101
|
Song Y, Shen L, Zhang L, Li J, Chen M. Study of a hydrodynamic threshold system for controlling dinoflagellate blooms in reservoirs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116822. [PMID: 33677223 DOI: 10.1016/j.envpol.2021.116822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Hydrodynamic conditions often affect the eutrophication process and play a key role in algal growth in reservoirs. A promising approach for controlling algal blooms in reservoirs is to create adverse hydrodynamic conditions by implementing reservoir operation strategies. However, research on this method is still nascent and does not support practical applications due to the lack of quantitative hydrodynamic thresholds. In this paper, field observations of algal growth from April 2015 to August 2016 were conducted, and a three-dimensional (3D) model that couples hydrodynamics and water temperatures for the Zipingpu Reservoir was established. Low flow velocities (V) and low Reynolds numbers (Re) in the Longchi tributary are favorable for dinoflagellate growth and accumulation, which can explain why dinoflagellate blooms are more likely to occur in the tributary. A temperature of 18-22 °C is considered a precondition for Peridiniopsis penardii blooms, suggesting that freshwater dinoflagellate species may prefer lower temperatures than marine dinoflagellate species. Shallow mixing layer depth (Zmix) is conducive to Peridiniopsis penardii gathering in the upper water layers and promotes growth. The shallow euphotic layer depth (Zeu) was speculated to promote the dominance of this species by stimulating its heterotrophy and inhibiting other algal autotrophy. Furthermore, a boundary line analysis was introduced to characterize the relationships between algal biomass and hydrodynamic indicators. Thus, the thresholds for V, Re, and Zmix/Zeu were determined to be 0.034 m s-1, 6.7 × 104, and 1.7, respectively. Either accelerating horizontal flow to exceed the thresholds of V and Re or facilitating vertical mixing to exceed the threshold of Zmix/Zeu can prevent dinoflagellate blooms. Therefore, the summarized hydrodynamic threshold system is suggested to be an effective standard for controlling dinoflagellate blooms in the reservoir. Moreover, this study can provide a useful reference for understanding the mechanism of freshwater dinoflagellate blooms.
Collapse
Affiliation(s)
- Yang Song
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China; Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lian Shen
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Linglei Zhang
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China.
| | - Jia Li
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
102
|
Smucker NJ, Beaulieu JJ, Nietch CT, Young JL. Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs. GLOBAL CHANGE BIOLOGY 2021; 27:2507-2519. [PMID: 33774887 PMCID: PMC8168688 DOI: 10.1111/gcb.15618] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 05/06/2023]
Abstract
Cyanobacterial blooms are expected to intensify and become more widespread with climate change and sustained nutrient pollution, subsequently increasing threats to lentic ecosystems, water quality, and human health. However, little is known about their rates of change because long-term monitoring data are rare, except for some well-studied individual lakes, which typically are large and broadly dispersed geographically. Using monitoring data spanning 1987-2018 for 20 temperate reservoirs located in the USA, we found that cyanobacteria cell densities mostly posed low-to-moderate human health risks until 2003-2005, after which cell densities rapidly increased. Increases were greatest in reservoirs with extensive agriculture in their watersheds, but even those with mostly forested watersheds experienced increases. Since 2009, cell densities posing high human health risks have become frequent with 75% of yearly observations exceeding 100,000 cells ml-1 , including 53% of observations from reservoirs with mostly forested watersheds. These increases coincided with progressively earlier and longer summer warming of surface waters, evidence of earlier onset of stratification, lengthening durations of deep-water hypoxia, and warming deep waters in non-stratifying reservoirs. Among years, higher cell densities in stratifying reservoirs were associated with greater summer precipitation, warmer June surface water temperatures, and higher total Kjeldahl nitrogen concentrations. These trends are evidence that expected increases in cyanobacterial blooms already are occurring as changing climate conditions in some regions increasingly favor their proliferation. Consequently, their negative effects on ecosystems, human health, and socioeconomic wellbeing could increase and expand if warming trends and nutrient pollution continue.
