101
|
Mallakpour S, Ramezanzade V. Green fabrication of chitosan/tragacanth gum bionanocomposite films having TiO2@Ag hybrid for bioactivity and antibacterial applications. Int J Biol Macromol 2020; 162:512-522. [DOI: 10.1016/j.ijbiomac.2020.06.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
|
102
|
Taghavi Kevij H, Salami M, Mohammadian M, Khodadadi M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
103
|
Wang L, Lin L, Pang J. A novel glucomannan incorporated functionalized carbon nanotube films: Synthesis, characterization and antimicrobial activity. Carbohydr Polym 2020; 245:116619. [PMID: 32718660 DOI: 10.1016/j.carbpol.2020.116619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
A novel nanocomposite film was developed by incorporating functionalized carbon nanotube (PCNT) and gallic acid (GA) into carboxymethyl konjac glucomannan (CKGM) and gelatin (GL) matrix. The influences of the PCNT content on the structural, morphological, mechanical, barrier, thermal and antimicrobial properties of CKGM/GL nanocomposite film were discussed. The structure of PCNT@CKGM/GL nanocomposite film was characterized by FT-IR, SEM, and AFM. The crystal structure and thermal ability of the film were generated by XRD and TGA-DTG. The analyses of FT-IR revealed that the amide linkage and strong hydrogen bonding were formed between CKGM, GL, and PCNT. Moreover, the characterization of mechanical properties, moisture barrier, and antimicrobial activities indicated the benefits of adding PCNT into CKGM/GL films. The results suggested that the PCNT@CKGM/GL films exhibited antimicrobial activity against Staphylococcus aureus and Escherichia coli. Therefore, such antimicrobial nanocomposite films have the potential of maintaining the quality and prolong the shelf life of food products.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Lizhuan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
104
|
Active barrier chitosan films containing gallic acid based oxygen scavenger. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00669-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
105
|
Hu F, Sun T, Xie J, Xue B, Li X, Gan J, Li L, Shao Z. Functional properties and preservative effect on Penaeus vannamei of chitosan films with conjugated or incorporated chlorogenic acid. Int J Biol Macromol 2020; 159:333-340. [PMID: 32422261 DOI: 10.1016/j.ijbiomac.2020.05.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
The chlorogenic acid-grafted-chitosan conjugates (CA-g-CS) with three grafting ratios were synthesized. Then the CA-g-CS conjugated films (CA-g-CS I, CA-g-CS II, and CA-g-CS III) and the CA-CS incorporated films (CA-CS I, CA-CS II, and CA-CS III) with equivalent chlorogenic acid content were prepared, respectively. The physical, mechanical, and biological properties of CA-g-CS conjugated and CA-CS incorporated films were evaluated. Further, the CA-g-CS III and CA-CS III were chosen to evaluate their preservative effect on shrimp. Compared with CS film, CA-g-CS conjugated and CA-CS incorporated films showed enhanced opacity and water solubility, changed thickness and water vapor permeability, and reduced moisture content, tensile strength and elongation at break. Conjugation or incorporation of CA enhanced antioxidant and antibacterial activities of CS films, and these activities increased with the increasing of CA content. CA-g-CS III showed better preservative effect on shrimp than CA-CS III in terms of weight loss, pH value, total volatile basic nitrogen, total bacterial count and sensory score of shrimp during storage. Therefore, CA-g-CS conjugated films exhibited better bioactivities and preservative effect on shrimp than CA-CS incorporated films. Compared with incorporation, conjugation of CA with CS is a more efficient way to improve properties of CS film.
