101
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
102
|
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023; 165:759-771. [PMID: 37095635 DOI: 10.1111/jnc.15831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
103
|
Zhang J, Zhang T, Zeng S, Zhang X, Zhou F, Gillies MC, Zhu L. The Role of Nrf2/sMAF Signalling in Retina Ageing and Retinal Diseases. Biomedicines 2023; 11:1512. [PMID: 37371607 DOI: 10.3390/biomedicines11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related diseases, such as Parkinson's disease, Alzheimer's disease, cardiovascular diseases, cancers, and age-related macular disease, have become increasingly prominent as the population ages. Oxygen is essential for living organisms, but it may also cause disease when it is transformed into reactive oxygen species via biological processes in cells. Most of the production of ROS occurs in mitochondrial complexes I and III. The accumulation of ROS in cells causes oxidative stress, which plays a crucial role in human ageing and many diseases. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key antioxidant transcription factor that plays a central role in many diseases and ageing in general. It regulates many downstream antioxidative enzymes when cells are exposed to oxidative stress. A basic-region leucine zipper (bZIP) transcription factor, MAF, specifically the small MAF subfamily (sMAFs), forms heterodimers with Nrf2, which bind with Maf-recognition elements (MAREs) in response to oxidative stress. The role of this complex in the human retina remains unclear. This review summarises the current knowledge about Nrf2 and its downstream signalling, especially its cofactor-MAF, in ageing and diseases, with a focus on the retina. Since Nrf2 is the master regulator of redox homeostasis in cells, we hypothesise that targeting Nrf2 is a promising therapeutic approach for many age-related diseases.
Collapse
Affiliation(s)
- Jialing Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
104
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
105
|
Zhong CC, Zhao T, Hogstrand C, Song CC, Zito E, Tan XY, Xu YC, Song YF, Wei XL, Luo Z. Copper induces liver lipotoxicity disease by up-regulating Nrf2 expression via the activation of MTF-1 and inhibition of SP1/Fyn pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166752. [PMID: 37182554 DOI: 10.1016/j.bbadis.2023.166752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Excessive copper (Cu) intake leads to hepatic lipotoxicity disease, which has adverse effects on health, but the underlying mechanism is unclear. We found that Cu increased lipotoxicity by promoting Nrf2 recruitment to the ARE site in the promoters of five lipogenic genes (g6pd, 6pgd, me, icdh and pparγ). We also found that Cu affected the Nrf2 expression via different pathways: metal regulatory transcription factor 1 (MTF-1) mediated the Cu-induced Nrf2 transcriptional activation; Cu also enhanced the expression of Nrf2 by inhibiting the SP1 expression, which was achieved by inhibiting the negative regulator Fyn of Nrf2. These promoted the enrichment of Nrf2 in the nucleus and ultimately affected lipotoxicity. Thus, for the first time, we elucidated that Cu induced liver lipotoxicity disease by up-regulating Nrf2 expression via the MTF-1 activation and the inhibition of SP1/Fyn pathway. Our study elucidates the Cu-associated obesity and NAFLD for fish and possibly humans.
Collapse
Affiliation(s)
- Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province, China.
| |
Collapse
|
106
|
Jiang YQ, Yang XY, Duan DQ, Zhang YY, Li NS, Tang LJ, Peng J, Luo XJ. Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway. Eur J Pharmacol 2023; 950:175774. [PMID: 37146710 DOI: 10.1016/j.ejphar.2023.175774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
The dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and/or solute carrier family 7 member 11 (SLC7A11) is believed to contribute to ferroptosis in the hearts suffered ischemia/reperfusion (I/R), but the mechanisms behind the dysregulation of them are not fully elucidated. Mucosa associated lymphoid tissue lymphoma translocation gene 1 (MALT1) can function as a paracaspase to cleave specified substrates and it is predicted to interact with Nrf2. This study aims to explore whether targeting MALT1 can reduce I/R-induced ferroptosis via enhancing the Nrf2/SLC7A11 pathway. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion to establish the I/R injury model, which showed myocardial injuries (increase in infarct size and creatine kinase release) and up-regulation of MALT1 while downregulation of Nrf2 and SLC7A11 concomitant with the increased ferroptosis, reflecting by an increase in glutathione peroxidase 4 (GPX4) level while decreases in the levels of acyl-CoA synthetase long chain family member 4 (ACSL4), total iron, Fe2+ and lipid peroxidation (LPO); these phenomena were reversed in the presence of MI-2, a specific inhibitor of MALT1. Consistently, similar results were achieved in the cultured cardiomyocytes subjected to 8h-hypoxia plus 12h-reoxygenation. Furthermore, micafungin, an antifungal drug, could also exert beneficial effect on mitigating myocardial I/R injury via inhibition of MALT1. Based on these observations, we concluded that inhibition of MALT1 can reduce I/R-induced myocardial ferroptosis through enhancing the Nrf2/SLC7A11 pathway; and MALT1 might be used as a potential target to seek novel or existing drugs (such as micafungin) for treating myocardial infarction.
