101
|
Kelly N, Kelly A, O'Mahony J. Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
102
|
Bursać Kovačević D, Maras M, Barba FJ, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo JM, Putnik P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem 2018; 268:513-521. [DOI: 10.1016/j.foodchem.2018.06.091] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
|
103
|
Xia Q, Green BD, Zhu Z, Li Y, Gharibzahedi SMT, Roohinejad S, Barba FJ. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice ( Oryza sativa L.) - opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr 2018; 59:3349-3370. [PMID: 29993273 DOI: 10.1080/10408398.2018.1491829] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rice is a globally important staple consumed by billions of people, and recently there has been considerable interest in promoting the consumption of wholegrain brown rice (WBR) due to its obvious advantages over polished rice in metabolically protective activities. This work highlights the effects of innovative processing technologies on the quality and functional properties of WBR in comparison with traditional approaches; and it is aimed at establishing a quantitative and/or qualitative link between physicochemical changes and high-efficient processing methods. Compared with thermal treatments, applications of innovative nonthermal techniques, such as high hydrostatic pressure (HHP), pulsed electric fields (PEF), ultrasound and cold plasma, are not limited to modifying physicochemical properties of WBR grains, since improvements in nutritional and functional components as well as a reduction in anti-nutritional factors can also be achieved through inducing related biochemical transformation. Much information about processing methods and parameters which influence WBR quality changes has been obtained, but simultaneously achieving the product stabilization and functionality of processed WBR grains requires a comprehensive evaluation of all the quality changes induced by different processing procedures as well as quantitative insights into the relationship between the changes and processing variables.
Collapse
Affiliation(s)
- Qiang Xia
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Brian D Green
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Zhenzhou Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.,Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, València, 46100, Spain
| |
Collapse
|
104
|
Zhao L, Qin X, Han W, Wu X, Wang Y, Hu X, Ling J, Liao X. Novel application of CO2-assisted high pressure processing in cucumber juice and apple juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
105
|
Park I, Kim JU, Shahbaz HM, Jung D, Jo M, Lee KS, Lee H, Park J. High hydrostatic pressure treatment for manufacturing of garlic powder with improved microbial safety and antioxidant activity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ilbum Park
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Jeong Un Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Hafiz Muhammad Shahbaz
- Department of Food Science and Human Nutrition; University of Veterinary and Animal Sciences; Lahore 54000 Pakistan
| | - Dongseok Jung
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Munhui Jo
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Kyung Seo Lee
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Hyunah Lee
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| | - Jiyong Park
- Department of Biotechnology; Yonsei University; Seoul 03722 South Korea
| |
Collapse
|
106
|
Jia X, Sun S, Chen B, Zheng B, Guo Z. Understanding the crystal structure of lotus seed amylose–long-chain fatty acid complexes prepared by high hydrostatic pressure. Food Res Int 2018; 111:334-341. [DOI: 10.1016/j.foodres.2018.05.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/22/2018] [Accepted: 05/21/2018] [Indexed: 01/14/2023]
|
107
|
Tian Y, Rao H, Zhang K, Tao S, Xue W. Effects of different thermal processing methods on the structure and allergenicity of peanut allergen Ara h 1. Food Sci Nutr 2018; 6:1706-1714. [PMID: 30258615 PMCID: PMC6145249 DOI: 10.1002/fsn3.742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
Boiling and frying can alter the structure of peanut allergens and therefore change the IgE-binding capacity of the Ara h 1. In this research, we aim to clarify the connections between structural changes and the allergenicity alteration, and recommend an effective thermal method to minimize the allergenicity of Ara h 1. Anion exchange chromatography was used to isolate Ara h 1 from non/heat-treated peanuts. Ara h 1 in boiled peanuts has a relatively low hydrophobic index, reduced maximum emission wavelength in the fluorescence, less content of α-helix, and the lowest IgE-binding efficiency. On the contrary, Ara h 1 in fried peanuts present a much higher degeneration degree, a red shift in fluorescence, and a decrease in the content of α-helix. These data indicate that boiling can reduce the allergenicity of Ara h 1, thus can be utilized in peanut processing from a security point of view.
