101
|
Tang L, Long J, Li K, Zhang X, Chen X, Peng C. A novel chalcone derivative suppresses melanoma cell growth through targeting Fyn/Stat3 pathway. Cancer Cell Int 2020; 20:256. [PMID: 32565740 PMCID: PMC7302361 DOI: 10.1186/s12935-020-01336-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Fyn has been documented to have oncogenic features in multiple tumors, which might be a potential therapeutic target, however, few studies on the function role of Fyn and its specific inhibitors in melanoma. Methods We investigated the impacts of Fyn and its inhibitor Lj-1-60 on melanoma through bioinformatics analysis, western blot, cell viability, cell cycle and apoptosis and xenograft tumor model as well as immunohistochemical staining. Pull-down and in vitro kinase assay were used to demonstrate Lj-1-60 targeting Fyn. Transcriptome sequencing and RT-PCR were adopted to confirm the potential mechanisms of Lj-1-60 in melanoma. Results Our findings showed that Fyn was overexpressed in melanoma cells and knocked down of Fyn suppressed the proliferation of melanoma cells. To identify the potential inhibitors of Fyn, our in-house library including total of 111,277 chemicals was conducted to vitro screening, among those compounds, 83 inhibitors were further detected to explore the effect on melanoma cells growth and discovered a novel chalcone derivative Lj-1-60 that exhibited low cellular toxicity and high anti-tumor efficacy. Lj-1-60 directly was associated with Fyn and inhibited the Fyn kinase activity with Stat3 as substrate. What's more, Lj-1-60 suppressed the proliferation of melanoma in vitro and in vivo through inducing cell cycle arrest and apoptosis. Moreover, the activation of Stat3 had also been abrogated both in Lj-1-60 treated melanoma cells or Fyn knocked down cells. Conclusion Our study revealed a novel Fyn inhibitor that could significantly suppress melanoma growth, which is a promising potential inhibitor for melanoma treatment.
Collapse
Affiliation(s)
- Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jing Long
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Keke Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
102
|
Hashemi V, Ahmadi A, Malakotikhah F, Chaleshtari MG, Baghi Moornani M, Masjedi A, Sojoodi M, Atyabi F, Nikkhoo A, Rostami N, Baradaran B, Azizi G, Yousefi B, Ghalamfarsa G, Jadidi-Niaragh F. Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sci 2020; 249:117499. [PMID: 32142763 DOI: 10.1016/j.lfs.2020.117499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
AIMS Since several factors are involved in the tumorigenesis process, targeting only one factor most probably cannot overwhelm cancer progression. Therefore, it seems that combination therapy through targeting more than one cancer-related factor may lead to cancer control. The expression and function of p68 (DDX5; DEAD-Box Helicase 5) are dysregulated in various cancers. P68 is also a co-activator of many oncogenic transcription factors such as the signal transducer and activator of transcription-3 (STAT3), which contributes to cancer progression. This close connection between p68 and STAT3 plays an important role in the growth and development of cancer. MATERIALS AND METHODS We decided to suppress the p68/STAT3 axis in various cancer cells by using Polyethylene glycol-trimethyl Chitosan-Hyaluronic acid (PEG-TMC-HA) nanoparticles (NPs) loaded with siRNA molecules. We assessed the impact of this combination therapy on apoptosis, proliferation, angiogenesis, and tumor growth, both in vitro and in vivo. KEY FINDINGS The results showed that siRNA-loaded NPs notably suppressed the expression of p68/STAT3 axis in cancer cells, which was associated with blockade of tumor growth, colony formation, angiogenesis, and cancer cell migration. In addition to apoptosis induction, this combined therapy also reduced the expression of several tumor-promoting factors including Fibroblast growth factors (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), matrix metallopeptidases-2 (MMP-2), MMP-9, hypoxia-inducible factor-(HIF-1α), interleukin-6 (IL-6), IL-33, Bcl-x, vimentin, and snail. SIGNIFICANCE These findings indicate the potential of this nano-based anti-cancer therapeutic strategy for efficient cancer therapy which should be further investigated in future studies.