Collapse
Affiliation(s)
- Ya-Qian Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| | - Xiao-Yan Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan-Qing Duan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Jing Tang
- Department of Pharmacy, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
107
|
Fang G, Shen Y, Liao D. ENPP2 alleviates hypoxia/reoxygenation injury and ferroptosis by regulating oxidative stress and mitochondrial function in human cardiac microvascular endothelial cells. Cell Stress Chaperones 2023; 28:253-263. [PMID: 37052764 PMCID: PMC10167086 DOI: 10.1007/s12192-023-01324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to elucidate the molecular mechanisms of hypoxia/reoxygenation (H/R) injury in human cardiac microvascular endothelial cells (HCMECs) by regulating ferroptosis. H/R model was established with HCMECs and before the reperfusion, ferroptosis inhibitor ferrostatin-1 or ferroptosis inducer erastin was all administered. Wound-healing assay was performed to detect the migration ability of cells in each group, and the angiogenesis ability was determined by tube formation assay. The level of reactive oxygen species (ROS) was detected by flow cytometry. Transmission electron microscopy (TEM) was used to observe the state of mitochondria. The expressions of related proteins in HCMECs were assessed by Western blot. From the results, H/R injury could inhibit the migration and angiogenesis, induce the ROS production, and cause the mitochondrial damage of HCMECs. Ferroptosis activator erastin could aggravate H/R injury in HCMECs, while the ferroptosis inhibitor ferrostatin-1 could reverse the effects of H/R on HCMECs. Western blot results showed that H/R or/and erastin treatment could significantly induce ACSL4, HGF, VEGF, p-ERK, and uPA protein expression and inhibit GPX4 expression. The addition of ferrostatin-1 resulted in the opposite trend of the proteins expression above to erastin treatment. What is more, overexpression of ENPP2 markedly suppressed the damaging effect of H/R on HCMECs and reversed the effects of H/R or erastin treatment on the expression of related proteins. These results demonstrated a great therapeutic efficacy of ENPP2 overexpression in preventing the development of H/R injury through inhibiting oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Guanhua Fang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| | - Yanming Shen
- Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Dongshan Liao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| |
Collapse
|
108
|
Ma B, Zhong Y, Chen R, Zhan X, Huang G, Xiong Y, Tan B. Tripterygium glycosides reverse chemotherapy resistance in ovarian cancer by targeting the NRF2/GPX4 signal axis to induce ferroptosis of drug-resistant human epithelial ovarian cancer cells. Biochem Biophys Res Commun 2023; 665:178-186. [PMID: 37163938 DOI: 10.1016/j.bbrc.2023.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Cisplatin resistance is the main cause of postoperative recurrence and difficulty in the treatment of ovarian cancer. It is urgently needed to identify therapeutic drugs with unique functions to overcome the current challenges in the treatment of ovarian cancer. In this study, we found that TG promoted the accumulation of ROS and MDA in A2780/DDP cells and downregulated the expression of key antioxidant molecules. In vivo, the survival rate of tumor-bearing nude mice was prolonged by TG without significant hepatotoxic reaction. The expression of key antioxidant molecules in tumor tissues was consistent with that in vitro. These findings revealed that TG disrupted homeostasis of redox reactions and induced ferroptosis in A2780/DDP cells, thereby enhancing cisplatin chemosensitivity of ovarian cancer. Overall, TG may be a novel potential therapeutic option for reversing resistance to cisplatin chemotherapy.