Collapse
Affiliation(s)
- Nathan J. Smucker
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA, 45268
| | - Jake J. Beaulieu
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA, 45268
| | - Christopher T. Nietch
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA, 45268
| | - Jade L. Young
- United States Army Corps of Engineers, Louisville District Water Quality, Louisville, KY, USA, 40202
| |
Collapse
|
103
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
104
|
Li Y, Shang J, Zhang C, Zhang W, Niu L, Wang L, Zhang H. The role of freshwater eutrophication in greenhouse gas emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144582. [PMID: 33736331 DOI: 10.1016/j.scitotenv.2020.144582] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Greenhouse gases (GHGs) have long received public attention because they affect the Earth's climate by producing the greenhouse effect. Freshwaters are an important source of GHGs, and the enhancement in their eutrophic status affects GHG emissions. Along with the increasing eutrophication of water bodies, the relevant quantitative and qualitative studies of the effects of freshwater eutrophication on GHG emissions have made substantial progress, particularly in the past 5 years. However, to our knowledge, this is the first critical review to focus on the role of freshwater eutrophication in GHG emissions. In this review, the emissions of common GHGs from freshwater are quantitatively described. Importantly, direct (i.e., dissolved oxygen, organic carbon, and nutrients) and indirect factors (i.e., dominant primary producer and algal blooms) affecting GHG emissions from eutrophic freshwater are systematically analyzed. In particular, the existence and significance of feedback loops between freshwater eutrophication and GHG emissions are emphasized considering the difficulties managing freshwater ecosystems and the Earth's climate. Finally, several future research directions as well as mitigation measures are described to provide useful insight into the dynamics and control of GHG emissions.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
105
|
Rashidi H, Baulch H, Gill A, Bharadwaj L, Bradford L. Monitoring, Managing, and Communicating Risk of Harmful Algal Blooms (HABs) in Recreational Resources across Canada. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211014401. [PMID: 34017178 PMCID: PMC8114296 DOI: 10.1177/11786302211014401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/11/2021] [Indexed: 05/31/2023]
Abstract
Globally, harmful algal blooms (HABs) are on the rise, as is evidence of their toxicity. The impacts associated with blooms, however, vary across Nation states, as do the strategies and protocols to assess, monitor, and manage their occurrence. In Canada, water quality guidelines are standardized nationally, but the management strategies for HABs are not. Here, we explore current strategies to understand how to better communicate risks associated with HABs to the public. Our team conducted an environmental scan on provincial and territorial government agency protocols around HABs. Results suggest that there are variations in the monitoring, managing, and communicating of risk to the public: British Columbia, Manitoba, New Brunswick, and Quebec have well-established inter-agency protocols, and most provinces report following federal guidelines for water quality. Notably, 3 northern territories have no HABs monitoring or management protocols in place. More populous provinces use a variety of information venues (websites, social media, on site postings, and radio) to communicate risks associated with HABs, whereas others' communications are limited. To induce more collaboration on HABs monitoring and management and reduce the associated risks, creating a coherent system with consistent messaging and inter-agency communication is suggested.
Collapse
Affiliation(s)
- Hamidreza Rashidi
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Helen Baulch
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Arshdeep Gill
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lalita Bharadwaj
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lori Bradford
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
106
|
Song Y, Qi J, Deng L, Bai Y, Liu H, Qu J. Selection of water source for water transfer based on algal growth potential to prevent algal blooms. J Environ Sci (China) 2021; 103:246-254. [PMID: 33743906 DOI: 10.1016/j.jes.2020.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Water transfer is becoming a popular method for solving the problems of water quality deterioration and water level drawdown in lakes. However, the principle of choosing water sources for water transfer projects has mainly been based on the effects on water quality, which neglects the influence in the variation of phytoplankton community and the risk of algal blooms. In this study, algal growth potential (AGP) test was applied to predict changes in the phytoplankton community caused by water transfer projects. The feasibility of proposed water transfer sources (Baqing River and Jinsha River) was assessed through the changes in both water quality and phytoplankton community in Chenghai Lake, Southwest China. The results showed that the concentration of total nitrogen (TN) and total phosphorus (TP) in Chenghai Lake could be decreased to 0.52 mg/L and 0.02 mg/L respectively with the simulated water transfer source of Jinsha River. The algal cell density could be reduced by 60%, and the phytoplankton community would become relatively stable with the Jinsha River water transfer project, and the dominant species of Anabaena cylindrica evolved into Anabaenopsis arnoldii due to the species competition. However, the risk of algal blooms would be increased after the Baqing River water transfer project even with the improved water quality. Algae gained faster proliferation with the same dominant species in water transfer source. Therefore, water transfer projects should be assessed from not only the variation of water quality but also the risk of algal blooms.