Collapse
Affiliation(s)
- Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Ke Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Sha Tao
- College of Information and Electrical EngineeringBeijingChina
| | - Wen‐Tong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| |
Collapse
|
108
|
Sharma N, Goyal S, Alam T, Fatma S, Chaoruangrit A, Niranjan K. Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
109
|
Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Chemical Forces, Structure, and Gelation Properties of Sweet Potato Protein as Affected by pH and High Hydrostatic Pressure. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2137-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
111
|
Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G, Režek Jambrak A. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 2018; 113:245-262. [PMID: 30195519 DOI: 10.1016/j.foodres.2018.06.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Market interest in aromatic plants from the Mediterranean is continuously growing mainly due to their medicinal and bioactive compounds (BACs) with other valuable constituents from essential oils (EOs). From ancient times, these plants have been important condiments for traditional Mediterranean cuisine and remedies in folk medicine. Nowadays, they are considered as important factors for food quality and safety, due to prevention of various deteriorative factors like oxidations and microbial spoilage. EOs have different therapeutic benefits (e.g. antioxidant, anti-inflammatory, antimicrobial, and antifungal), while BACs mostly affect nutritive, chemical, microbiological, and sensory quality of foods. Currently, many plant extracts are used for functional (healthy) foods, which additionally fuels consumer and industrial interest in sustainable and non-toxic routes for their production. EO yields from dried plants are below 5%. Their extraction is strongly dependent on the hydrophobic or lipophilic character of target molecules, hence the common use of organic solvents. Similarly, BACs encompass a wide range of substances with varying structures as reflected by their different physical/chemical qualities. Thus, there is a need to identify optimal non-toxic extraction method(s) for isolation/separation of EO/BCs from plants. Various innovative non-thermal extractions (e.g. ultrasound-, high-pressure-, pulsed electric fields assisted extraction, etc.) have been proposed to overcome the above mentioned limitations. These techniques are "green" in concept, as they are shorter, avoid toxic chemicals, and are able to improve extract yields and quality with reduced consumption of energy and solvents. This research provides an overview of such extractions of both BAC and EOs from Mediterranean herbs, sustained by innovative and non-conventional energy sources.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tea Bilušić
- Department for Food Technology and Biotechnology, University of Chemistry and Technology, Ruđera Boškovića 35, 21 000 Split, Croatia
| | - Greta Krešić
- Department of Food and Nutrition, Faculty of Tourism and Hospitality Management, University of Rijeka, Primorska 42, 51410 Opatija
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Farid Chemat
- Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Team Extraction, 84000 Avignon Cedex, France
| | - Gustavo Barbosa-Cánovas
- Center for NonThermal Processing of Food, Biological Systems Engineering, Washington State University, L.J. Smith Hall 220, Pullman, WA 99164-6120, USA
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
112
|
|
113
|
Atuonwu JC, Tassou SA. Model-based energy performance analysis of high pressure processing systems. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
114
|
Pérez-Andrés JM, Charoux CMG, Cullen PJ, Tiwari BK. Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5041-5054. [PMID: 29672043 DOI: 10.1021/acs.jafc.7b06055] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A range of nonthermal techniques have demonstrated process efficacy in ensuring product safety, extension of shelf life, and in general a retention of key quality attributes. However, various physical, chemical and biochemical effects of nonthermal techniques on macro and micro nutrients are evident, leading to both desirable and undesirable changes in food products. The objective of this review is to outline the effects of nonthermal techniques on food chemistry and the associated degradation mechanisms with the treatment of foods. Oxidation is one of the key mechanisms responsible for undesirable effects induced by nonthermal techniques. Degradation of key macromolecules largely depends on the processing conditions employed. Various extrinsic and intrinsic control parameters of high-pressure processing, pulsed electric field, ultrasound processing, and cold atmospheric plasma on chemistry of processed food are outlined. Proposed mechanisms and associated degradation of macromolecules, i.e., proteins, lipids, and bioactive molecules resulting in food quality changes are also discussed.