Collapse
Affiliation(s)
- Bo Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Runqiu Chen
- Queen Mary School, Nanchang University, Nanchang, 330000, China
| | - Xinlu Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
109
|
Xie J, Lv H, Liu X, Xia Z, Li J, Hong E, Ding B, Zhang W, Chen Y. Nox4-and Tf/TfR-mediated peroxidation and iron overload exacerbate neuronal ferroptosis after intracerebral hemorrhage: Involvement of EAAT3 dysfunction. Free Radic Biol Med 2023; 199:67-80. [PMID: 36805044 DOI: 10.1016/j.freeradbiomed.2023.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Intracerebral hemorrhage (ICH) induces high mortality and disability. Neuronal death is the principal factor to unfavourable prognosis in ICH. However, the mechanisms underlying this association remain unclear. In this study, we investigated the molecular mechanisms by which neuronal ferroptosis occurs after ICH and whether the use of corresponding modulators can inhibit neuronal death and improve early outcomes in a rat ICH model. Our findings indicated that Nox4 and TF/TfR were upregulated in the perihematomal tissues of ICH rats. Oxidative stress and iron overload induced by Nox4 and TF/TfR promoted neuronal ferroptosis post-ICH. In contrast, application of Nox4-siRNA and the deferoxamine (DFO) attenuated peroxidation and iron deposition in the hemorrhagic brain, alleviated neuronal ferroptosis, and improved sensorimotor function in ICH rats. Additionally, our findings indicated that the post-ICH neuronal reduced glutathione (GSH) depletion were not related to dysfunctional glutamine delivery in astrocytes but rather to downregulation of EAAT3 due to lipid peroxidation-induced dysfunction in the neuronal membrane. These findings indicate that ferroptosis is involved in neuronal death in model rats with collagenase-induced ICH. Oxidative stress and iron overload induced by Nox4 and TF/TfR exacerbate ferroptosis after ICH, while Nox4 downregulation and iron chelation exert neuroprotective effects. The present results highlight the cysteine importer EAAT3 as a potential biomarker of ferroptosis and provide insight into the neuronal death process that occurs following ICH, which may aid in the development of translational treatment strategies for ICH.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, The First People's Hospital of Changde City of Xiangya Medical College of South Central University, Changde, 415000, China
| | - Hongzhu Lv
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, 116089, China
| | - Xuanbei Liu
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Zhennan Xia
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiangwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Enhui Hong
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Boyun Ding
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Wenying Zhang
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
110
|
Łoboda A, Dulak J. Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Antioxid Redox Signal 2023; 38:619-642. [PMID: 36597355 DOI: 10.1089/ars.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Significance: Skeletal muscles have a robust regenerative capacity in response to acute and chronic injuries. Muscle repair and redox homeostasis are intimately linked; increased generation of reactive oxygen species leads to cellular dysfunction and contributes to muscle wasting and progression of muscle diseases. In exemplary muscle disease, Duchenne muscular dystrophy (DMD), caused by mutations in the DMD gene that encodes the muscle structural protein dystrophin, the regeneration machinery is severely compromised, while oxidative stress contributes to the progression of the disease. The nuclear factor erythroid 2-related factor 2 (NRF2) and its target genes, including heme oxygenase-1 (HO-1), provide protective mechanisms against oxidative insults. Recent Advances: Relevant advances have been evolving in recent years in understanding the mechanisms by which NRF2 regulates processes that contribute to effective muscle regeneration. To this end, pathways related to muscle satellite cell differentiation, oxidative stress, mitochondrial metabolism, inflammation, fibrosis, and angiogenesis have been studied. The regulatory role of NRF2 in skeletal muscle ferroptosis has been also suggested. Animal studies have shown that NRF2 pathway activation can stop or reverse skeletal muscle pathology, especially when endogenous stress defence mechanisms are imbalanced. Critical Issues: Despite the growing recognition of NRF2 as a factor that regulates various aspects of muscle regeneration, the mechanistic impact on muscle pathology in various models of muscle injury remains imprecise. Future Directions: Further studies are necessary to fully uncover the role of NRF2 in muscle regeneration, both in physiological and pathological conditions, and to investigate the possibilities for development of new therapeutic modalities. Antioxid. Redox Signal. 38, 619-642.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
111
|
Wu LX, Xu YC, Pantopoulos K, Tan XY, Wei XL, Zheng H, Luo Z. Glycophagy mediated glucose-induced changes of hepatic glycogen metabolism via OGT1-AKT1-FOXO1Ser238 pathway. J Nutr Biochem 2023; 117:109337. [PMID: 36990368 DOI: 10.1016/j.jnutbio.2023.109337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Glycophagy is the autophagy degradation of glycogen. However, the regulatory mechanisms for glycophagy and glucose metabolism remain unexplored. Herein, we demonstrated that high-carbohydrate diet (HCD) and high glucose (HG) incubation induced glycogen accumulation, AKT1 expression and AKT1-dependent phosphorylation of forkhead transcription factor O1 (FOXO1) at Ser238 in the liver tissues and hepatocytes. The glucose-induced FOXO1 phosphorylation at Ser238 prevents FOXO1 entry into the nucleus and the recruitment to the gabarapl1 promoter, reduces the gabarapl1 promoter activity, and inhibits glycophagy and glucose production. The glucose-dependent O-GlcNAcylation of AKT1 by OGT1 enhances the stability of AKT1 protein and promotes its binding with FOXO1. Moreover, the glycosylation of AKT1 is crucial for promoting FOXO1 nuclear translocation and inhibiting glycophagy. Our studies elucidate a novel mechanism for glycophagy inhibition by high carbohydrate and glucose via OGT1-AKT1-FOXO1Ser238 pathway in the liver tissues and hepatocytes, which provides critical insights into potential intervention strategies for glycogen storage disorders in vertebrates, as well as human beings.