Collapse
Affiliation(s)
- Yongjun Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Le Deng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
107
|
Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS One 2021; 16:e0246505. [PMID: 33735193 PMCID: PMC7971500 DOI: 10.1371/journal.pone.0246505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Nutrient losses from sloping farmland in karst areas lead to the decline in land productivity and nonpoint source pollution. A specially tailored steel channel with an adjustable slope and underground hole fissures was used to simulate the microenvironment of the "dual structure" of the surface and underground of sloping farmland in a karst area. The artificial rainfall simulation method was used to explore the surface and underground runoff characteristics and nutrient losses from sloping farmland under different rainfall intensities. The effect of rainfall intensity on the nutrient loss of farmland on karst sloping land was clarified. The results showed that the surface was the main route of runoff and nutrient loss during the rainy season on sloping farmland in karst areas. The influence of rainfall intensity on the nutrients in surface runoff was more substantial than that on underground runoff nutrients. Nutrient loss was more likely to occur underground than on the surface. The losses of total nitrogen, total phosphorus, and total potassium in surface and underground runoff initially increased and then gradually stabilized with the extension of rainfall duration and increased with increasing rainfall intensity and the amount of nutrient runoff. The output of nutrients through surface runoff accounted for a high proportion of the total, and underground runoff was responsible for a low proportion. Although the amount of nutrients output by underground runoff was small, it could directly cause groundwater pollution. The research results provide a theoretical reference for controlling land source pollution from sloping farming in karst areas.
Collapse
|
108
|
Physiological Responses of the Copepods Acartia tonsa and Eurytemora carolleeae to Changes in the Nitrogen:Phosphorus Quality of Their Food. NITROGEN 2021. [DOI: 10.3390/nitrogen2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two contrasting estuarine copepods, Acartia tonsa and Eurytemora carolleeae, the former a broadcast spawner and the latter a brood spawner, were fed a constant carbon-based diatom diet, but which had a variable N:P content, and the elemental composition (C, N, P) of tissue and eggs, as well as changes in the rates of grazing, excretion, egg production and viability were measured. To achieve the varied diet, the diatom Thalassiosira pseudonana was grown in continuous culture at a constant growth rate with varying P supply. Both copepods altered their chemical composition in response to the varied prey, but to different degrees. Grazing (clearance) rates increased for A. tonsa but not for E. carolleeae as prey N:P increased. Variable NH4+ excretion rates were observed between copepod species, while excretion of PO43− declined as prey N:P increased. Egg production by E. carolleeae was highest when eating high N:P prey, while that of A. tonsa showed the opposite pattern. Egg viability by A. tonsa was always greater than that of E. carolleeae. These results suggest that anthropogenically changing nutrient loads may affect the nutritional quality of food for copepods, in turn affecting their elemental stoichiometry and their reproductive success, having implications for food webs.
