [PMID: 25806720 PMCID: PMC4381204 DOI: 10.3390/ph8010123] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Kyle Lau
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Institute of Clinical Laboratory, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
124
|
Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 2015; 10:e0119525. [PMID: 25785690 PMCID: PMC4364940 DOI: 10.1371/journal.pone.0119525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
125
|
Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 2015; 54:1767-77. [PMID: 25664683 DOI: 10.1021/bi501483q] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In this work, we report that HD5ox, the oxidized form of this peptide that exhibits three regiospecific disulfide bonds, causes distinct morphological changes to Escherichia coli and other Gram-negative microbes. These morphologies include bleb formation, cellular elongation, and clumping. The blebs are up to ∼1 μm wide and typically form at the site of cell division or cell poles. Studies with E. coli expressing cytoplasmic GFP reveal that HD5ox treatment causes GFP emission to localize in the bleb. To probe the cellular uptake of HD5ox and subsequent localization, we describe the design and characterization of a fluorophore-HD5 conjugate family. By employing these peptides, we demonstrate that fluorophore-HD5ox conjugates harboring the rhodamine and coumarin fluorophores enter the E. coli cytoplasm. On the basis of the fluorescence profiles, each of these fluorophore-HD5ox conjugates localizes to the site of cell division and cell poles. These studies support the notion that HD5ox, at least in part, exerts its antibacterial activity against E. coli and other Gram-negative microbes in the cytoplasm.
Collapse
Affiliation(s)
- Haritha R Chileveru
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | |
Collapse
|
126
|
Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:324-341. [PMID: 24950415 DOI: 10.1016/j.dci.2014.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
127
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
128
|
pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Natl Acad Sci U S A 2014; 111:18703-8. [PMID: 25512526 DOI: 10.1073/pnas.1422091112] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The pulmonary airways are continuously exposed to bacteria. As a first line of defense against infection, the airway surface liquid (ASL) contains a complex mixture of antimicrobial factors that kill inhaled and aspirated bacteria. The composition of ASL is critical for antimicrobial effectiveness. For example, in cystic fibrosis an abnormally acidic ASL inhibits antimicrobial activity. Here, we tested the effect of pH on the activity of an ASL defensin, human β-defensin-3 (hBD-3), and the cathelicidin-related peptide, LL-37. We found that reducing pH from 8.0 to 6.8 reduced the ability of both peptides to kill Staphylococcus aureus. An acidic pH also attenuated LL-37 killing of Pseudomonas aeruginosa. In addition, we discovered synergism between hBD-3 and LL-37 in killing S. aureus. LL-37 and lysozyme were also synergistic. Importantly, an acidic pH reduced the synergistic effects of combinations of ASL antibacterials. These results indicate that an acidic pH reduces the activity of individual ASL antimicrobials, impairs synergism between them, and thus may disrupt an important airway host defense mechanism.
Collapse
|
129
|
Mirror image proteins. Curr Opin Chem Biol 2014; 22:56-61. [PMID: 25282524 DOI: 10.1016/j.cbpa.2014.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.
Collapse
|
130
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
131
|
Abstract
Mammalian α-defensins are approximately 4- to 5-kDa broad-spectrum antimicrobial peptides and abundant granule constituents of neutrophils and small intestinal Paneth cells. The bactericidal activities of amphipathic α-defensins depend in part on electropositive charge and on hydrophobic amino acids that enable membrane disruption by interactions with phospholipid acyl chains. Alignment of α-defensin primary structures identified conserved hydrophobic residues in the loop formed by the Cys(III)-Cys(V) disulfide bond, and we have studied their role by testing the effects of mutagenesis on bactericidal activities. Mouse α-defensin 4 (Crp-4) and rhesus myeloid α-defensin 4 (RMAD-4) were selected for these studies, because they are highly bactericidal in vitro and have the same overall electropositive charge. Elimination of hydrophobicity by site-directed mutagenesis at those positions in Crp-4 attenuated bactericidal activity markedly. In contrast to native Crp-4, the (I23/F25/L26/G)-Crp-4 variant lacked bactericidal activity against Salmonella enterica serovar Typhimurium and did not permeabilize Escherichia coli ML35 cells as a result of removing aliphatic side chains by Gly substitutions. Ala replacements in (I23/F25/L26/A)-Crp-4 restored activity, evidence that hydrophobicity contributed by Ala methyl R-groups was sufficient for activity. In macaques, neutrophil α-defensin RMAD-6 is identical to RMAD-4, except for a F28S difference, and (F28S)-RMAD-4 mutagenesis attenuated RMAD-4 bactericidal activity and E. coli permeabilization. Interestingly, (R31/32D)-Crp-4 lacks activity in these assays despite the presence of the Ile23, Phe25, and Leu26 hydrophobic patch. We infer that electrostatic interactions between cationic α-defensin residues and negative charge on bacteria precede interactions between critical hydrophobic residue positions that mediate membrane disruption and bacterial cell killing.
