101
|
Zhu Z, Min T, Zhang X, Wen Y. Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1133. [PMID: 30959946 PMCID: PMC6480635 DOI: 10.3390/ma12071133] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022]
Abstract
Thymol has been shown to be a safe and effective broad-spectrum antimicrobial agent that can be used as a food preservative. However, its volatile characteristics and strong odor limit its use in food products. The microencapsulation of this essential oil in biopolymers could overcome these disadvantages. In this work, thymol-loaded poly(lactide-co-glycolide) (PLGA) microparticles were successfully prepared and the optimal encapsulation efficiency was obtained at 20% (w/w) thymol. Microparticles containing thymol presented a spherical shape and smooth surface. Microencapsulation significantly improved the thermal and storage stability of thymol. In vitro release profiles demonstrated an initial fast release followed by a slow and sustained release. Thymol-loaded microparticles had strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and the effectiveness of their antibacterial properties was confirmed in a milk test. Therefore, the thymol-loaded microparticles show great potential for use as an antimicrobial and as preservation additives in food.
Collapse
Affiliation(s)
- Zhu Zhu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tiantian Min
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
102
|
Yuan L, Li S, Zhou W, Chen Y, Zhang B, Guo Y. Effect of morin-HP-β-CD inclusion complex on anti-ultraviolet and antioxidant properties of gelatin film. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
103
|
Wang N, Cheng X, Li N, Wang H, Chen H. Nanocarriers and Their Loading Strategies. Adv Healthc Mater 2019; 8:e1801002. [PMID: 30450761 DOI: 10.1002/adhm.201801002] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Indexed: 12/17/2022]
Abstract
Nanocarriers are of paramount significance for drug delivery and nanomedicine technology. Given the imperfect systems and nonideal therapeutic effects, there are works to be done in synthesis as much as in biological studies, if not more so. Building the foundation of synthesis would offer more tools and deeper insights for exploring the biological systems with extreme complexity. This review aims at a broad-scope summary and classification of nanocarriers for drug delivery, with focus on the synthetic strategy and structural implications. The nanocarriers are divided into four categories according to the loading principle: molecular-level loading, surface loading, matrix loading, and cavity loading systems. Making comparisons across diverse nanocarrier systems would make it easier to see the fundamental characteristics, from where the weakness can be addressed and the strengths combined. The systematic comparisons may also inspire new ideas and methods.
Collapse
Affiliation(s)
- Neng Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Xuejun Cheng
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Nan Li
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hong Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| |
Collapse
|
104
|
Aydogdu A, Sumnu G, Sahin S. Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 2019; 208:241-250. [DOI: 10.1016/j.carbpol.2018.12.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
105
|
Guo R, Wang R, Yin J, Jiao T, Huang H, Zhao X, Zhang L, Li Q, Zhou J, Peng Q. Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E127. [PMID: 30669533 PMCID: PMC6359147 DOI: 10.3390/nano9010127] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Dye wastewater is one of the most important problems to be faced and solved in wastewater treatment. However, the treatment cannot be single and simple adsorption due to the complexity of dye species. In this work, we prepared novel composite fiber adsorbent materials consisting of ε-polycaprolactone (PCL) and beta-cyclodextrin-based polymer (PCD) by electrospinning. The morphological and spectral characterization demonstrated the successful preparation of a series of composite fibers with different mass ratios. The obtained fiber materials have demonstrated remarkable selective adsorption for MB and 4-aminoazobenzene solutions. The addition of a PCD component in composite fibers enhanced the mechanical strength of membranes and changed the adsorption uptake due to the cavity molecular structure via host⁻guest interaction. The dye removal efficiency could reach 24.1 mg/g towards 4-aminoazobenzene. Due to the admirable stability and selectivity adsorption process, the present prepared beta-cyclodextrin-based composite fibers have demonstrated potential large-scale applications in dye uptake and wastewater treatment.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xinmei Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qing Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
106
|
Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. Int J Biol Macromol 2018; 120:2094-2105. [DOI: 10.1016/j.ijbiomac.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
|
107
|
Liang J, Chen R. Impact of cross-linking mode on the physical properties of zein/PVA composite films. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
108
|