Collapse
|
109
|
Zhang H, Huo S, Xiao Z, He Z, Yang J, Yeager KM, Li X, Wu F. Climate and Nutrient-Driven Regime Shifts of Cyanobacterial Communities in Low-Latitude Plateau Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3408-3418. [PMID: 33587626 DOI: 10.1021/acs.est.0c05234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms that form in response to climate warming and nutrient enrichment in freshwater lakes have become a global environmental challenge. Historical legacy effects and the mechanisms underlying cyanobacterial community succession are not well understood, especially for plateau lakes that are important global freshwater resources. This study investigated the temporal dynamics of cyanobacterial communities over centuries in response to nutrient enrichment and climate warming in low-latitude plateau lakes using high-throughput DNA sequencing of sedimentary DNA combined with traditional paleolimnological analyses. Our results confirmed that nutrients and climate warming drive shifts in cyanobacterial communities over time. Cyanobacterial community turnover was pronounced with regime shifts toward new ecological states, occurring after exceeding a tipping point of aquatic total phosphorus (TP). The inferred species interactions, niche differentiation, and identity of keystone taxa significantly changed after crossing the aquatic TP ecological threshold, as demonstrated by network analysis of cyanobacterial taxa. Further, the contribution of aquatic TP to cyanobacterial community dynamics was greater than that of air temperature when lakes were in an oligotrophic state. In contrast, as the aquatic TP threshold was exceeded, the contribution to community dynamics by air temperature increased and potentially surpassed that of aquatic TP. Overall, these results provide new evidence for how past nutrient levels in lacustrine ecosystems influence contemporary cyanobacterial community responses to global warming in low-latitude plateau lakes.
Collapse
Affiliation(s)
- Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100012, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100012, China
| | - Zhe Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhuoshi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kevin M Yeager
- Department Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xiaochuang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
110
|
Jia N, Wang Y, Guan Y, Chen Y, Li R, Yu G. Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116070. [PMID: 33223338 DOI: 10.1016/j.envpol.2020.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10-15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
Collapse
Affiliation(s)
- Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuying Guan
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325039, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
111
|
Douterelo I, Dutilh BE, Calero C, Rosales E, Martin K, Husband S. Impact of phosphate dosing on the microbial ecology of drinking water distribution systems: Fieldwork studies in chlorinated networks. WATER RESEARCH 2020; 187:116416. [PMID: 33039899 DOI: 10.1016/j.watres.2020.116416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Phosphate is routinely dosed to ensure regulatory compliance for lead in drinking water distribution systems. Little is known about the impact of the phosphate dose on the microbial ecology in these systems and in particular the endemic biofilms. Disturbance of the biofilms and embedded material in distribution can cause regulatory failures for turbidity and metals. To investigate the impact of phosphate on developing biofilms, pipe wall material from four independent pipe sections was mobilised and collected using two twin-flushing operations a year apart in a chlorinated UK network pre- and post-phosphate dosing. Intensive monitoring was undertaken, including turbidity and water physico-chemistry, traditional microbial culture-based indicators, and microbial community structure via sequencing the 16S rRNA gene for bacteria and the ITS2 gene for fungi. Whole metagenome sequencing was used to study shifts in functional characteristics following the addition of phosphate. As an operational consequence, turbidity responses from the phosphate-enriched water were increased, particularly from cast iron pipes. Differences in the taxonomic composition of both bacteria and fungi were also observed, emphasising a community shift towards microorganisms able to use or metabolise phosphate. Phosphate increased the relative abundance of bacteria such as Pseudomonas, Paenibacillus, Massilia, Acinetobacter and the fungi Cadophora, Rhizophagus and Eupenicillium. Whole metagenome sequencing showed with phosphate a favouring of sequences related to Gram-negative bacterium type cell wall function, virions and thylakoids, but a reduction in the number of sequences associated to vitamin binding, methanogenesis and toxin biosynthesis. With current faecal indicator tests only providing risk detection in bulk water samples, this work improves understanding of how network changes effect microbial ecology and highlights the potential for new approaches to inform future monitoring or control strategies to protect drinking water quality.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom.