Collapse
Affiliation(s)
- Fei Hu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jianhong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Li Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Zehuai Shao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
106
|
Development of bioactive Bombacaceae gum films containing cinnamon leaf essential oil and their application in packaging of fresh salmon fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
107
|
Yao X, Hu H, Qin Y, Liu J. Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105896] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
108
|
Chitosan-Based Coatings Incorporated with Cinnamon and Tea Extracts to Extend the Fish Fillets Shelf Life: Validation by FTIR Spectroscopy Technique. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8865234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of active coatings prepared from the chitosan on the quality parameters of fish fillets. Antimicrobial and antioxidant properties were improved by addition of tea and cinnamon extracts. Different quality parameters including free fatty acids (FFA), thiobarbituric acid value (TBA), trimethylamine (TMA), total volatile basic nitrogen (TVBN), whiteness, and pH of coated and noncoated samples were evaluated during storage for 20 d at 5 ± 1°C. Moreover, FTIR characterization (i.e., wavenumber and absorbance values) was used to investigate the oxidative stability. Extracts addition to chitosan coating had noticeable influence on reducing FFA and TBA. Moreover, modified chitosan coating decreased TVBN and TMA significantly. Based on FTIR finding, control sample showed the highest oxidation value, while the treated samples with chitosan\incorporated with tea and cinnamon extracts (CTCECS) had the lowest oxidation. The results showed that FTIR technique could be successfully applied to monitor the lipid oxidation of fish fillet. Therefore, FTIR provides a fast approach to study the compositional changes of food products rather than conventional chemical analysis. The findings of our research showed that chitosan coating modified with tea and cinnamon extracts could be used as a novel active packaging to prolong the shelf life quality of fish fillet.
Collapse
|
109
|
Liu J, Yong H, Liu Y, Bai R. Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. Int J Biol Macromol 2020; 156:1539-1555. [DOI: 10.1016/j.ijbiomac.2019.11.202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
|
110
|
Liu J, Lan W, Sun X, Xie J. Effects of chitosan grafted phenolic acid coating on microbiological, physicochemical and protein changes of sea bass (Lateolabrax japonicus) during refrigerated storage. J Food Sci 2020; 85:2506-2515. [PMID: 32652561 DOI: 10.1111/1750-3841.15329] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
This project aimed to evaluate the effects of gallic acid (GA) and protocatechuic acid (PA) grafted onto chitosan (CS) on the improved quality of sea bass (Lateolabrax japonicus) during refrigerated storage. The incorporation of GA and PA onto CS (CS-g-GA and CS-g-PA) were achieved by the carbodiimide-mediated grafting procedure. Samples were treated with different solutions (deionized water [CK], 1% CS [m/v], 1% CS-g-GA [m/v], and 1% CS-g-PA [m/v]) for 10 min, which were then stored at 4 °C. Microbiological quality, including total viable counts (TVC), psychrophilic bacterial counts (PBC), Pseudomonas bacterial counts, and H2 S-producing bacterial counts were measured. Physicochemical parameters, including pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) value, water holding capacity (WHC), and K value, were measured. The changes in protein characteristics, including sulfhydryl groups (SH), Ca2+ -ATPase activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and tertiary structure of protein were analyzed periodically, along with texture profile analysis (TPA). The results demonstrated that the CS copolymers treatment exhibited better preservation effects. The CS-g-GA and CS-g-PA treatments could significantly inhibit the growth of microorganisms and retard the increase of pH, TVB-N, TBA, WHC, and K-value during refrigerated storage compared with the CK and CS groups. Additionally, the CS-g-GA and CS-g-PA treatments could delay the protein oxidation by keeping a higher SH level and Ca2+ -ATPase activity. The CS copolymers treatment could also extend the shelf life for another 6 days compared with that of CK. As a result, CS copolymers can be employed in a promising method for the preservation of sea bass. PRACTICAL APPLICATION: The incorporation of gallic acid and protocatechuic acid onto chitosan (CS-g-GA and CS-g-PA) showed superior antioxidant and antimicrobial activities when applied on sea bass. The CS-g-GA and CS-g-PA coatings could maintain the quality and freshness of refrigerated sea bass. Additionally, this research could provide a theoretical basis for the application of graft copolymers on the preservation of aquatic products.