Collapse
Affiliation(s)
- Vida Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, AL 35899, USA
| | | | | | | | - Ali Masjedi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, USA
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran
| | - Afshin Nikkhoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Rostami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
103
|
Erchen Plus Huiyanzhuyu Decoction Inhibits the Growth of Laryngeal Carcinoma in a Mouse Model of Phlegm-Coagulation-Blood-Stasis Syndrome via the STAT3/Cyclin D1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2803496. [PMID: 32382281 PMCID: PMC7195639 DOI: 10.1155/2020/2803496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/05/2023]
Abstract
Erchen plus Huiyanzhuyu decoction (EHD), a Chinese herbal medicine (CHM) formula that consists of Erchen decoction and Huiyanzhuyu decoction, has achieved satisfactory results in the clinic. The main function of EHD is to remove phlegm and blood stasis, and EHD is suitable for phlegm-coagulation-blood-stasis (PCBS) syndrome in laryngeal cancer (LC). In this study, a xenograft mouse model of LC with PCBS syndrome was constructed by feeding a high-fat diet, swimming in ice water, and subcutaneously injecting epinephrine hydrochloride for 2 weeks. Based on the successful Chinese medicine syndrome model, Hep2-luciferase-GFP cells were injected subcutaneously under the armpit of the right upper limb in mice to form tumours. A mouse model of LC with PCBS syndrome was established via heterotopic transplantation. Then, the mice received intragastric administration of different concentrations of EHD daily, and cisplatin (DDP) was intraperitoneally injected every week for 21 days. Tumour fluorescence in mice was measured with a living animal imager on days 7, 14, 21, and 28 during treatment. The results of this experiment confirmed that a mouse model of Chinese medicine syndrome was successfully constructed. Moreover, EHD slowed the growth of xenograft tumours in nude mice; decreased the expression levels of STAT3, p-STAT3, and cyclin D1; and upregulated the expression level of P27. In brief, EHD inhibited laryngeal tumour growth in a xenograft mouse model of PCBS syndrome and regulated the STAT3/cyclin D1 signalling pathway. This study was the first to construct a Chinese medicine xenograft mouse model of LC with PCBS syndrome; in addition, this study clarified that EHD regulated the STAT3/cyclin D1 signalling pathway to inhibit the growth of LC and that EHD may be a promising novel therapeutic compound for the treatment of patients with LC.
Collapse
|
104
|
Shan Q, Li S, Cao Q, Yue C, Niu M, Chen X, Shi L, Li H, Gao S, Liang J, Yu R, Liu X. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:193-201. [PMID: 32392910 PMCID: PMC7193913 DOI: 10.4196/kjpp.2020.24.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Qianqian Shan
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shengsheng Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lin Shi
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Huan Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jun Liang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
105
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
106
|
Poofery J, Sripanidkulchai B, Banjerdpongchai R. Extracts of Bridelia ovata and Croton oblongifolius induce apoptosis in human MDA‑MB‑231 breast cancer cells via oxidative stress and mitochondrial pathways. Int J Oncol 2020; 56:969-985. [PMID: 32319560 DOI: 10.3892/ijo.2020.4973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common type of cancer and is also the second leading cause of cancer‑associated death in women worldwide. Thus, there is an urgent requirement for the development of effective treatments for this disease. Bridelia ovata and Croton oblongifolius are herbs used in Thai traditional medicine that have been used to treat various health problems; B. ovata has traditionally been used as a purgative, an antipyretic, a leukorrhea treatment and as a birth control herb. C. oblongifolius has been used to increase breast milk production, for post‑partum care (where it is used as a hot bath herb), and as a treatment for flat worms and dysmenorrhea. However, there is little research investigating the anticancer properties of these herbs. The present study aimed to investigate the anticancer properties of crude ethyl acetate extracts of B. ovata (BEA) and C. oblongifolius (CEA) in order to explore their underlying mechanisms in breast cancer cell death. The phytoconstituents of the crude extracts of BEA and CEA were studied using gas chromatography‑mass spectrometry (GC‑MS). GC‑MS analysis showed that the primary compound in BEA is friedelan‑3‑one, and kaur‑16‑en‑18‑oic acid in CEA. Cytotoxicity was investigated using an MTT assay, both BEA and CEA showed greater toxicity against MDA‑MB‑231 breast cancer cells compared with their effect on MCF10A normal epithelial mammary cells. BEA and CEA exerted various effects, including inducing apoptotic cell death, reducing mitochondrial transmembrane potential, increasing the levels of intracellular ROS, activating caspases, upregulating pro‑apoptotic and downregulating anti‑apoptotic genes and proteins. BEA and CEA were shown to have anticancer activity against breast cancer cells and induce apoptosis in these cells via a mitochondrial pathway and oxidative stress.