Collapse
|
132
|
Tai KP, Kamdar K, Yamaki J, Le VV, Tran D, Tran P, Selsted ME, Ouellette AJ, Wong-Beringer A. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun 2013; 21:17-29. [PMID: 24345876 DOI: 10.1177/1753425913514784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant bacterial pathogens threaten public health. Because many antibiotics target specific bacterial enzymes or reactions, corresponding genes may mutate under selection and lead to antibiotic resistance. Accordingly, antimicrobials that selectively target overall microbial cell integrity may offer alternative approaches to therapeutic design. Naturally occurring mammalian α- and θ-defensins are potent, non-toxic microbicides that may be useful for treating infections by antibiotic-resistant pathogens because certain defensin peptides disrupt bacterial, but not mammalian, cell membranes. To test this concept, clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), including vancomycin heteroresistant strains, and ciprofloxacin-resistant Pseudomonas aeruginosa (Cip(R)-PA) were tested for sensitivity to α-defensins Crp-4, RMAD-4 and HNPs 1-3, and to RTD-1, macaque θ-defensin-1. In vitro, 3 μM Crp-4, RMAD-4 and RTD-1 reduced MRSA cell survival by 99%, regardless of vancomycin susceptibility. For PA clinical isolates that differ in fluoroquinolone resistance and virulence phenotype, peptide efficacy was independent of strain ciprofloxacin resistance, site of isolation or virulence factor expression. Thus, Crp-4, RMAD-4 and RTD-1 are effective in vitro antimicrobials against clinical isolates of MRSA and Cip(R)-PA, perhaps providing templates for development of α- and θ-defensin-based microbicides against antibiotic resistant or virulent infectious agents.
Collapse
Affiliation(s)
- Kenneth P Tai
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Karishma Kamdar
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Jason Yamaki
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Valerie V Le
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Dat Tran
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Patti Tran
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Annie Wong-Beringer
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
133
|
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4:353. [PMID: 24367355 PMCID: PMC3856679 DOI: 10.3389/fmicb.2013.00353] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Lorena da S Derengowski
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Cynthia M Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| |
Collapse
|
134
|
Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W, Li X, Pazgier M, Lu W. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PLoS One 2013; 8:e78937. [PMID: 24236072 PMCID: PMC3827289 DOI: 10.1371/journal.pone.0078937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 12/03/2022] Open
Abstract
HNP1 is a human alpha defensin that forms dimers and multimers governed by hydrophobic residues, including Tyr16, Ile20, Leu25, and Phe28. Previously, alanine scanning mutagenesis identified each of these residues and other hydrophobic residues as important for function. Here we report further structural and functional studies of residues shown to interact with one another across oligomeric interfaces: I20A-HNP1 and L25A-HNP1, plus the double alanine mutants I20A/L25A-HNP1 and Y16A/F28A-HNP1, and the quadruple alanine mutant Y16A/I20A/L25A/F28A-HNP1. We tested binding to HIV-1 gp120 and HNP1 by surface plasmon resonance, binding to HIV-1 gp41 and HNP1 by fluorescence polarization, inhibition of anthrax lethal factor, and antibacterial activity using the virtual colony count assay. Similar to the previously described single mutant W26A-HNP1, the quadruple mutant displayed the least activity in all functional assays, followed by the double mutant Y16A/F28A-HNP1. The effects of the L25A and I20A single mutations were milder than the double mutant I20A/L25A-HNP1. Crystallographic studies confirmed the correct folding and disulfide pairing, and depicted an array of dimeric and tetrameric structures. These results indicate that side chain hydrophobicity is the critical factor that determines activity at these positions.