Collapse
Affiliation(s)
- Juan M Pérez-Andrés
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
| | - Clémentine M G Charoux
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- School of Biosystems and Food Engineering , University College Dublin , Dublin 4 , Ireland
| | - P J Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
- Department of Chemical and Environmental Engineering , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Brijesh K Tiwari
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
| |
Collapse
|
115
|
Xia Q, Wang L, Li Y. Exploring high hydrostatic pressure-mediated germination to enhance functionality and quality attributes of wholegrain brown rice. Food Chem 2018; 249:104-110. [DOI: 10.1016/j.foodchem.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
|
116
|
Sevenich R, Mathys A. Continuous Versus Discontinuous Ultra-High-Pressure Systems for Food Sterilization with Focus on Ultra-High-Pressure Homogenization and High-Pressure Thermal Sterilization: A Review. Compr Rev Food Sci Food Saf 2018; 17:646-662. [DOI: 10.1111/1541-4337.12348] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Robert Sevenich
- Dept. of Food Biotechnology and Food Process Engineering; Technische Univ. Berlin; Königin-Luise-Straße 22 Berlin D-14195 Germany
| | - Alexander Mathys
- ETH Zurich, Inst. of Food, Nutrition and Health; Laboratory of Sustainable Food Processing; Schmelzbergstrasse 9 Zurich CH-8092 Switzerland
| |
Collapse
|
117
|
Chizoba Ekezie FG, Cheng JH, Sun DW. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
118
|
Roselló-Soto E, Poojary MM, Barba FJ, Koubaa M, Lorenzo JM, Mañes J, Moltó JC. Thermal and non-thermal preservation techniques of tiger nuts' beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Res Int 2018; 105:945-951. [DOI: 10.1016/j.foodres.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
|
119
|
Horita CN, Baptista RC, Caturla MY, Lorenzo JM, Barba FJ, Sant’Ana AS. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Zhao L, Qin X, Wang Y, Ling J, Shi W, Pang S, Liao X. CO 2 -assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
121
|
Almeida FDL, Gomes WF, Cavalcante RS, Tiwari BK, Cullen PJ, Frias JM, Bourke P, Fernandes FA, Rodrigues S. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res Int 2017; 102:282-290. [DOI: 10.1016/j.foodres.2017.09.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
|
122
|
Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2014-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
123
|
Wang J, Barba FJ, Sørensen JC, Frandsen HB, Sørensen S, Olsen K, Orlien V. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts. Food Chem 2017; 245:1212-1217. [PMID: 29287344 DOI: 10.1016/j.foodchem.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Combinations of pressure, temperature and time (100-600 MPa, 30-60 °C, 3-10 min) influence enzyme activity of the myrosinase-glucosinolate system. Seedlings of Brussels sprouts were used as a model, which constitutes a well-defined and homogenous sample matrix with simple cell structures. A response surface methodology approach was used to determine the combined effect of pressure level, temperature and time on glucosinolate concentration and myrosinase activity in Brussels sprouts seedlings. The effects on residual myrosinase activity and intact glucosinolate concentration differed according to combinations of pressure, time and temperature. The results showed that maximum inactivation of myrosinase and preservation of glucosinolate (85% of the untreated level) was obtained after HP treatment at 600 MPa, 60 °C, 10 min. The highest preservation of myrosinase activity compared to untreated seedlings was after HP at 100 MPa, 30 °C, 3 min and 10 min with low degree of cell permeabilization.