Collapse
Affiliation(s)
- Jiali Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Laboratory of Quality, Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
111
|
Xue F, Li C, Adhikari B. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound. ULTRASONICS SONOCHEMISTRY 2020; 64:104990. [PMID: 32018136 DOI: 10.1016/j.ultsonch.2020.104990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 05/26/2023]
Abstract
Free radicles produced by ultrasound were used to produce soy protein isolate (SPI)-cyanidin-3-galactoside conjugates. The conjugation between SPI and cyanidin-3-galactoside was confirmed by the increased ratio of bound polyphenol and the disappearance of cyanidin-3-galactoside's absorption peak in ultraviolet-visible spectrum. Conjugation with cyanidin-3-galactoside resulted in breakdown of SPI aggregate, which also led to a decrease in particle size and an increase in fluorescence intensity. Conjugation disrupted the hydrogen bonds of SPI as indicated by the lowest band intensity at 1646, 1533 and 3300-3450 cm-1 on FTIR spectra. Conjugation also increased the electrostatic repulsion and decreased the hydrophobic interactions between SPI molecules. The SPI-cyanidin-3-galactoside conjugate had higher solubility and less aggregated structure in aqueous medium. The aqueous dispersions and solid powders of these conjugates had better thermal stability than that of SPI.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
112
|
Zarandona I, Puertas A, Dueñas M, Guerrero P, de la Caba K. Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105486] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
113
|
From waste/residual marine biomass to active biopolymer-based packaging film materials for food industry applications – a review. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Waste/residual marine biomass represents a vast and potentially underexplored source of biopolymers chitin/chitosan and alginate. Their isolation and potential application in the development and production of bio-based food packaging are gaining in attractiveness due to a recent increment in plastic pollution awareness. Accordingly, a review of the latest research work was given to cover the pathway from biomass sources to biopolymers isolation and application in the development of active (antimicrobial/antioxidant) film materials intended for food packaging. Screening of the novel eco-friendly isolation processes was followed by an extensive overview of the most recent publications covering the chitosan- and alginate-based films with incorporated active agents.
Collapse
|
114
|
Min T, Zhu Z, Sun X, Yuan Z, Zha J, Wen Y. Highly efficient antifogging and antibacterial food packaging film fabricated by novel quaternary ammonium chitosan composite. Food Chem 2020; 308:125682. [DOI: 10.1016/j.foodchem.2019.125682] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
|
115
|
Bai R, Yong H, Zhang X, Liu J, Liu J. Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. Int J Biol Macromol 2020; 143:49-59. [DOI: 10.1016/j.ijbiomac.2019.12.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
|
116
|
Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology. Int J Biol Macromol 2020; 142:63-72. [DOI: 10.1016/j.ijbiomac.2019.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/24/2023]
|
117
|
Cai WD, Zhu J, Wu LX, Qiao ZR, Li L, Yan JK. Preparation, characterization, rheological and antioxidant properties of ferulic acid-grafted curdlan conjugates. Food Chem 2019; 300:125221. [DOI: 10.1016/j.foodchem.2019.125221] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
|
118
|
Study on the Preparation and Conjugation Mechanism of the Phosvitin-Gallic Acid Complex with an Antioxidant and Emulsifying Capability. Polymers (Basel) 2019; 11:polym11091464. [PMID: 31500246 PMCID: PMC6780338 DOI: 10.3390/polym11091464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
To develop a novel emulsifier with an antioxidant capacity, a phosvitin-gallic acid (Pv–GA) complex was prepared via a free-radical method. This emulsifier characterizes some key technologies. Changes in the molecular weight of the Pv–GA complex were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and the matrix-assisted laser desorption/ionization time of light mass spectrometry (MALDI-TOF-MS). Fourier transform infrared spectroscopy (FTIR) indicated that C=O, C–N and N–H groups were also likely to be involved in the formation of the complex. A redshift was obtained in the fluorescence spectrogram, thereby proving that the covalent combination of Pv and GA was a free radical-forming complex. The results indicated that Pv and GA were successfully conjugated. Meanwhile, the secondary structure of Pv showed significant changes after conjugation with GA. The antioxidant activity and emulsifying properties of the Pv–GA complex were studied. The antioxidant activity of the Pv–GA complex proved to be much higher than that of the Pv, via assays of the scavenging activities of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and because of their ability to reduce power. The emulsification activity of the Pv–GA complex was also slightly higher than that of Pv. To function with the most demanding antioxidant and emulsification activities, the optimum conjugation condition was Pv (5 mg/mL) conjugated 1.5 mg/mL GA. Furthermore, the mechanism of Pv–GA conjugation was studied. This study indicated that GA could quench the inner fluorescence of Pv, and this quenching was static. There was a strong interaction between GA and Pv, which was not obviously affected by the temperature. Furthermore, several binding sites were close to 1, indicating that there was an independent class of binding sites on Pv for GA at different temperatures. The conjugation reaction was a spontaneous reaction, and the interaction forces of GA and Pv were hydrogen bonds and van der Waals force.