Collapse
Affiliation(s)
- Le Zhao
- Translational Medicine Center, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China ; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Varney KM, Bonvin AMJJ, Pazgier M, Malin J, Yu W, Ateh E, Oashi T, Lu W, Huang J, Diepeveen-de Buin M, Bryant J, Breukink E, MacKerell AD, de Leeuw EPH. Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog 2013; 9:e1003732. [PMID: 24244161 PMCID: PMC3820767 DOI: 10.1371/journal.ppat.1003732] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 09/12/2013] [Indexed: 01/09/2023] Open
Abstract
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. Every year, an increasing number of people are at risk for bacterial infections that cannot be effectively treated. This is because many bacteria are becoming more resistant to antibiotics. Of particular concern is the rise in hospital-acquired infections. Infection caused by the methicillin-resistant Staphylococcus aureus bacterium or MRSA is the cause of many fatalities and puts a burden on health care systems in many countries. The antibiotic of choice for treatment of S. aureus infections is vancomycin, an antimicrobial peptide that kills bacteria by binding to the bacterial cell wall component Lipid II. Here, we have identified for the first time, small synthetic compounds that also bind Lipid II with the aim to develop new antibiotic drugs to fight against bacterial infections.
Collapse
Affiliation(s)
- Kristen M. Varney
- NMR Facility, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Alexandre M. J. J. Bonvin
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Marzena Pazgier
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Jakob Malin
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wenbo Yu
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Eugene Ateh
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Taiji Oashi
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Wuyuan Lu
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Jing Huang
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Marlies Diepeveen-de Buin
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Joseph Bryant
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Eefjan Breukink
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Erik P. H. de Leeuw
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
136
|
Focal targeting by human β-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci U S A 2013; 110:20230-5. [PMID: 24191013 DOI: 10.1073/pnas.1319066110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Virulence factor secretion and assembly occurs at spatially restricted foci in some Gram-positive bacteria. Given the essentiality of the general secretion pathway in bacteria and the contribution of virulence factors to disease progression, the foci that coordinate these processes are attractive antimicrobial targets. In this study, we show in Enterococcus faecalis that SecA and Sortase A, required for the attachment of virulence factors to the cell wall, localize to discrete domains near the septum or nascent septal site as the bacteria proceed through the cell cycle. We also demonstrate that cationic human β-defensins interact with E. faecalis at discrete septal foci, and this exposure disrupts sites of localized secretion and sorting. Modification of anionic lipids by multiple peptide resistance factor, a protein that confers antimicrobial peptide resistance by electrostatic repulsion, renders E. faecalis more resistant to killing by defensins and less susceptible to focal targeting by the cationic antimicrobial peptides. These data suggest a paradigm in which focal targeting by antimicrobial peptides is linked to their killing efficiency and to disruption of virulence factor assembly.
Collapse
|
137
|
Olli S, Rangaraj N, Nagaraj R. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. PLoS One 2013; 8:e77031. [PMID: 24086767 PMCID: PMC3785448 DOI: 10.1371/journal.pone.0077031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs.
Collapse
Affiliation(s)
- Sudar Olli
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Nandini Rangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
138
|
An association between peptidoglycan synthesis and organization of the Streptococcus pyogenes ExPortal. mBio 2013; 4:e00485-13. [PMID: 24065630 PMCID: PMC3781834 DOI: 10.1128/mbio.00485-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ExPortal of Streptococcus pyogenes is a focal microdomain of the cytoplasmic membrane that clusters the translocons of the general secretory pathway with accessory factors to facilitate the maturation of secreted polypeptides. While it is known that the ExPortal is enriched in anionic lipids, the mechanisms that organize the ExPortal are poorly understood. In the present study, we examined the role of the cell wall in organizing and maintaining the ExPortal. Removal of the cell wall resulted in a loss of ExPortal focal integrity accompanied by the circumferential redistribution of ExPortal lipid and protein components. A similar loss occurred upon treatment with gallidermin, a nonpermeabilizing lantibiotic that targets the lipid II precursor of peptidoglycan synthesis, and this treatment disrupted the secretion of several ExPortal substrates. Furthermore, several enzymes involved in the membrane-associated steps of lipid II synthesis, including MraY and MurN, were found to localize to a single discrete focus in the membrane that was coincident with the focal location of the secretory translocons and the anionic lipid microdomain. These data suggest that the ExPortal is associated with the site of peptidoglycan precursor synthesis and that peptidoglycan biogenesis influences ExPortal organization. These data add to an emerging literature indicating that cell wall biogenesis, cell division, and protein secretion are spatially coorganized processes. Since Gram-positive bacteria lack a periplasmic space, they lack a protected compartment to spatially coordinate interaction between newly secreted proteins and the factors required to process them. This represents a significant problem for pathogens that depend on the secretion of toxins and cell wall-associated adhesins to cause disease. Streptococci solve this dilemma by restricting secretion and processing factors to a defined region of the membrane. However, the mechanisms that promote restriction are not understood. In this study, we show that restriction of these factors in the pathogen Streptococcus pyogenes is intimately linked with the presence of the cell wall and its synthesis. Furthermore, several cell wall synthesis proteins are also restricted to the site of protein secretion. This study contributes to our understanding of how the Gram-positive cell is organized to coordinate protein secretion and biogenesis with cell wall synthesis and to the ongoing development of antibiotics that target these processes.