Hatzakis E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 18:189-220. [PMID: 33337022 DOI: 10.1111/1541-4337.12408] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a robust method, which can rapidly analyze mixtures at the molecular level without requiring separation and/or purification steps, making it ideal for applications in food science. Despite its increasing popularity among food scientists, NMR is still an underutilized methodology in this area, mainly due to its high cost, relatively low sensitivity, and the lack of NMR expertise by many food scientists. The aim of this review is to help bridge the knowledge gap that may exist when attempting to apply NMR methodologies to the field of food science. We begin by covering the basic principles required to apply NMR to the study of foods and nutrients. A description of the discipline of chemometrics is provided, as the combination of NMR with multivariate statistical analysis is a powerful approach for addressing modern challenges in food science. Furthermore, a comprehensive overview of recent and key applications in the areas of compositional analysis, food authentication, quality control, and human nutrition is provided. In addition to standard NMR techniques, more sophisticated NMR applications are also presented, although limitations, gaps, and potentials are discussed. We hope this review will help scientists gain some of the knowledge required to apply the powerful methodology of NMR to the rich and diverse field of food science.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- Dept. of Food Science and Technology, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A.,Foods for Health Discovery Theme, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A
| |
Collapse
|
109
|
Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2207-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
110
|
Silva FTD, Cunha KFD, Fonseca LM, Antunes MD, Halal SLME, Fiorentini ÂM, Zavareze EDR, Dias ARG. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int J Biol Macromol 2018; 118:107-115. [PMID: 29928909 DOI: 10.1016/j.ijbiomac.2018.06.079] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022]
Abstract
The ultrafine fibers were produced using a polymeric blend of soy protein isolate (SPI), polyethylene oxide (PEO), and zein at a ratio of 1:1:1 (v/v/v) by electrospinning. The ginger essential oil (GEO) was encapsulated in the ultrafine fibers and the morphology, Fourier-Transform Infrared Spectroscopy (FTIR) analysis, thermal properties and relative crystallinity were evaluated. The antimicrobial activity of ginger essential oil was evaluated against five bacteria (Listeria monocytogenes, Staphylococcus aureus, Escherichia coli 0157:H7, Salmonella typhimurium, and Pseudomonas aeruginosa). Based on the preliminary tests, the concentration of GEO selected to add in the polymer solution was 12% (v/v; GEO/polymer solution). The fiber produced with 12% (v/v) GEO was used for antimicrobial analysis and in situ application (in fresh Minas cheese) against L. monocytogenes by micro-atmosphere. The ultrafine fibers produced, regardless the concentration of the essential oil, presented homogeneous morphology with cylindrical shape without the presence of beads. The application of the active fibers containing 12% GEO showed high potential to be applied in food packaging to reduce microbial contamination.
Collapse
Affiliation(s)
- Francine Tavares da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Kamila Furtado da Cunha
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariana Dias Antunes
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
111
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
112
|
Efficient Encapsulation of Citral in Fast-Dissolving Polymer-Free Electrospun Nanofibers of Cyclodextrin Inclusion Complexes: High Thermal Stability, Longer Shelf-Life, and Enhanced Water Solubility of Citral. NANOMATERIALS 2018; 8:nano8100793. [PMID: 30301193 PMCID: PMC6215197 DOI: 10.3390/nano8100793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Here, we report a facile production of citral/cyclodextrin (CD) inclusion complex (IC) nanofibers (NFs) from three types of CDs (hydroxypropyl-beta-cyclodextrin (HPβCD), hydroxypropyl-gamma-cyclodextrin (HPγCD), and methylated-beta-cyclodextrin (MβCD)) by an electrospinning technique without the need of any polymeric carrier matrix. Self-standing nanofibrous webs of citral/CD-IC nanofibers (citral/CD-IC-NF) with uniform fiber morphology have been successfully electrospun from aqueous solutions of citral/CD-IC. Thanks to the inclusion complex formed with CDs, the efficient preservation of citral (up to ~80%) in citral/CD-IC-NFs was observed. In addition, the citral/CD-IC-NFs have shown ~50% preservation of citral for 15 days at room temperature even though citral has a highly volatile nature. The enhanced thermal stability of citral (~100–300°C) in citral/CD-IC-NFs compared to pure citral (~50–165°C) has been observed. Moreover, citral/CD-IC-NFs tended to disintegrate in water very quickly. To summarize, citral was efficiently encapsulated in citral/CD-IC-NFs, and these citral/CD-IC-NFs have been shown to be fast dissolving. In citral/CD-IC-NFs, citral/CD-ICs have enhanced water solubility of citral along with high-temperature stability and a longer shelf-life.