Collapse
|
112
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
113
|
Liu T, Wang R, Qi W, Jia L, Ma K, Si J, Yin J, Zhao Y, Dai Z, Yin J. Methyl Ferulic Acid Alleviates Neuropathic Pain by Inhibiting Nox4-induced Ferroptosis in Dorsal Root Ganglia Neurons in Rats. Mol Neurobiol 2023; 60:3175-3189. [PMID: 36813954 DOI: 10.1007/s12035-023-03270-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Neuropathic pain is a disease that has become one of the major public health problems and a global burden. Nox4-induced oxidative stress can lead to ferroptosis and neuropathic pain. Methyl ferulic acid (MFA) can inhibit the Nox4-induced oxidative stress. This study aimed to estimate whether methyl ferulic acid alleviates neuropathic pain by inhibiting the expression of Nox4 and its induction of ferroptosis. Adult male Sprague-Dawley rats were subjected to spared nerve injury (SNI) model to induce neuropathic pain. After the establishment of the model, methyl ferulic acid was given 14 days by gavage. Nox4 overexpression was induced by microinjection of the AAV-Nox4 vector. All groups measured paw mechanical withdrawal threshold (PMWT), paw thermal withdrawal latency (PTWL), and paw withdrawal cold duration (PWCD). The expression of Nox4, ACSL4, GPX4, and ROS was investigated by Western blot and immunofluorescence staining. The changes in iron content were detected by a tissue iron kit. The morphological changes in mitochondria were observed by transmission electron microscopy. In the SNI group, the paw mechanical withdrawal threshold, the paw withdrawal cold duration decreased, the paw thermal withdrawal latency did not change, the Nox4, ACSL4, ROS, and iron content increased, the GPX4 decreased, and the number of abnormal mitochondria increased. Methyl ferulic acid can increase PMWT and PWCD but does not affect PTWL. Methyl ferulic acid can inhibit Nox4 protein expression. Meanwhile, ferroptosis-related protein ACSL4 expression was decreased, GPX4 expression was increased, ROS, iron content and abnormal mitochondrial number were decreased. By overexpressing Nox4, the PMWT, PWCD, and ferroptosis of rats were more severe than those of the SNI group, but they could be reversed after treatment with methyl ferulic acid. In conclusion, methyl ferulic acid can alleviate neuropathic pain, which is related to Nox4-induced ferroptosis.
Collapse
Affiliation(s)
- Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ruixue Wang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yujia Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhigang Dai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
114
|
Castelli S, Ciccarone F, De Falco P, Ciriolo MR. Adaptive antioxidant response to mitochondrial fatty acid oxidation determines the proliferative outcome of cancer cells. Cancer Lett 2023; 554:216010. [PMID: 36402229 DOI: 10.1016/j.canlet.2022.216010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Alterations in lipid catabolism have been broadly described in cancer cells and show tumor-type specific effects on proliferation and cell survival. The factor(s) responsible for this heterogeneity is currently unknown and represents the main limitation in the development of therapeutic interventions that impair lipid metabolism. In this study, we focused on hexanoic acid, a medium-chain fatty acid, that can quickly boost oxidative metabolism by passively crossing mitochondrial membranes. We demonstrated that the antioxidant adaptation of cancer cells to increased fatty acid oxidation is predictive of the proliferative outcome. By interfering with SOD1 expression and glutathione homeostasis, we verified that mitochondrial fatty acid oxidation has antitumor effects in cancer cells that efficiently buffer ROS. In contrast, increased ROS levels promote proliferation in cells with an imbalanced antioxidant response. In addition, an increase in mitochondrial mass and mitophagy activation were observed, respectively. Overall, these data demonstrate that the capacity to manage ROS from mitochondrial oxidative metabolism determines whether lipid catabolism is advantageous or detrimental for cancer cells.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy.