| | - B E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Hugo R. Kruytgebouw, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - C Calero
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - E Rosales
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - K Martin
- Dwr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY, United Kingdom
| | - S Husband
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
112
|
Abstract
Eutrophication and global climate change gather advantageous conditions for cyanobacteria proliferation leading to bloom formation and cyanotoxin production. In the Azores, eutrophication is a major concern, mainly in lakes where fertilizers and organic matter discharges have increased nutrient concentration. In this study, we focused on understanding the influence of environmental factors and lake characteristics on (i) cyanobacteria diversity and biomass and (ii) the presence of toxic strains and microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin cyanotoxin-producing genes. Fifteen lakes from the Azores Archipelago were sampled seasonally, environmental variables were recorded in situ, cyanobacteria were analyzed with microscopic techniques, and cyanotoxin-producing genes were targeted through conventional PCR. Statistical analysis (DistLM) showed that lake typology-associated variables (lake’s depth, area, and altitude) were the most explanatory variables of cyanobacteria biomass and cyanotoxin-producing genes presence, although trophic variables (chlorophyll a and total phosphorus) influence species distribution in each lake type. Our main results revealed higher cyanobacteria biomass/diversity, and higher toxicity risk in lakes located at lower altitudes, associated with deep anthropogenic pressures and eutrophication scenarios. These results emphasize the need for cyanobacteria blooms control measures, mainly by decreasing anthropogenic pressures surrounding these lakes, thus decreasing eutrophication. We also highlight the potential for microcystin, saxitoxin, and anatoxin-a production in these lakes, hence the necessity to implement continuous mitigation protocols to avoid environmental and public health toxicity events.
Collapse
|
113
|
Lemley DA, Adams JB, Rishworth GM, Purdie DA. Harmful algal blooms of Heterosigma akashiwo and environmental features regulate Mesodinium cf. rubrum abundance in eutrophic conditions. HARMFUL ALGAE 2020; 100:101943. [PMID: 33298364 DOI: 10.1016/j.hal.2020.101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Functional drivers of phytoplankton that can potentially form harmful algal blooms (HABs) are important to understand given the increased prevalence of anthropogenic modification and pressure on coastal habitats. However, teasing these drivers apart from other influences is problematic in natural systems, while laboratory assessments often fail to replicate relevant natural conditions. One such potential bloom-forming species complex highlighted globally is Mesodinium cf. rubrum, a planktonic ciliate. This species occurs persistently in the Sundays Estuary in South Africa yet has never been observed to "bloom" (> 1,000 cell.ml-1). Modified by artificial nutrient-rich baseflow conditions, the Sundays Estuary provides a unique Southern Hemisphere case study to identify the autecological drivers of this ciliate due to artificial seasonally "controlled" abiotic environmental conditions. This study utilised a three-year monitoring dataset (899 samples) to assess the drivers of M. cf. rubrum using a generalised modelling approach. Key abiotic variables that influenced population abundance were season and salinity, with M. cf. rubrum populations peaking in summer and spring and preferring polyhaline salinity regions (>18) with pronounced water column salinity stratification, especially in warmer months. This was reflected in the diel vertical migration (DVM) behaviour of this species, demonstrating its ability to utilise the optimal daylight photosynthetic surface conditions and high-nutrient bottom waters at night. The only phytoplankton groups clearly associated with M. cf. rubrum were Raphidophyceae and Cryptophyceae. Although M. cf. rubrum reflects a niche overlap with the dominant HAB-forming phytoplankton in the estuary (the raphidophyte, Heterosigma akashiwo), its reduced competitive abilities restrict its abundance. In contrast, the mixotrophic foraging behaviour of M. cf. rubrum exerts a top-down control on cryptophyte prey abundance, yet, the limited availability of these prey resources (mean < 300 cells ml-1) seemingly inhibits the formation of red-water accumulations. Hydrodynamic variability is necessary to ensure that no single phytoplankton HAB-forming taxa outcompetes the rest. These results confirm aspects of the autecology of M. cf. rubrum related to salinity associations and DVM behaviour and contribute to a global understanding of managing HABs in estuaries.
Collapse
Affiliation(s)
- Daniel A Lemley
- Botany Department, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Janine B Adams
- Botany Department, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Gavin M Rishworth
- DSI/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth 6031, South Africa; Zoology Department, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Duncan A Purdie
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom.