Collapse
|
113
|
dos Santos JP, Zavareze EDR, Dias ARG, Vanier NL. Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. Int J Biol Macromol 2018; 118:1676-1684. [DOI: 10.1016/j.ijbiomac.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/31/2023]
|
114
|
Aruchamy K, Mahto A, Nataraj S. Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
115
|
|
116
|
Szente L, Fenyvesi É. Cyclodextrin-Enabled Polymer Composites for Packaging †. Molecules 2018; 23:molecules23071556. [PMID: 29954121 PMCID: PMC6100494 DOI: 10.3390/molecules23071556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrin complexes of fragrances, antimicrobial agents, dyes, insecticides, UV-filters can be incorporated into polymers (packaging films, trays, containers) either to ensure the slow release or a homogeneous distribution of the complexed substances. This way the propagation of microorganisms on surface of enwrapped products is decelerated, or the product is made more attractive by slowly released fragrances, protected against UV-light-induced deterioration, oxidation, etc. Incorporating empty cyclodextrins into the packaging material an aroma barrier packaging is produced, which decelerates the loss of the aroma from the packaged food, prevents the penetration of undesired volatile pollutants from the environment, like components of exhaust gases, cigarette smoke, and reduces the migration of plasticizers, residual solvents and monomers, etc. Applying cyclodextrins in active packaging allows to preserve the quality of food and ensures a longer shelf-life for the packaged items.
Collapse
Affiliation(s)
- Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| |
Collapse
|
117
|
Omonijo FA, Ni L, Gong J, Wang Q, Lahaye L, Yang C. Essential oils as alternatives to antibiotics in swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:126-136. [PMID: 30140752 PMCID: PMC6104524 DOI: 10.1016/j.aninu.2017.09.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022]
Abstract
This review article summarizes the efficacy, feasibility and potential mechanisms of the application of essential oils as antibiotic alternatives in swine production. Although there are numerous studies demonstrating that essential oils have several properties, such as antimicrobial, antioxidative and anti-inflammatory effects, feed palatability enhancement and improvement in gut growth and health, there is still a need of further investigations to elucidate the mechanisms underlying their functions. In the past, the results has been inconsistent in both laboratory and field studies because of the varied product compositions, dosages, purities and growing stages and conditions of animals. The minimal inhibitory concentration (MIC) of essential oils needed for killing enteric pathogens may not ensure the optimal feed intake and the essential oils inclusion cost may be too high in swine production. With the lipophilic and volatile nature of essential oils, there is a challenge in effective delivery of essential oils within pig gut and this challenge can partially be resolved by microencapsulation and nanotechnology. The effects of essential oils on inflammation, oxidative stress, microbiome, gut chemosensing and bacterial quorum sensing (QS) have led to better production performance of animals fed essential oils in a number of studies. It has been demonstrated that essential oils have good potential as antibiotic alternatives in feeds for swine production. The combination of different essential oils and other compounds (synergistic effect) such as organic acids seems to be a promising approach to improve the efficacy and safety of essential oils in applications. High-throughput systems technologies have been developed recently, which will allow us to dissect the mechanisms underlying the functions of essential oils and facilitate the use of essential oils in swine production.