Collapse
|
119
|
Zhang X, Liu Y, Yong H, Qin Y, Liu J, Liu J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
120
|
Yong H, Wang X, Bai R, Miao Z, Zhang X, Liu J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
121
|
Helal NA, Eassa HA, Amer AM, Eltokhy MA, Edafiogho I, Nounou MI. Nutraceuticals' Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:105-156. [PMID: 31577201 PMCID: PMC6806606 DOI: 10.2174/1872211313666190503112040] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Traditional nutraceuticals and cosmeceuticals hold pragmatic nature with respect to their definitions, claims, purposes and marketing strategies. Their definitions are not well established worldwide. They also have different regulatory definitions and registration regulatory processes in different parts of the world. Global prevalence of nutraceuticals and cosmeceuticals is noticeably high with large market share with minimal regulation compared to traditional drugs. The global market is flooded with nutraceuticals and cosmeceuticals claiming to be of natural origin and sold with a therapeutic claim by major online retail stores such as Amazon and eBay. Apart from the traditional formulations, many manufacturers and researchers use novel formulation technologies in nutraceutical and cosmeceutical formulations for different reasons and objectives. Manufacturers tend to differentiate their products with novel formulations to increase market appeal and sales. On the other hand, researchers use novel strategies to enhance nutraceuticals and cosmeceuticals activity and safety. The objective of this review is to assess the current patents and research adopting novel formulation strategies in nutraceuticals and cosmeceuticals. Patents and research papers investigating nutraceutical and cosmeceutical novel formulations were surveyed for the past 15 years. Various nanosystems and advanced biotechnology systems have been introduced to improve the therapeutic efficacy, safety and market appeal of nutraceuticals and cosmeceuticals, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of nutraceuticals and cosmeceuticals current technologies, highlighting their pros, cons, misconceptions, regulatory definitions and market. This review also aims in separating the science from fiction in the nutraceuticals and cosmeceuticals development, research and marketing.
Collapse
Affiliation(s)
- Nada A. Helal
- Both authors contributed equality to this manuscript
| | - Heba A. Eassa
- Both authors contributed equality to this manuscript
| | | | | | | | - Mohamed I. Nounou
- Address correspondence to this author at the Department of Pharmaceutical Sciences (DPS), School of Pharmacy and Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, 06103, USA;
E-mail:
| |
Collapse
|
122
|
Xiong W, Wang Y, Zhang C, Wan J, Shah BR, Pei Y, Zhou B, Li J, Li B. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. ULTRASONICS SONOCHEMISTRY 2016; 65:105049. [PMID: 26964953 DOI: 10.1016/j.ultsonch.2020.105049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/01/2020] [Indexed: 05/06/2023]
Abstract
Influence of high intensity ultrasound (HIUS) on the structure and properties of ovalbumin (OVA) were investigated. It was found that the subunits and secondary structure of OVA did not change significantly with HIUS treatment from the electrophoretic patterns and circular dichroism (CD) spectrum. The amount of free sulfhydryl groups increased and intrinsic fluorescence spectra analysis indicated changes in the tertiary structure and partial unfold of OVA after sonication increased. Compared with the untreated OVA, HIUS treatment increased the emulsifying activity and foaming ability, and decreased interface tension (oil-water and air-water interface), which due to the increased surface hydrophobicity and decreased the surface net charge in OVA, while the emulsifying and foaming stability had no remarkable differences. The increased particle size may be attributed to formation of protein aggregates. Moreover, the gelation temperatures of HIUS-treated samples were higher than the untreated OVA according to the temperature sweep model rheology, and this effect was consistent with the increased in surface hydrophobicity for ultrasound treated OVA. These changes in functional properties of OVA would promote its application in food industry.
Collapse
Affiliation(s)
- Wenfei Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yuntao Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Chunlan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bakht Ramin Shah
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yaqiong Pei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bin Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Jin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|