Collapse
Affiliation(s)
- Juthathip Poofery
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
107
|
Li S, Li Q, Lü J, Zhao Q, Li D, Shen L, Wang Z, Liu J, Xie D, Cho WC, Xu S, Yu Z. Targeted Inhibition of miR-221/222 Promotes Cell Sensitivity to Cisplatin in Triple-Negative Breast Cancer MDA-MB-231 Cells. Front Genet 2020; 10:1278. [PMID: 32010177 PMCID: PMC6971202 DOI: 10.3389/fgene.2019.01278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin has been widely used in the treatment of a various types of cancers including triple-negative breast cancer (TNBC) by damaging DNA and inducing apoptosis. However, its anti-cancer effects are often limited due to chemo-resistance, which is one of the main reasons causing cancer relapse and metastasis. To overcome resistance, cisplatin is often used in combination with other drugs or molecules. Our study found that the targeted inhibition of miR-221/222 in MDA-MB-231 cells promoted cisplatin-induced cell apoptosis, and increased the cell sensitivity to cisplatin in vitro. Much higher expression levels of miR-221/222 were detected in the cisplatin-resistant MDA-MB-231 cells and in cisplatin-resistant breast cancer patients. The combination chemotherapy of cisplatin with anti-miR-221/222 showed much higher efficiency in suppressing tumor growth in the mice transplanted with MDA-MB-231 cells. In addition, anti-miR-221 and anti-miR-222 showed synergetic effects on improving sensitivity to cisplatin in MDA-MB-231 cells. Suppression of SOCS1-STAT3-Bcl-2 pathway and activation of p53-Pten signaling both contribute to anti-miR-221/222-induced sensitivity to cisplatin in MDA-MB-231 cells. These findings suggest the potential of a novel approach for the combination chemotherapy of cisplatin with small non-coding RNA in treatment of human TNBC.
Collapse
Affiliation(s)
- Shujun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Maternal and Children Health Management, The Third Hospital of BaoGang Group, Baotou, China
| | - Qun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Shen
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjun Liu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongping Xie
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
108
|
Khan AQ, Ahmed EI, Elareer N, Fathima H, Prabhu KS, Siveen KS, Kulinski M, Azizi F, Dermime S, Ahmad A, Steinhoff M, Uddin S. Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21020438. [PMID: 31936675 PMCID: PMC7014270 DOI: 10.3390/ijms21020438] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The constitutive activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signal transduction is well elucidated in STAT3-mediated oncogenesis related to thyroid cancer and is considered to be a plausible therapeutic target. Hence, we investigated whether curcumin, a natural compound, can target the JAK/STAT3 signaling pathway to induce cytotoxic effects in papillary thyroid cancer (PTC) cell lines (BCPAP and TPC-1) and derived thyroid cancer stem-like cells (thyrospheres). Curcumin suppressed PTC cell survival in a dose-dependent manner via the induction of caspase-mediated apoptosis and caused the attenuation of constitutively active STAT3 (the dephosphorylation of Tyr705-STAT3) without affecting STAT3. Gene silencing with STAT3-specific siRNA showed the modulation of genes associated with cell growth and proliferation. The cotreatment of PTC cell lines with curcumin and cisplatin synergistically potentiated cytotoxic effects via the suppression of JAK/STAT3 activity along with the inhibition of antiapoptotic genes and the induction of proapoptotic genes, and it also suppressed the migration of PTC cells by downregulating matrix metalloproteinases and the inhibition of colony formation. Finally, thyrospheres treated with curcumin and cisplatin showed suppressed STAT3 phosphorylation, a reduced formation of thyrospheres, and the downregulated expression of stemness markers, in addition to apoptosis. The current study's findings suggest that curcumin synergistically enhances the anticancer activity of cisplatin in PTC cells as well as in cancer stem-like cells by targeting STAT3, which suggests that curcumin combined with chemotherapeutic agents may provide better therapeutic outcomes.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Noor Elareer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Said Dermime
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Correspondence: (A.A.); (S.U.); Tel.: +1-24-8982-2566 (A.A.); +974-4025-3220 (S.U.)