Collapse
Affiliation(s)
- Faith A. Omonijo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Shanghai Lab-Animal Research Center, Shanghai 201203, China
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Ludovic Lahaye
- Jefo Nutrition Inc., Saint-Hyacinthe, QC J2S 7B6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
118
|
Wang P, Mele E. Effect of Antibacterial Plant Extracts on the Morphology of Electrospun Poly(Lactic Acid) Fibres. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E923. [PMID: 29848953 PMCID: PMC6025030 DOI: 10.3390/ma11060923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Essential oils (EOs) of clary sage and black pepper induce changes in the morphology of poly(lactic acid) (PLA) electrospun fibres. The chemical composition of the oils is analysed by gas chromatography-mass spectrometry and Fourier-transform infrared spectroscopy; while the evaporation rate of the EOs and their main chemical components is characterised by Thermogravimetric Analysis. The addition of EOs generate thermodynamic instabilities during the electrospinning process, leading to the formation of fibres with either wrinkled (for clary sage oil) or nano-textured surfaces (for black pepper oil). The morphology of the PLA-EOs fibres is investigated by Scanning Electron Microscopy. Together with a well-defined structure, the fibres produced also possess antibacterial activity, as demonstrated by viability loss tests conducted on E. coli and S. epidermidis. Bacteria inactivation efficiency of 76 and 100% is reported for the composite PLA/essential oils electrospun mats. The composite mats produced are promising in the biomedical field, where nanotopography offers physical cues to regulate cell behaviour, and the delivery of therapeutic compounds (essential oils) limits microbial growth.
Collapse
Affiliation(s)
- Peiwen Wang
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK.
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
119
|
Liu Y, Liang X, Wang S, Qin W, Zhang Q. Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers (Basel) 2018; 10:E561. [PMID: 30966595 PMCID: PMC6415433 DOI: 10.3390/polym10050561] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
The development of new bioactive food-packaging materials that extend the shelf life of food is an important objective. Herein, we report the fabrication of four polylactic acid/tea polyphenol (PLA/TP) composite nanofibers, with PLA/TP ratios of 5:1, 4:1, 3:1, and 2:1, by electrospinning. The morphological quality of each sample was examined by scanning electron microscopy (SEM), and samples with higher TP content were found to be deeper in color. The samples were then examined by Fourier transform infrared (FTIR) spectroscopy to confirm the presence of TP. Examination of the mechanical properties of these fibers revealed that the presence of TP decreased both tensile strength and elongation at break; however, this decrease was only slight for the PLA/TP-3:1 composite fiber. The addition of TP influenced the hydrophilic⁻hydrophobic property and release behavior of the composite fibers, which significantly improved the antioxidant behavior of these samples, with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacities of up to 95.07% ± 10.55% observed. Finally, antimicrobial activities against Escherichia coli and Staphylococcus aureus of up to 92.26% ± 5.93% and 94.58% ± 6.53%, respectively, were observed for the PLA/TP-3:1 composite fiber. The present study demonstrated that PLA/TP composite nanofibers can potentially be used for food-packaging applications that extend food shelf life.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xue Liang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
120
|
Zhang H, Xi S, Han Y, Liu L, Dong B, Zhang Z, Chen Q, Min W, Huang Q, Li Y, Liu J. Determining electrospun morphology from the properties of protein-polymer solutions. SOFT MATTER 2018; 14:3455-3462. [PMID: 29682643 DOI: 10.1039/c7sm02203d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Integrating natural macromolecules, e.g. proteins, is a progressive trend in the fabrication of biocompatible sub-micrometer fibers with tunable diameters using the electrospinning technique. The correlation between solution properties and electrospun morphology is critical; it is quite clear for synthetic linear polymer solutions but remains uncertain for solutions with protein. Here, we report the determination of electrospun morphology in protein-polymer solutions of poly(ethylene oxide) (PEO) and zein, a storage protein from corn. The viscosity of the zein/PEO mixed solutions can be well described using the Lederer-Roegiers equation and decreases with the increase of the fraction of zein. The surface tension sharply decreases above a critical concentration at the saturation of the interfacial monolayer. Correspondingly, the different electrospun morphologies-from bead, coexisting bead and fiber, to fiber and ribbon-were mapped onto a ternary phase diagram and a viscosity contour plot. Such coupling provides a clear way to determine the electrospun morphology from solution properties. The occurrence of electrospun fibers partially follows two empirical rules, while the critical point revealed from surface tension has the best approximation. The diameters of electrospun fibers were found to have a scaling relationship against concentration, zero-shear viscosity and surface tension of solutions. These scaling exponents were compared with those from typical polymer solutions. The analysis suggests that aqueous ethanol gives different solvent qualities to zein and PEO solutions, resulting in the irregular shape in the phase diagram that correlates solution properties and electrospun morphologies.