Collapse
Affiliation(s)
- Jia Wang
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Francisco J Barba
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Jens C Sørensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Heidi B Frandsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Susanne Sørensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Vibeke Orlien
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
124
|
Kultur G, Misra N, Barba FJ, Koubaa M, Gökmen V, Alpas H. Microbial inactivation and evaluation of furan formation in high hydrostatic pressure (HHP) treated vegetable-based infant food. Food Res Int 2017; 101:17-23. [DOI: 10.1016/j.foodres.2017.07.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
|
125
|
Putnik P, Barba FJ, Lorenzo JM, Gabrić D, Shpigelman A, Cravotto G, Bursać Kovačević D. An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility. Compr Rev Food Sci Food Saf 2017; 16:1345-1358. [PMID: 33371593 DOI: 10.1111/1541-4337.12310] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023]
Abstract
Mandarins are a member of the Citrus genus and are the focus of growing commercial interest, with satsuma mandarins (Citrus unshiu) and the common mandarin (Citrus reticulata Blanco) being the most important mandarin varieties. The possible health benefits and functional properties of those fruits are often associated with the antioxidative function of vitamin C, carotenoids, and phenolic compounds. While most mandarins are consumed fresh, many are processed into juices (mostly cloudy), usually via thermal processing which can lead to the creation of off-flavors and may diminish nutritional quality. The aim of this review is to summarize the most significant and recent information on the safety, sensorial properties, and nutritional benefits of mandarins and their processing into juice. The article also discusses recent information regarding the bioaccessibility of valuable, mandarin specific, compounds.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Dept., Faculty of Pharmacy, Univ. de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/ Galicia, 4, 32900 San Ciprián de Viñas, Ourense, Spain
| | - Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering, Technion, Israel Inst. of Technology, Haifa, 3200003, Israel
| | - Giancarlo Cravotto
- Dipt. di Scienza e Tecnologia del Farmaco, Univ. of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
126
|
Balcerzak A. Comparison of High-Pressure Behavior of Physicochemical Properties of the Di- and Triacylglycerols Established by Ultrasonic Methods. J AM OIL CHEM SOC 2017; 94:1261-1268. [PMID: 29026258 PMCID: PMC5613064 DOI: 10.1007/s11746-017-3030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 11/24/2022]
Abstract
Two samples of triacylglycerols i.e., olive oil and triolein, and one sample of diacylglycerol were investigated. In the course of compression, the density of the samples was determined by measurements of the change of piston position in a pressure chamber and volume correction due to chamber expansion under pressure. The speed of sound was evaluated from the time of flight of an ultrasonic impulse between emitting and receiving transducers placed in the high pressure chamber. The adiabatic compressibility, the intermolecular free length, the molar volume, the van der Waals' constant b and the surface tension were evaluated from the density, the speed of sound and the average molecular mass. All tested liquids undergo a high-pressure phase transition. Discontinuities in the measured isotherms of the physicochemical parameters of the investigated oils indicate the presence of high-pressure phase transitions. Moreover the time dependent change of pressure at constant volume during the phase transition was measured. The fundamental difference in the molecular structure of these acylglycerols influences their behavior significantly under high pressure.
Collapse
Affiliation(s)
- A Balcerzak
- Section of Acoustoelectronics, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
127
|
García-Parra J, González-Cebrino F, Delgado-Adámez J, Cava R, Martín-Belloso O, Élez-Martínez P, Ramírez R. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum. FOOD SCI TECHNOL INT 2017; 24:145-160. [PMID: 29020810 DOI: 10.1177/1082013217735965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.