| |
Collapse
|
114
|
Li M, Ni W, Zhang F, Glibert PM, Lin CHM. Climate-induced interannual variability and projected change of two harmful algal bloom taxa in Chesapeake Bay, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140947. [PMID: 32721680 DOI: 10.1016/j.scitotenv.2020.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Retrospective analysis of water quality monitoring data reveals strong interannual shifts in the spatial distribution of two harmful algal species (Prorocentrum minimum and Karlodinium veneficum) in eutrophic Chesapeake Bay. A habitat model, based on the temperature and salinity tolerance of the two species as well as their nutrient preferences, provides a good interpretation for the observed seasonal progression and spatial distribution of these taxa. It also points to climate-induced variability in the hydrological forcing as a mechanism driving the interannual shifts in the algal distributions: both P. minimum and K. veneficum shift downstream during wetter years but upstream during dry years. Climate downscaling simulations using the habitat model show upstream shifts of the two species in the estuary and longer blooming seasons by the mid-21st century. Salt intrusion due to sea level rise will raise salinity in the estuary and cause these HAB species to migrate upstream, but increasing winter-spring flows may also drive favorable salinity habitat downstream. Warming leads to longer growing seasons of P. minimum and K. veneficum but may suppress bloom habitat during their respective peak bloom periods.
Collapse
Affiliation(s)
- Ming Li
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, MD 21613, USA.
| | - Wenfei Ni
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, MD 21613, USA
| | - Fan Zhang
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, MD 21613, USA
| | - Patricia M Glibert
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, MD 21613, USA
| | - Chih-Hsien Michelle Lin
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, MD 21613, USA
| |
Collapse
|
115
|
Chang N, Luo L, Wang XC, Song J, Han J, Ao D. A novel index for assessing the water quality of urban landscape lakes based on water transparency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139351. [PMID: 32473444 DOI: 10.1016/j.scitotenv.2020.139351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Assessment of the aesthetic and recreational value of urban landscape lakes (ULLs) is often required but there has not been a water quality index specifically applicable for such a purpose. Under a consideration that water transparency in terms of Secchi Depth (SD), to a large extent, determines the landscape effect, a study was conducted to identify the major parameters that strongly influence SD and to develop a novel water quality index. By theoretical analyses, it was found that SD is mainly influenced by the contents of chlorophyll a, inorganic suspended solids and organic detritus in water, which collectively relate to eight independent water quality, hydraulic, and environmental parameters, including SS, DO, COD, NH4+-N, NO3--N, TP, HRT, and water temperature T. A composite index was then proposed in the form of WQIULL = ∏i=1nqiwi (n = 8). Using the data of field survey of 166 ULLs in China, the cumulative probability distribution curve of each sub-index qi was characterized. Sensitive analysis was conducted for the determination of the sub-index weight (wi) for each qi under the consideration of two typical scenarios of ULL replenishment by stream water (traditional source) and reclaimed water (alternative source) regarding the variation of parameter on SD. With all wi (i = 1 to 8) thus determined, WQIULL was calculated for each of the ULLs surveyed. All the calculated values of WQIULL showed a good correlative relationship with the SD values practically measured (R2 = 0.8948), indicating that the novel water quality index developed could effectively indicate the satisfactory degree of the lake water quality in terms of water landscape. Further by comparing the dimensionless WQIULL (ranging between 0 and 100) with the practically acceptable SD based on experiences in China, the method for classification of ULLs by WQIULL calculation was formulated.