| |
Collapse
|
115
|
Yu LM, Dong X, Huang T, Zhao JK, Zhou ZJ, Huang YT, Xu YL, Zhao QS, Wang ZS, Jiang H, Yin ZT, Wang HS. Inhibition of ferroptosis by icariin treatment attenuates excessive ethanol consumption-induced atrial remodeling and susceptibility to atrial fibrillation, role of SIRT1. Apoptosis 2023; 28:607-626. [PMID: 36708428 DOI: 10.1007/s10495-023-01814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Xue Dong
- The Third Outpatient Department, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, People's Republic of China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zong-Tao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
116
|
Pterostilbene Confers Protection against Diquat-Induced Intestinal Damage with Potential Regulation of Redox Status and Ferroptosis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8258354. [PMID: 36733420 PMCID: PMC9889155 DOI: 10.1155/2023/8258354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress causes damage to macromolecules, including proteins, DNA, and lipid, and has been recognized as a crucial driver of the onset and progression of several intestinal disorders. Pterostilbene, one of the natural antioxidants, has attracted considerable attention owing to its multiple biological activities. In the present study, we established an oxidative stress model in broiler chickens via injection with diquat to investigate whether pterostilbene could attenuate diquat-induced intestinal damage and reveal the underlying mechanisms. We found that diquat-induced decreases in the activities of superoxide dismutase and glutathione peroxidase and the level of reduced glutathione and the increase in hydrogen peroxide content in plasma and jejunum were significantly alleviated by pterostilbene (P < 0.05). Pterostilbene supplementation also decreased intestinal permeability and jejunal apoptosis rate, improved jejunal villus height and the ratio of villus height to crypt depth, and promoted the transcription and translation of jejunal tight junction proteins occludin and zona occludens 1 in diquat-challenged broilers (P < 0.05). Furthermore, pterostilbene reversed diquat-induced mitochondrial injury in the jejunum, as indicated by the decreased reactive oxygen species level and elevated activities of superoxide dismutase 2 and mitochondrial respiratory complexes (P < 0.05). Importantly, administering pterostilbene maintained iron homeostasis, inhibited lipid peroxidation, and regulated the expression of the markers of ferroptosis in the jejunum of diquat-exposed broilers (P < 0.05). The nuclear factor erythroid 2-related factor 2 signaling pathway in the jejunum of diquat-exposed broilers was also activated by pterostilbene (P < 0.05). In conclusion, our study provides evidence that pterostilbene alleviates diquat-induced intestinal mucosa injury and barrier dysfunction by strengthening antioxidant capacity and regulating ferroptosis of broiler chickens.
Collapse
|
117
|
Wang L, Jayawardena TU, Hyun J, Wang K, Fu X, Xu J, Gao X, Park Y, Jeon YJ. Antioxidant and anti-photoaging effects of a fucoidan isolated from Turbinaria ornata. Int J Biol Macromol 2023; 225:1021-1027. [PMID: 36410533 DOI: 10.1016/j.ijbiomac.2022.11.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Fucoidans isolated from brown seaweeds are potential ingredients in the cosmetic industry. In our preosvious study, a fucoidan was isolated from the brown seaweed Turbinaria ornata (TO-F10) and the anti-inflammatory effect of TO-F10 was evaluated. In order to further explore the potential of TO-F10 in cosmetics, in the present study, antioxidant and photoprotective effects of TO-F10 were investigated. TO-F10 remarkably protected Vero cells against AAPH-stimulated cell death by reducing apoptosis via scavenging intracellular reactive oxygen species (ROS). In addition, TO-F10 increased the survival rate of AAPH-treated zebrafish by suppressing oxidative stress displayed in reducing the levels of ROS, cell death, and lipid peroxidation. Furthermore, TO-F10 effectively attenuated UVB-induced in vitro and in vivo photodamage. TO-F10 increased the viability of UVB-irradiated human keratinocytes via suppressing apoptosis by reducing the intracellular ROS level. Besides, TO-F10 effectively attenuated in vivo photodamage stimulated by UVB irradiation via inhibiting oxidative stress and inflammatory response in zebrafish. These results demonstrate that TO-F10 possesses in vitro and in vivo antioxidant and photoprotective effects, and suggest TO-F10 is a potential ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Youngjin Park
- Department of Family Medicine, Dong-A University Hospital, Daesingongwon-ro, Busan 49201, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
118
|
Role of Ferroptosis in Regulating the Epithelial-Mesenchymal Transition in Pulmonary Fibrosis. Biomedicines 2023; 11:biomedicines11010163. [PMID: 36672671 PMCID: PMC9856078 DOI: 10.3390/biomedicines11010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis involves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to repeated injury experience persistent inflammation and sustained epithelial-mesenchymal transition (EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial cells. Studies have demonstrated that iron steady states and oxidation steady states play an important role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulating EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of this disease.