Collapse
Affiliation(s)
- J García-Parra
- 1 CICYTEX (Centro de Investigaciones Científicas y Tecnológicas de Extremadura), Technological Agri-Food Institute (INTAEX), Badajoz, Spain
| | - F González-Cebrino
- 1 CICYTEX (Centro de Investigaciones Científicas y Tecnológicas de Extremadura), Technological Agri-Food Institute (INTAEX), Badajoz, Spain
| | - J Delgado-Adámez
- 1 CICYTEX (Centro de Investigaciones Científicas y Tecnológicas de Extremadura), Technological Agri-Food Institute (INTAEX), Badajoz, Spain
| | - R Cava
- 2 Faculty of Veterinary Science, Research Group Tradinnoval, University of Extremadura, Cáceres, Spain
| | - O Martín-Belloso
- 3 Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - P Élez-Martínez
- 3 Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - R Ramírez
- 1 CICYTEX (Centro de Investigaciones Científicas y Tecnológicas de Extremadura), Technological Agri-Food Institute (INTAEX), Badajoz, Spain
| |
Collapse
|
128
|
Modelling of the kinetics of Bovine Serum Albumin enzymatic hydrolysis assisted by high hydrostatic pressure. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
129
|
Barba FJ, Mariutti LR, Bragagnolo N, Mercadante AZ, Barbosa-Cánovas GV, Orlien V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
130
|
Wang J, Zhu H, Li S, Wang S, Wang S, Copeland L. Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. Int J Biol Macromol 2017; 102:414-424. [DOI: 10.1016/j.ijbiomac.2017.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/01/2017] [Accepted: 04/09/2017] [Indexed: 01/09/2023]
|
131
|
Barba FJ, Putnik P, Bursać Kovačević D, Poojary MM, Roohinejad S, Lorenzo JM, Koubaa M. Impact of conventional and non-conventional processing on prickly pear ( Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
132
|
Xia Q, Wang L, Yu W, Li Y. Investigating the influence of selected texture-improved pretreatment techniques on storage stability of wholegrain brown rice: Involvement of processing-induced mineral changes with lipid degradation. Food Res Int 2017; 99:510-521. [DOI: 10.1016/j.foodres.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
|
133
|
Barba FJ, Orlien V. Processing, bioaccessibility and bioavailability of bioactive sulfur compounds: Facts and gaps. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
134
|
Pottier L, Villamonte G, de Lamballerie M. Applications of high pressure for healthier foods. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
135
|
De Maria S, Ferrari G, Maresca P. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3151-3158. [PMID: 27885680 DOI: 10.1002/jsfa.8157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/20/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL-1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). RESULTS HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. CONCLUSION Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Serena De Maria
- Department of Industrial Engineering, University of Salerno, Fisciano, (SA), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, (SA), Italy
- ProdAl Scarl, Fisciano, (SA), Italy
| | | |
Collapse
|
136
|
Poojary MM, Putnik P, Bursać Kovačević D, Barba FJ, Lorenzo JM, Dias DA, Shpigelman A. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
137
|
Barba FJ, Koubaa M, do Prado-Silva L, Orlien V, Sant’Ana ADS. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
138
|
Oliveira FAD, Neto OC, Santos LMRD, Ferreira EHR, Rosenthal A. Effect of high pressure on fish meat quality – A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Poojary MM, Dellarosa N, Roohinejad S, Koubaa M, Tylewicz U, Gómez-Galindo F, Saraiva JA, Rosa MD, Barba FJ. Influence of Innovative Processing on γ-Aminobutyric Acid (GABA) Contents in Plant Food Materials. Compr Rev Food Sci Food Saf 2017; 16:895-905. [DOI: 10.1111/1541-4337.12285] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mahesha M. Poojary
- Dept. of Food Science; Univ. of Copenhagen; Rolighedsvej 26 1958 Frederiksberg C Denmark
- with Discipline of Laboratory Medicine, School of Health and Biomedical Sciences; RMIT Univ.; 3083 Bundoora Australia
- also with Chemistry Section, School of Science and Technology; Univ. of Camerino; via S. Agostino 1 62032 Camerino Italy
| | - Nicolò Dellarosa
- Dept. of Agricultural and Food Sciences; Univ. of Bologna; Cesena Italy
| | - Shahin Roohinejad
- Dept. of Food Technology and Bioprocess Engineering, Max Rubner-Institut; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