Collapse
|
139
|
Abstract
Cationic and amphiphilic peptides are widely distributed in eukaryotic organisms and constitute a first line of host defense against invading pathogens. Some of these host defense peptides (HDPs) combine specific antibiotic activities with modulation of immune responses. Moreover, they are active against bacteria resistant to conventional antibiotics and show only modest resistance development under in vitro selection pressure. Based on these features, HDPs and particularly defensins are considered a promising source of novel anti-infective agents. This review summarizes the current knowledge about defensins from different kingdoms and discusses their potential for therapeutic application.
Collapse
|
140
|
Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50. [PMID: 23834243 DOI: 10.1146/annurev-micro-092412-155746] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; , , ,
| | | | | | | |
Collapse
|
141
|
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals (Basel) 2013; 6:728-58. [PMID: 24276259 PMCID: PMC3816732 DOI: 10.3390/ph6060728] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.
Collapse
|
142
|
Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 2013; 1277:127-38. [PMID: 23302022 DOI: 10.1111/nyas.12005] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous host defense peptides (HDPs) are among the most ancient immune mediators, constituting a first line of defense against invading pathogens across the evolutionary continuum. Generally, HDPs are small (<10 kDa), cationic, and amphipathic polypeptides, often broadly classified based on structure. In eukaryotes, major HDP classes include disulfide-stabilized (e.g., defensins), and α-helical or extended (e.g., cathelicidins) peptides. Prokaryote HDPs are generally referred to as bacteriocins, colicins, or lantibiotics, many of which undergo extensive posttranslational modifications. One target for prokaryotic and eukaryotic HDPs is the bacterial cell wall, an essential structural feature conserved among broad classes of bacteria. A primary building block of the cell wall is peptidoglycan, a macromolecular complex that arises through a series of reactions including membrane translocation, extracellular anchoring, and side chain cross-linking. Each of these steps represents a potential target for HDP inhibition, leading to bacteriostatic or bactericidal outcomes. Thus, understanding the relationships between HDPs and cell wall targets may shed light on new peptide antimicrobial agents and strategies to meet the daunting challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Nannette Y Yount
- Division of Infectious Diseases, Los Angeles County, California, USA
| | | |
Collapse
|
143
|
Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 2013. [PMID: 23193590 DOI: 10.1002/bip.22076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.