Collapse
|
119
|
Zhang JQ, Li YY, Zhang XY, Tian ZH, Liu C, Wang ST, Zhang FR. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14:1085605. [PMID: 36926022 PMCID: PMC10011622 DOI: 10.3389/fendo.2023.1085605] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/β-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.
Collapse
Affiliation(s)
- Jun-Qing Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Yan Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zeng-Hui Tian
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Tao Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fa-Rong Zhang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Fa-Rong Zhang,
| |
Collapse
|
120
|
Ebrahim A, Alfwuaires MA, Abukhalil MH, Alasmari F, Ahmad F, Yao R, Luo Y, Huang Y. Schizosaccharomyces pombe Grx4, Fep1, and Php4: In silico analysis and expression response to different iron concentrations. Front Genet 2022; 13:1069068. [PMID: 36568394 PMCID: PMC9768344 DOI: 10.3389/fgene.2022.1069068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Due to iron's essential role in cellular metabolism, most organisms must maintain their homeostasis. In this regard, the fission yeast Schizosaccharomyces pombe (sp) uses two transcription factors to regulate intracellular iron levels: spFep1 under iron-rich conditions and spPhp4 under iron-deficient conditions, which are controlled by spGrx4. However, bioinformatics analysis to understand the role of the spGrx4/spFep1/spPhp4 axis in maintaining iron homeostasis in S. pombe is still lacking. Our study aimed to perform bioinformatics analysis on S. pombe proteins and their sequence homologs in Aspergillus flavus (af), Saccharomyces cerevisiae (sc), and Homo sapiens (hs) to understand the role of spGrx4, spFep1, and spPhp4 in maintaining iron homeostasis. The three genes' expression patterns were also examined at various iron concentrations. A multiple sequence alignment analysis of spGrx4 and its sequence homologs revealed a conserved cysteine residue in each PF00085 domain. Blast results showed that hsGLRX3 is most similar to spGrx4. In addition, spFep1 is most closely related in sequence to scDal80, whereas scHap4 is most similar to spFep1. We also found two highly conserved motifs in spFep1 and its sequence homologs that are significant for iron transport systems because they contain residues involved in iron homeostasis. The scHap4 is most similar to spPhp4. Using STRING to analyze protein-protein interactions, we found that spGrx4 interacts strongly with spPhp4 and spFep1. Furthermore, spGrx4, spPhp4, and spFep1 interact with spPhp2, spPhp3, and spPhp5, indicating that the three proteins play cooperative roles in iron homeostasis. At the highest level of Fe, spgrx4 had the highest expression, followed by spfep1, while spphp4 had the lowest expression; a contrast occurred at the lowest level of Fe, where spgrx4 expression remained constant. Our findings support the notion that organisms develop diverse strategies to maintain iron homeostasis.
Collapse
Affiliation(s)
- Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan,Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Ying Huang,
| |
Collapse
|
121
|
Han YK, Xu YC, Luo Z, Zhao T, Zheng H, Tan XY. Fish Meal Replacement by Mixed Plant Protein in the Diets for Juvenile Yellow Catfish Pelteobagrus fulvidraco: Effects on Growth Performance and Health Status. AQUACULTURE NUTRITION 2022; 2022:2677885. [PMID: 36860441 PMCID: PMC9973144 DOI: 10.1155/2022/2677885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/18/2023]
Abstract
Increasing dietary replacement levels of fish meal by alternative plant proteins are of value for aquaculture. Here, a 10-week feeding experiment was undertaken to explore the effects of fish meal replacement by mixed plant protein (at a 2 : 3 ratio of cottonseed meal to rapeseed meal) on growth performance, oxidative and inflammatory responses, and mTOR pathway of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (2.38 ± 0.1 g, mean ± SEM) were randomly divided into 15 indoors fiberglass tanks, 30 fish each tank, and fed five isonitrogenous (44% crude protein) and isolipidic (9% crude fat) diets with fish meal replaced by mixed plant protein at 0% (the control), 10% (RM10), 20% (RM20), 30% (RM30), and 40% (RM40), respectively. Among five groups, fish fed the control, and RM10 diets tended to have higher growth performance, higher protein content, and lower lipid content in livers. Dietary mixed plant protein substitute increased hepatic free gossypol content and damaged liver histology and reduced the serum total essential amino acids, total nonessential amino acids, and total amino acid contents. Yellow catfish fed the control, and RM10 diets tended to have higher antioxidant capacity. Dietary mixed plant protein replacement tended to promote proinflammatory responses and inhibited mTOR pathway. Based on the second regression analysis of SGR against mixed plant protein substitutes, the optimal replacement level of fish meal by mixed plant protein was 8.7%.