Collapse
Affiliation(s)
- Nini Chang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an 710055, China; Shaanxi Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li Luo
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an 710055, China; Shaanxi Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an 710055, China; Shaanxi Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jia Song
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an 710055, China; Shaanxi Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxing Han
- Xianyang Academy of Planning and Design, Xianyang 712000, China
| | - Dong Ao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
116
|
Glibert PM. From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. BIOGEOCHEMISTRY 2020; 150:139-180. [PMID: 32836587 PMCID: PMC7416595 DOI: 10.1007/s10533-020-00691-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/22/2020] [Indexed: 05/19/2023]
Abstract
Nutrient pollution and greenhouse gas emissions related to crop agriculture and confined animal feeding operations (CAFOs) in the US have changed substantially in recent years, in amounts and forms. This review is intended to provide a broad view of how nutrient inputs-from fertilizer and CAFOs-as well as atmospheric NH3 and greenhouse gas emissions, are changing regionally within the US and how these changes compare with nutrient inputs from human wastewater. Use of commercial nitrogen (N) fertilizer in the US, which now exceeds 12,000,000 metric tonnes (MT) continues to increase, at a rate of 60,000 MT per year, while that of phosphorus (P) has remained nearly constant over the past decade at around 1,800,000 MT. The number of CAFOs in the US has increased nearly 10% since 2012, driven largely by a near 13% increase in hog production. The annualized inventory of cattle, dairy cows, hogs, broiler chickens and turkeys is approximately 8.7 billion, but CAFOs are highly regionally concentrated by animal sector. Country-wide, N applied by fertilizer is about threefold greater than manure N inputs, but for P these inputs are more comparable. Total manure inputs now exceed 4,000,000 MT as N and 1,400,000 MT as P. For both N and P, inputs and proportions vary widely by US region. The waste from hog and dairy operations is mainly held in open lagoons that contribute to NH3 and greenhouse gas (as CH4 and N2O) emissions. Emissions of NH3 from animal waste in 2019 were estimated at > 4,500,000 MT. Emissions of CH4 from manure management increased 66% from 1990 to 2017 (that from dairy increased 134%, cattle 9.6%, hogs 29% and poultry 3%), while those of N2O increased 34% over the same time period (dairy 15%, cattle 46%, hogs 58%, and poultry 14%). Waste from CAFOs contribute substantially to nutrient pollution when spread on fields, often at higher N and P application rates than those of commercial fertilizer. Managing the runoff associated with fertilizer use has improved with best management practices, but reducing the growing waste from CAFO operations is essential if eutrophication and its effects on fresh and marine waters-namely hypoxia and harmful algal blooms (HABs)-are to be reduced.
Collapse
Affiliation(s)
- Patricia M. Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, PO Box 775, Cambridge, MD 21613 USA
| |
Collapse
|
117
|
Forms of Nitrogen and Phosphorus in Suspended Solids: A Case Study of Lihu Lake, China. SUSTAINABILITY 2020. [DOI: 10.3390/su12125026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Suspended solids are an important part of lake ecosystems, and their nitrogen and phosphorus contents have a significant effect on water quality. However, information on nitrogen and phosphorus forms in suspended solids remains limited. Therefore, a case study was conducted in Lihu Lake (China), a lake with characteristically high amounts of suspended solids. Nitrogen and phosphorus speciation in suspended solids was analyzed through a sequential extraction method. We also evaluated the sources of various forms of nitrogen and phosphorus and their different effects on eutrophication. The total nitrogen (TN) content was 758.9–3098.1 mg/kg. Moreover, the proportions of various N forms in the suspended solids of the study areas were ranked as follows: Hydrolyzable nitrogen (HN) > residual nitrogen (RN) > exchangeable nitrogen (EN). Total phosphorus (TP) ranged from 294.8 to 1066.4 mg/kg, and 58.6% of this TP was inorganic phosphorus (IP). In turn, calcium (Ca)-bound inorganic phosphorus (Ca-Pi) was the main component of IP. The correlation between various nitrogen and phosphorus forms showed that there were different sources of suspended nitrogen and phosphorus throughout Lihu Lake. Correlation analysis of water quality indices and comparative analysis with surface sediments showed that in Lihu Lake, the dissolved nitrogen and phosphorus contents in water were influenced by sediment through diffusion, while particle phosphorus content in water was influenced by suspended solids through adsorption; however, due to the higher phosphorus contents in suspended solids, we should pay more attention to the impact of suspended solids.