- with Burn and Wound Healing Research Center, Div. of Food and Nutrition; Shiraz Univ. of Medical Sciences; Shiraz Iran
| | - Mohamed Koubaa
- Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu; Univ. de Technologie de Compiègne; CS 60319 60203 Compiègne Cedex France
| | - Urszula Tylewicz
- Dept. of Agricultural and Food Sciences; Univ. of Bologna; Cesena Italy
| | - Federico Gómez-Galindo
- Food Technology, Engineering and Nutrition; Lund Univ.; Naturvetarvägen 14 SE- 22362 Lund Sweden
| | - Jorge A. Saraiva
- QOPNA, Chemistry Dept.; Univ. of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Marco Dalla Rosa
- Dept. of Agricultural and Food Sciences; Univ. of Bologna; Cesena Italy
- Interdepartmental Centre for Agri-Food Industrial Research; Univ. of Bologna; Cesena Italy
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Dept., Faculty of Pharmacy; Univ. de València; Avda. Vicent Andrés Estellés, s/n 46100 Burjassot València Spain
| |
Collapse
|
140
|
Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2681-2689. [PMID: 28230263 DOI: 10.1002/jsfa.8283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Beans, peas, and lentils are all types of pulses that are extensively used as foods around the world due to their beneficial effects on human health including their low glycaemic index, cholesterol lowering effects, ability to decrease the risk of heart diseases and their protective effects against some cancers. These health benefits are a result of their components such as bioactive proteins, dietary fibre, slowly digested starches, minerals and vitamins, and bioactive compounds. Among these bioactive compounds, γ-aminobutyric acid (GABA), a non-proteinogenic amino acid with numerous reported health benefits (e.g. anti-diabetic and hypotensive effects, depression and anxiety reduction) is of particular interest. GABA is primarily synthesised in plant tissues by the decarboxylation of l-glutamic acid in the presence of glutamate decarboxylase (GAD). It is widely reported that during various processes including enzymatic treatment, gaseous treatment (e.g. with carbon dioxide), and fermentation (with lactic acid bacteria), GABA content increases in the plant matrix. The objective of this review paper is to highlight the current state of knowledge on the occurrence of GABA in pulses with special focus on mechanisms by which GABA levels are increased and the analytical extraction and estimation methods for this bioactive phytochemical. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nooshin Nikmaram
- Young Researchers and Elite Club, Islamic Azad University, Sabzevar, Iran
| | - B N Dar
- Department of Food Technology, IUST, Awantipora, Jammu and Kashmir, India
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamed Koubaa
- Département de Génie des Procédés Industriels, Laboratoire Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, France
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Burjassot, València, Spain
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Stuart K Johnson
- School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
141
|
Pacheco A, Rodríguez-Sánchez DG, Villarreal-Lara R, Navarro-Silva JM, Senés-Guerrero C, Hernández-Brenes C. Stability of the antimicrobial activity of acetogenins from avocado seed, under common food processing conditions, againstClostridium sporogenesvegetative cell growth and endospore germination. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adriana Pacheco
- Tecnologico de Monterrey; Campus Monterrey; Ave. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | | | - Raúl Villarreal-Lara
- Tecnologico de Monterrey; Campus Monterrey; Ave. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | | | - Carolina Senés-Guerrero
- Tecnologico de Monterrey; Campus Monterrey; Ave. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey; Campus Monterrey; Ave. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
142
|
Barba FJ, Poojary MM, Wang J, Olsen K, Orlien V. Effect of high pressure processing and storage on the free amino acids in seedlings of Brussels sprouts. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
143
|
Misra N, Jo C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
144
|
Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ. Landmarks in the historical development of twenty first century food processing technologies. Food Res Int 2017; 97:318-339. [PMID: 28578057 DOI: 10.1016/j.foodres.2017.05.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day.