Collapse
Affiliation(s)
- Annia Alba
- Departamento de Parasitología, Instituto de Medicina Tropical "Pedro Kourí," La Habana, Cuba
| | | | | |
Collapse
|
144
|
Gonçalves S, Abade J, Teixeira A, Santos NC. Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 2013. [PMID: 23193595 DOI: 10.1002/bip.22088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human neutrophilpeptide 1 (HNP1) is a human defensin with antimicrobial activity against different bacteria (both Gram-positive and negative), fungi, and viruses. HNP1 is stored in the cytoplasmic azurophilic granules of neutrophils. To elucidate the mode of action of this antimicrobial peptide, studies based on its lipid selectivity were carried out. Large unilamellar vesicles with different lipid compositions were used as biomembranes model systems (mammal, fungal, and bacterial models). Changes on the intrinsic fluorescence of HNP1 upon membrane binding/insertion show that HNP1 has quite distinct preferences for mammalian and fungal membrane model systems. HNP1 showed low interaction with glucosylceramide rich membranes, but high sterol selectivity: it has a higher partition for ergosterol-containing membranes (as fungal membranes) and lower interaction with cholesterol-containing membranes (as in mammalian cells). These results reveal that lipid selectivity is a determinant step for HNP1 action. Fluorescence quenching data obtained using acrylamide indicate that HNP1 interacts with membranes without a full insertion in the lipid bilayer. Generalized polarization of laurdan indicates a change in membrane fluidity in the presence of HNP1 for POPC membranes but not for ergosterol-enriched membranes.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | |
Collapse
|
145
|
Mishra B, Epand RF, Epand RM, Wang G. Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Adv 2013. [PMID: 24307932 DOI: 10.1039/c3ra42599a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cationic antimicrobial peptides are recognized templates for developing a new generation of antimicrobials to combat superbugs. Human cathelicidin LL-37 is an essential host defense molecule in human innate immunity. Previously, we identified KR-12 as the smallest antibacterial peptide of LL-37. KR-12 has a narrow activity spectrum since it is active against Gram-negative Escherichia coli but not Gram-positive Staphylococcus aureus. The functional roles of the basic amino acids of KR-12, however, have not yet been elucidated. An alanine scan of cationic amino acids of KR-12 provided evidence for their distinct roles in the activities of the peptides. Bacterial killing and membrane permeation experiments indicate that the R23A and K25A mutants, as well as the lysine-to-arginine mutant, were more potent than KR-12. Another three cationic residues (K18, R19, and R29) of KR-12, which are located in the hydrophilic face of the amphiphathic helix, appeared to be more important in clustering anionic lipids or hemolysis than R23 and K25 in the interfacial region. While the loss of interfacial R23 or K25 reduced peptide helicity, underscoring its important role in membrane binding, the overall increase in peptide activity of KR-12 could be ascribed to the increased peptide hydrophobicity that outweighed the role of basic charge in this case. In contrast, the mutations of interfacial R23 or K25 reduced peptide bactericidal activity of GF-17, an overlapping, more hydrophobic and potent peptide also derived from LL-37. Thus, the hydrophobic context of the peptide determines whether an alanine substitution of an interfacial basic residue increases or decreases membrane permeation and peptide activity.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Raquel F Epand
- Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Richard M Epand
- Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
146
|
Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 2013; 1277:139-58. [PMID: 23215859 PMCID: PMC3556211 DOI: 10.1111/j.1749-6632.2012.06819.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bactericidal, cell membrane-targeting lipopeptide antibiotic daptomycin (DAP) is an important agent in treating invasive Staphylococcus aureus infections. However, there have been numerous recent reports of development of daptomycin resistance (DAP-R) during therapy with this agent. The mechanisms of DAP-R in S. aureus appear to be quite diverse. DAP-R strains often exhibit progressive accumulation of single nucleotide polymorphisms in the multipeptide resistance factor gene (mprF) and the yycFG components of the yycFGHI operon. Both loci are involved in key cell membrane (CM) events, with mprF being responsible for the synthesis and outer CM translocation of the positively charged phospholipid, lysyl-phosphotidylglycerol (L-PG), while the yyc operon is involved in the generalized response to stressors such as antimicrobials. In addition, other perturbations of the CM have been identified in DAP-R strains, including extremes in CM order, resistance to CM depolarization and permeabilization, and reduced surface binding of DAP. Moreover, modifications of the cell wall (CW) appear to also contribute to DAP-R, including enhanced expression of the dlt operon (involved in d-alanylation of CW teichoic acids) and progressive CW thickening.
Collapse
Affiliation(s)
- Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, California 905092, USA.