Collapse
|
118
|
Díez-Quijada L, Medrano-Padial C, Llana-Ruiz-Cabello M, Cătunescu GM, Moyano R, Risalde MA, Cameán AM, Jos Á. Cylindrospermopsin-Microcystin-LR Combinations May Induce Genotoxic and Histopathological Damage in Rats. Toxins (Basel) 2020; 12:E348. [PMID: 32466519 PMCID: PMC7354441 DOI: 10.3390/toxins12060348] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Giorgiana M. Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain;
| | - Maria A. Risalde
- Animal Pathology Department. Faculty of Veterinary Medicine, University of Córdoba, Campus Universitario de Rabanales s/n, 14014 Cordoba, Spain;
- Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía de Córdoba-Universidad de Córdoba, Avenida Menendez Pidal s/n, 14006 Cordoba, Spain
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| |
Collapse
|
119
|
Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa. WATER 2020. [DOI: 10.3390/w12020407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Light is an important factor that affects cyanobacterial growth and changes in light can influence their growth and physiology. However, an information gap exists regarding light-induced oxidative stress and the species-specific behavior of cyanobacteria under various light levels. This study was conducted to evaluate the comparative effects of different light intensities on the growth and stress responses of two cyanobacteria species, Pseudanabaena galeata (strain NIES 512) and Microcystis aeruginosa (strain NIES 111), after periods of two and eight days. The cyanobacterial cultures were grown under the following different light intensities: 0, 10, 30, 50, 100, 300, and 600 μmol m−2 s−1. The optical density (OD730), chlorophyll a (Chl-a) content, protein content, H2O2 content, and the antioxidative enzyme activities of catalase (CAT) and peroxidase (POD) were measured separately in each cyanobacteria species. P. galeata was negatively affected by light intensities lower than 30 μmol m−2 s−1 and higher than 50 μmol m−2 s−1. A range of 30 to 50 μmol m−2 s−1 light was favorable for the growth of P. galeata, whereas M. aeruginosa had a higher tolerance for extreme light conditions. The favorable range for M. aeruginosa was 10 to 100 μmol m−2 s−1.
Collapse
|
120
|
Gobler CJ. Climate Change and Harmful Algal Blooms: Insights and perspective. HARMFUL ALGAE 2020; 91:101731. [PMID: 32057341 DOI: 10.1016/j.hal.2019.101731] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 05/26/2023]
Abstract
Climate change is transforming aquatic ecosystems. Coastal waters have experienced progressive warming, acidification, and deoxygenation that will intensify this century. At the same time, there is a scientific consensus that the public health, recreation, tourism, fishery, aquaculture, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past several decades. The extent to which climate change is intensifying these HABs is not fully clear, but there has been a wealth of research on this topic this century alone. Indeed, the United Nations' Intergovernmental Panel on Climate Change's (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) approved in September 2019 was the first IPCC report to directly link HABs to climate change. In the Summary for Policy Makers, the report made the following declarations with "high confidence": In addition, the report specifically outlines a series of linkages between heat waves and HABs. These statements about HABs and climate change and the high levels of confidence ascribed to them provides clear evidence that the field of HABs and climate change has matured and has, perhaps, reached a first plateau of certainty. While there are well-documented global trends in HABs being promoted by human activity, including climate change, individual events are driven by local, regional, and global drivers, making it critical to carefully evaluate the conditions and responses at appropriate scales. It is within this context that the first Special Issue on Climate Change and Harmful Algal Blooms is published in Harmful Algae.
Collapse
Affiliation(s)
- Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY, 11968, United States.
| |
Collapse
|
121
|
Xiao X, Agustí S, Pan Y, Yu Y, Li K, Wu J, Duarte CM. Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13031-13041. [PMID: 31609108 DOI: 10.1021/acs.est.9b03726] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Widespread coastal eutrophication is known to increase the prevalence of harmful algal blooms (HABs). Increased HABs have also been linked to climate change, with ocean warming predicted to lead to increased prevalence and earlier timing of HABs. Testing the predictions of warming to HABs is difficult due to the lack of long-term observations across spatial scales. Here, we use a 45 year (1970-2015) record of the occurrence and duration of HABs along Chinese coast to show that the HAB frequency has increased at a rate of 40 ± 4% decade-1, with earlier timing by 5.50 ± 1.78 days decade-1. The increasing frequency of blooms varied with latitude and is significantly correlated with warming at an average rate of 0.17 ± 0.03 °C decade-1, with the positive relationship being strongest in more eutrophic provinces. HAB frequency increased with elevated dissolved inorganic nutrient concentration, but this increase was amplified further with warming. Warming and eutrophication showed additive roles in triggering HABs. Swift action to mitigate eutrophication is essential to avoid a sharp increase in the HABs in coastal waters with further warming.
Collapse
Affiliation(s)
- Xi Xiao
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Yaoru Pan
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Yan Yu
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Ke Li
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Jiaping Wu
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|