Collapse
Affiliation(s)
- Ya-Kang Han
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
122
|
Han P, Wang X, Zhou T, Cheng J, Wang C, Sun F, Zhao X. Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic Biol Med 2022; 193:421-429. [PMID: 36309297 DOI: 10.1016/j.freeradbiomed.2022.10.314] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) expression in sperm decreases in some oligospermia patients. However, the mechanism of reduced Nrf2 expression in sperm of oligospermia men is not elucidated. In the present study, our clinical trial results showed that Nrf2 and glutathione peroxidase 4 (GPX4) protein expressions in sperm of oligospermia men significantly decreased than those of healthy men. In animal experiments, mice were randomly divided into 3 groups: wild type (WT), Nrf2 knockout (Nrf2-/-) and Nrf2-/- + ferroptosis inhibitor (Fer-1) groups. Fer-1 was intraperitoneally injected in Nrf2-/- mice for 4 weeks. The results showed that male Nrf2-/- mice displayed decreased sperm concentration and motility, and significantly lower fertility. Compared with WT mice, malondialdehyde (MDA) content and prostaglandin-endoperoxide synthase 2 (Ptgs2) mRNA expression increased, but nicotinamide adenine dinucleotide phosphate oxidase (NADPH) content decreased in the testes of Nrf2-/- mice, which were biomarkers of ferroptosis. Furthermore, treatment with Fer-1 in Nrf2-/- mice reversed the decreased sperm concentration and motility. Meanwhile, histology showed that spermatogenic cells obviously decreased, and vacuolization formed in the testes of Nrf2-/- mice, which were reversed by Fer-1 treatment. Additionally, compared with WT mice, GPX4, solute carrier family 7 member 11 (SLC7A11), glutamate-cysteine ligase, catalytic subunit (Gclc), glutamate-cysteine ligase, modifier subunit (Gclm) and ferroportin 1 (FPN1) mRNA and protein expressions significantly decreased, but transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) mRNA and protein expressions increased in testicular tissues in Nrf2-/- mice. After treatment with Fer-1, only Gclc and Gclm mRNA and protein expressions increased. Taken together, our data suggested that deletion of Nrf2 leads to downregulation of GPX4 and regulation of other ferroptosis-related genes, resulting in ferroptosis occurrence in spermatogenic cells and ultimately oligospermia.