| | | | | |
Collapse
|
147
|
Sharma H, Nagaraj R. Antimicrobial activity of human β-defensin 4 analogs: insights into the role of disulfide linkages in modulating activity. Peptides 2012; 38:255-65. [PMID: 23000475 DOI: 10.1016/j.peptides.2012.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides that are components of the innate immune system. They are characterized by three disulfide bridges. However, the number of cationic residues as well as the presence of lysine and arginine residues vary. In HBD4, the cationic residues occur predominantly in the N-terminal segment, unlike in HBD1-3. We have examined the antimicrobial activity of peptides spanning the N- and C-terminal segments of HBD4. We have introduced one, two and three disulfide bridges in the peptides corresponding to the N-terminal segments. Peptides corresponding to the N-terminal segment had identical sequences and variation was only in the number and spacing of cysteines and disulfide bridges. Antimicrobial activity to varying extents was observed for all the peptides. When two disulfide bridges were present, decrease in antimicrobial potency as well as sensitivity of activity to salt was observed. Enhanced antimicrobial activity was observed when three disulfide bridges were present. The antimicrobial potency was similar to HBD4 except against Escherichia coli and was attenuated in the presence of salt. While the presence of three disulfide bridges did not constrain the peptide to a rigid β-sheet, the activity was considerably more as compared to the peptides with one or two disulfide bridges. The peptides enter bacterial and fungal cells rapidly without membrane permeabilization and appear to exert their activity inside the cells rather than at the membrane.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
148
|
Oeemig JS, Lynggaard C, Knudsen DH, Hansen FT, Nørgaard KD, Schneider T, Vad BS, Sandvang DH, Nielsen LA, Neve S, Kristensen HH, Sahl HG, Otzen DE, Wimmer R. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem 2012; 287:42361-72. [PMID: 23093408 DOI: 10.1074/jbc.m112.382028] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides are a new class of antibiotics that are promising for pharmaceutical applications because they have retained efficacy throughout evolution. One class of antimicrobial peptides are the defensins, which have been found in different species. Here we describe a new fungal defensin, eurocin. Eurocin acts against a range of Gram-positive human pathogens but not against Gram-negative bacteria. Eurocin consists of 42 amino acids, forming a cysteine-stabilized α/β-fold. The thermal denaturation data point shows the disulfide bridges being responsible for the stability of the fold. Eurocin does not form pores in cell membranes at physiologically relevant concentrations; it does, however, lead to limited leakage of a fluorophore from small unilamellar vesicles. Eurocin interacts with detergent micelles, and it inhibits the synthesis of cell walls by binding equimolarly to the cell wall precursor lipid II.
Collapse
Affiliation(s)
- Jesper S Oeemig
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
A non-cyclic baboon θ-defensin derivative exhibiting antimicrobial activity against the phytopathogen Verticillium dahliae. Appl Microbiol Biotechnol 2012; 97:2043-52. [PMID: 22903319 DOI: 10.1007/s00253-012-4309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/19/2023]
Abstract
θ-Defensins are the only natural cyclic proteins found in primates. They have strong antimicrobial activity related to their trisulfide ladders and macrocyclic conformation. A non-cyclic baboon θ-defensin (BTD) was synthesized by substituting valine with phenylalanine at position 17, at the C-terminal end of the BTD; this was termed "BTD-S." The antimicrobial activities of this synthetic peptide were investigated against Escherichia coli and two cotton phytopathogens: Verticillium dahliae and Fusarium oxysporum. The minimum inhibitory concentration (MIC) of BTD-S for E. coli was 10 μg/mL and for V. dahliae was 5 μg/mL, significantly lower than that for F. oxysporum (40.0 μg/mL). A time course analysis of fungal cultures indicated that the growth of V. dahliae was completely inhibited after 96 h of BTD-S treatment. Furthermore, hemolysis assays revealed that BTD-S was not toxic to mammalian cells as it could not induce lysis of sheep red blood cells even at ten times the MIC (50 μg/mL). Scanning electron microscopy and double-stained (calcofluor white and propidium iodide binding) fluorescence microscopy showed that exposure of spores of V. dahliae to BTD-S either disabled normal germination or disintegrated the spores. The size of cells exposed to BTD-S was significantly reduced compared with controls, and their number increased in a dose-dependent curve when measured by flow cytometry. These findings suggest that BTD-S has great potential to inhibit the growth of V. dahliae and can be utilized as an effective remedy to control economic losses caused by Verticillium wilt in the development of wilt-resistant cotton.
Collapse
|
150
|
Ulm H, Wilmes M, Shai Y, Sahl HG. Antimicrobial host defensins - specific antibiotic activities and innate defense modulation. Front Immunol 2012; 3:249. [PMID: 22912635 PMCID: PMC3418506 DOI: 10.3389/fimmu.2012.00249] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hannah Ulm
- Pharmaceutical Microbiology Section, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|