Collapse
Affiliation(s)
- Hao Zhang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Hou J, Zhou W, Bai D, Li S, Han M. Interfacial effect of cyclodextrin inclusion complex on gas adsorption kinetics of dry water emulsion. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
122
|
Chen X, Chen M, Xu C, Yam KL. Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci Nutr 2018; 59:2386-2399. [PMID: 29553807 DOI: 10.1080/10408398.2018.1453778] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.
Collapse
Affiliation(s)
- Xi Chen
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Mo Chen
- b College of Engineering, QuFu Normal University , Rizhao , Shangdong , China
| | - Chenyi Xu
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Kit L Yam
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
123
|
Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. NANOMATERIALS 2018; 8:nano8040199. [PMID: 29597268 PMCID: PMC5923529 DOI: 10.3390/nano8040199] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022]
Abstract
The present study evaluated the effect of using electrospun polycaprolactone (PCL) as a barrier coating and black pepper oleoresin (OR) as a natural extract on the morphology, thermal, mechanical, antimicrobial, oxygen, and water vapor barrier properties of solvent cast gelatin (GEL). The antimicrobial activity of the developed multilayer system obtained by the so-called electrospinning coating technique was also evaluated against Staphylococcus aureus strains for 10 days. The results showed that the multilayer system containing PCL and OR increased the thermal resistance, elongated the GEL film, and significantly diminished its permeance to water vapor. Active multilayer systems stored in hermetically closed bottles increased their antimicrobial activity after 10 days by inhibiting the growth of Staphylococcus aureus. This study demonstrates that addition of electrospun PCL ultrathin fibers and OR improved the properties of GEL films, which promoted its potential use in active food packaging applications.
Collapse
|
124
|
Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int J Mol Sci 2018; 19:ijms19030705. [PMID: 29494548 PMCID: PMC5877566 DOI: 10.3390/ijms19030705] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/28/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022] Open
Abstract
Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work.
Collapse
|
125
|
Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 2017; 106:280-290. [PMID: 29579928 DOI: 10.1016/j.foodres.2017.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022]
Abstract
The development of novel nanomaterials that provide an efficient encapsulation and protection for the active food additives is one of the main focuses of current research efforts at food application areas. From this point of view, in this study, nanofibrous webs from inclusion complexes (IC) of modified cyclodextrins (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)) and essential oils compound (i.e. thymol) was produced through electrospinning technique. While pure thymol has a highly volatile nature, the volatility of thymol was effectively suppressed by the inclusion complexation and ~88-100% (w/w) of thymol was preserved in electrospun thymol/cyclodextrin inclusion complex nanofibers (Thymol/CD-IC NF). The aqueous solubility enhancement for hydrophobic thymol was demonstrated by phase solubility diagram which also suggested the 1:1M inclusion complexation between thymol and CD molecules. Besides, Thymol/CD-IC NF displayed quite fast disintegration in water compared to poorly water soluble thymol. By inclusion complexation, high temperature stability for volatile thymol was achieved for Thymol/CD-IC NF samples. The loading of thymol in Thymol/CD-IC NF conferred DPPH radical scavenging ability to these nanofibrous webs. So, the Thymol/CD-IC NF have shown antioxidant activity along with enhanced water solubility and high thermal stability of thymol. In brief, encapsulation of essential oil compounds such as thymol in electrospun CD-IC nanofibers can promote its potential application in food and oral-care products by associating the large surface area of nanofibrous webs along with CD inclusion complexation which provides enhanced water solubility and antioxidant property, and high temperature stability for thymol.