Collapse
Affiliation(s)
- Ping Han
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tianqiu Zhou
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu Province, China
| |
Collapse
|
123
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
124
|
Mitochondrial event as an ultimate step in ferroptosis. Cell Death Dis 2022; 8:414. [PMID: 36209144 PMCID: PMC9547870 DOI: 10.1038/s41420-022-01199-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
In ferroptosis, the roles of mitochondria have been controversial. To explore the role of mitochondrial events in ferroptosis, we employed mitochondrial DNA-depleted ρ0 cells that are resistant to cell death due to enhanced expression of antioxidant enzymes. Expression of mitochondrial-type GPx4 (mGPx4) but no other forms of GPx4 was increased in SK-Hep1 ρ0 cells. Likely due to high mGPx4 expression, SK-Hep1 ρ0 cells were resistant to ferroptosis by erastin inhibiting xCT channel. In contrast, SK-Hep1 ρ0 cells were susceptible to cell death by a high concentration of RSL3 imposing ferroptosis by GPx4 inhibition. Accumulation of cellular ROS and oxidized lipids was observed in erastin- or RSL3-treated SK-Hep1 ρ+ cells but not in erastin-treated SK-Hep1 ρ0 cells. Mitochondrial ROS and mitochondrial peroxidized lipids accumulated in SK-Hep1 ρ+ cells not only by RSL3 but also by erastin acting on xCT on the plasma membrane. Mitochondrial ROS quenching inhibited SK-Hep1 ρ+ cell death by erastin or a high dose of RSL3, suggesting a critical role of mitochondrial ROS in ferroptosis. Ferroptosis by erastin or RSL3 was inhibited by a more than 20-fold lower concentration of MitoQ, a mitochondrial ROS quencher, compared to DecylQ, a non-targeting counterpart. Ferroptosis of SK-Hep1 ρ+ cells by erastin or RSL3 was markedly inhibited by a VDAC inhibitor, accompanied by significantly reduced accumulation of mitochondria ROS, total peroxidized lipids, and mitochondrial peroxidized lipids, strongly supporting the role of mitochondrial events in ferroptotic death and that of VDAC in mitochondrial steps of ferroptosis induced by erastin or RSL3. SK-Hep1 ρ+ cell ferroptosis by sorafenib was also suppressed by mitochondrial ROS quenchers, accompanied by abrogation of sorafenib-induced mitochondrial ROS and mitochondrial peroxidized lipid accumulation. These results suggest that SK-Hep1 ρ0 cells are resistant to ferroptosis due to upregulation of mGPx4 expression and mitochondrial events could be the ultimate step in determining final cell fate.
Collapse
|
125
|
A Carabrane-Type Sesquiterpenolide Carabrone from Carpesium cernuum Inhibits SW1990 Pancreatic Cancer Cells by Inducing Ferroptosis. Molecules 2022; 27:molecules27185841. [PMID: 36144577 PMCID: PMC9503519 DOI: 10.3390/molecules27185841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has an extremely poor prognosis, and the clinical drugs for the treatment of pancreatic cancer are usually multi-drug combinations. Therefore, it is necessary to search for and find specific new bioactive agents against pancreatic cancer. Carabrone is a carabrane-type sesquiterpenolide extracted from Carpesium cernuum L., and this natural compound has been reported to be a potential anti-tumor agent. However, there are few reports on the function of carabrone related to anti-tumor activity in pancreatic cancer. Herein, cell experiments indicated that carabrone had anti-proliferation inhibition and anti-migration and anti-invasion activity against SW1990 cells. Furthermore, the tandem mass spectrometry and network pharmacology analysis showed that this activity may be related to the ferroptosis and Hippo signaling pathway. Taken together, our results demonstrated that carabrone exhibited prominent anti-pancreatic cancer activity and could be a promising agent against pancreatic cancer.
Collapse
|
126
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
127
|
Song CC, Pantopoulos K, Chen GH, Zhong CC, Zhao T, Zhang DG, Luo Z. Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1α-PPARγ pathway. Cell Mol Life Sci 2022; 79:394. [PMID: 35786773 PMCID: PMC11072531 DOI: 10.1007/s00018-022-04423-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
Iron is an essential micro-element, involved in multiple biological activities in vertebrates. Excess iron accumulation has been identified as an important mediator of lipid deposition. However, the underlying mechanisms remain unknown. In the present study, we found that a high-iron diet significantly increased intestinal iron content and upregulated the mRNA expression of two iron transporters (zip14 and fpn1). Intestinal iron overload increased lipogenesis, reduced lipolysis and promoted oxidative stress and mitochondrial dysfunction. Iron-induced lipid accumulation was mediated by hypoxia-inducible factor-1 α (HIF1α), which was induced in response to mitochondrial oxidative stress following inhibition of prolyl hydroxylase 2 (PHD2). Mechanistically, iron promoted lipid deposition by enhancing the DNA binding capacity of HIF1α to the pparγ and fas promoters. Our results provide experimental evidence that oxidative stress, mitochondrial dysfunction and the HIF1α-PPARγ pathway are critical mediators of iron-induced lipid deposition.
Collapse
Affiliation(s)
- Chang-Chun Song
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Guang-Hui Chen
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chong-Chao Zhong
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
128
|
Xiao R, Wei Y, Zhang Y, Xu F, Ma C, Gong Q, Gao J, Xu Y. Trilobatin, a Naturally Occurring Food Additive, Ameliorates Exhaustive Exercise-Induced Fatigue in Mice: Involvement of Nrf2/ARE/Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:913367. [PMID: 35814232 PMCID: PMC9263197 DOI: 10.3389/fphar.2022.913367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.
Collapse
Affiliation(s)
- Ran Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yueping Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yingshu Xu,
| |
Collapse
|