Collapse
Affiliation(s)
- N N Misra
- GTECH, Research & Development, General Mills India Private Limited, Mumbai, India
| | - Mohamed Koubaa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, Karlsruhe 76131, Germany; Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pablo Juliano
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC, Australia
| | - Hami Alpas
- Department of Food Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Rita S Inácio
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain.
| |
Collapse
|
145
|
Metabolomic studies after high pressure homogenization processed low pulp mandarin juice with trehalose addition. Functional and technological properties. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
146
|
Dynamics of fluid migration into porous solid matrix during high pressure treatment. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
147
|
Barba FJ, Orliena V. Processing, bioaccessibility and bioavailability of bioactive sulfur compounds: Facts and gaps. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
148
|
Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A. Innovative "Green" and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review. Molecules 2017; 22:E680. [PMID: 28448474 PMCID: PMC6154587 DOI: 10.3390/molecules22050680] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Citrus is a major processed crop that results in large quantities of wastes and by-products rich in various bioactive compounds such as pectins, water soluble and insoluble antioxidants and essential oils. While some of those wastes are currently valorised by various technologies (yet most are discarded or used for feed), effective, non-toxic and profitable extraction strategies could further significantly promote the valorisation and provide both increased profits and high quality bioactives. The present review will describe and summarize the latest works concerning novel and greener methods for valorisation of citrus by-products. The outcomes and effectiveness of those technologies such as microwaves, ultrasound, pulsed electric fields and high pressure is compared both to conventional valorisation technologies and between the novel technologies themselves in order to highlight the advantages and potential scalability of these so-called "enabling technologies". In many cases the reported novel technologies can enable a valorisation extraction process that is "greener" compared to the conventional technique due to a lower energy consumption and reduced utilization of toxic solvents.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, Turin 10125, Italy.
| | - Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, Turin 10125, Italy.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/Galicia, 4, San Ciprián de Viñas, 32900 Ourense, Spain.
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
149
|
Mota MJ, Lopes RP, Koubaa M, Roohinejad S, Barba FJ, Delgadillo I, Saraiva JA. Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies. Crit Rev Biotechnol 2017; 38:122-140. [PMID: 28423948 DOI: 10.1080/07388551.2017.1312272] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The interest in improving the yield and productivity values of relevant microbial fermentations is an increasingly important issue for the scientific community. Therefore, several strategies have been tested for the stimulation of microbial growth and manipulation of their metabolic behavior. One promising approach involves the performance of fermentative processes during non-conventional conditions, which includes high pressure (HP), electric fields (EF) and ultrasound (US). These advanced technologies are usually applied for microbial inactivation in the context of food processing. However, the approach described in this study focuses on the use of these technologies at sub-lethal levels, since the aim is microbial growth and fermentation under these stress conditions. During these sub-lethal conditions, microbial strains develop specific genetic, physiologic and metabolic stress responses, possibly leading to fermentation products and processes with novel characteristics. In some cases, these modifications can represent considerable improvements, such as increased yields, productivities and fermentation rates, lower accumulation of by-products and/or production of different compounds. Although several studies report the successful application of these technologies during the fermentation processes, information on this subject is still scarce and poorly understood. For that reason, the present review paper intends to assemble and discuss the main findings reported in the literature to date, and aims to stimulate interest and encourage further developments in this field.
Collapse
Affiliation(s)
- Maria J Mota
- a Chemistry Department, QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Rita P Lopes
- a Chemistry Department, QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Mohamed Koubaa
- b Sorbonne Universités , Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu , Compiegne France
| | - Shahin Roohinejad
- c Department of Food Technology and Bioprocess Engineering , Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe , Germany.,d Burn and Wound Healing Research Center, Division of Food and Nutrition , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Francisco J Barba
- e Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy , Universitat de València , València , Spain
| | - Ivonne Delgadillo
- a Chemistry Department, QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Jorge A Saraiva
- a Chemistry Department, QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| |
Collapse
|
150
|
Karageorgou I, Grigorakis S, Lalas S, Makris DP. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2887-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|