Collapse
|
126
|
Li S, Yuan L, Chen Y, Zhou W, Wang X. Studies on the Inclusion Complexes of Daidzein with β-Cyclodextrin and Derivatives. Molecules 2017; 22:E2183. [PMID: 29292784 PMCID: PMC6149782 DOI: 10.3390/molecules22122183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
The inclusion complexes between daidzein and three cyclodextrins (CDs), namely β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Me-β-CD, DS = 12.5) and (2-hydroxy)propyl-β-cyclodextrin (HP-β-CD, DS = 4.2) were prepared. The effects of the inclusion behavior of daidzein with three kinds of cyclodextrins were investigated in both solution and solid state by methods of phase-solubility, XRD, DSC, SEM, ¹H-NMR and 2D ROESY methods. Furthermore, the antioxidant activities of daidzein and daidzein-CDs inclusion complexes were determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) method. The results showed that daidzein formed a 1:1 stoichiometric inclusion complex with β-CD, Me-β-CD and HP-β-CD. The results also showed that the solubility of daidzein was improved after encapsulating by CDs. ¹H-NMR and 2D ROESY analyses show that the B ring of daidzein was the part of the molecule that was most likely inserted into the cavity of CDs, thus forming an inclusion complex. Antioxidant activity studies showed that the antioxidant performance of the inclusion complexes was enhanced in comparison to the native daidzein. It could be a potentially promising way to develop a new formulation of daidzein for herbal medicine or healthcare products.
Collapse
Affiliation(s)
- Shujing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinrui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
127
|
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
128
|
Kringel DH, Antunes MD, Klein B, Crizel RL, Wagner R, de Oliveira RP, Dias ARG, Zavareze EDR. Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex. J Food Sci 2017; 82:2598-2605. [DOI: 10.1111/1750-3841.13923] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Dianini Hüttner Kringel
- Dept. de Ciência e Tecnologia Agroindustrial; Univ. Federal de Pelotas; Campus Univ., s/n, 96010-900 Pelotas RS Brazil
| | - Mariana Dias Antunes
- Dept. de Ciência e Tecnologia Agroindustrial; Univ. Federal de Pelotas; Campus Univ., s/n, 96010-900 Pelotas RS Brazil
| | - Bruna Klein
- Dept. de Ciência e Tecnologia de Alimentos; Univ. Federal de Santa Maria; Av. Roraima, 1000, Camobi, 97105-900 Santa Maria RS Brazil
| | - Rosane Lopes Crizel
- Dept. de Ciência e Tecnologia Agroindustrial; Univ. Federal de Pelotas; Campus Univ., s/n, 96010-900 Pelotas RS Brazil
| | - Roger Wagner
- Dept. de Ciência e Tecnologia de Alimentos; Univ. Federal de Santa Maria; Av. Roraima, 1000, Camobi, 97105-900 Santa Maria RS Brazil
| | | | - Alvaro Renato Guerra Dias
- Dept. de Ciência e Tecnologia Agroindustrial; Univ. Federal de Pelotas; Campus Univ., s/n, 96010-900 Pelotas RS Brazil
| | - Elessandra da Rosa Zavareze
- Dept. de Ciência e Tecnologia Agroindustrial; Univ. Federal de Pelotas; Campus Univ., s/n, 96010-900 Pelotas RS Brazil
| |
Collapse
|
129
|
Bai CC, Tian BR, Zhao T, Huang Q, Wang ZZ. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications. Molecules 2017; 22:E1475. [PMID: 28880241 PMCID: PMC6151768 DOI: 10.3390/molecules22091475] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/02/2017] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4) linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.
Collapse
Affiliation(s)
- Chang Cai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Bing Ren Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Tian Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| | - Zhi Zhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
130
|
Zhong T, Liang Y, Jiang S, Yang L, Shi Y, Guo S, Zhang C. Physical, antioxidant and antimicrobial properties of modified peanut protein isolate based films incorporating thymol. RSC Adv 2017. [DOI: 10.1039/c7ra07444a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An active film made from modified peanut protein isolate (PPI) and incorporating thymol (TML) was developed.
Collapse
Affiliation(s)
- Tianchen Zhong
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Yue Liang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Shan Jiang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Lulu Yang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Yimo Shi
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Siwen Guo
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| | - Chunhong Zhang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- China
| |
Collapse
|