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
- Correspondence: (A.A.); (S.U.); Tel.: +1-24-8982-2566 (A.A.); +974-4025-3220 (S.U.)
| |
Collapse
|
109
|
MiR-20a-5p suppressed TGF-β1-triggered apoptosis of human bronchial epithelial BEAS-2B cells by targeting STAT3. Mol Cell Probes 2019; 50:101499. [PMID: 31883454 DOI: 10.1016/j.mcp.2019.101499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/07/2022]
Abstract
Apoptosis of bronchial epithelial cells contributes to lung diseases, including asthma. Although miR-20a-5p is reportedly downregulated in the bronchial epithelia of asthmatic patients, its function and mechanism still need to be explored. Here, we explored how miR-20a-5p affects human bronchial epithelial cells stimulated with transforming growth factor (TGF)-β1. Using qRT-PCR, we observed downregulated miR-20a-5p levels in these cells. After transfecting miR-20a-5p mimics or inhibitors into human bronchial epithelium BEAS-2B cells, a Cell Counting Kit-8 assay and flow cytometry analysis showed that the mimics mitigated suppression of cell viability and acceleration of apoptosis that was triggered by TGF-β1, whereas the inhibitors exerted the opposite effects. TGF-β1 induced a decrease in expression of Bcl-2 and an increase in expression of Bax, both of which were inhibited by miR-20a-5p mimics and further enhanced by miR-20a-5p inhibitors. Further study verified that miR-20a-5p targeted the signal transducer and activator of transcription 3 (STAT3) and the STAT3 level was inversely related to the miR-20a-5p level. Furthermore, STAT3 overexpression partly counteracted the miR-20a-5p-induced anti-apoptotic effect in TGF-β1-treated BEAS-2B cells. In summary, this study suggested that miR-20a-5p restrained apoptosis in TGF-β1-stimulated BEAS-2B cells by targeting STAT3. MiR-20a-5p thus may be a novel therapeutic target for asthma treatment.
Collapse
|
110
|
Hong JY, Chung KS, Shin JS, Lee JH, Gil HS, Lee HH, Choi E, Choi JH, Hassan AH, Lee YS, Lee KT. The Anti-Proliferative Activity of the Hybrid TMS-TMF-4f Compound Against Human Cervical Cancer Involves Apoptosis Mediated by STAT3 Inactivation. Cancers (Basel) 2019; 11:cancers11121927. [PMID: 31816985 PMCID: PMC6966466 DOI: 10.3390/cancers11121927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4H-chromen-2-yl)-N-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staining revealed that TMS-TMF-4f-induced cytotoxicity was caused by the induction of apoptosis in both HeLa and CaSki cervical cancer cells. The compound TMS-TMF-4f enhanced the activation of caspase-3, caspase-8, and caspase-9 and regulated Bcl-2 family proteins, which led to mitochondrial membrane potential (MMP) loss and resulted in the release of cytochrome c and Smac/DIABLO into the cytosol. Also, TMS-TMF-4f suppressed both constitutive and IL-6-inducible levels of phosphorylated STAT3 (p-STAT3) and associated proteins such as Mcl-1, cyclin D1, survivin, and c-Myc in both cervical cancer cells. STAT-3 overexpression completely ameliorated TMS-TMF-4f-induced apoptotic cell death and PARP cleavage. Docking analysis revealed that TMS-TMF-4f could bind to unphosphorylated STAT3 and inhibit its interconversion to the activated form. Notably, intraperitoneal administration of TMS-TMF-4f (5, 10, or 20 mg/kg) decreased tumor growth in a xenograft cervical cancer mouse model, demonstrated by the increase in TUNEL staining and PARP cleavage and the reduction in p-STAT3, Mcl-1, cyclin D1, survivin, and c-Myc expression levels in tumor tissues. Taken together, our results suggest that TMS-TMF-4f may potentially inhibit human cervical tumor growth through the induction of apoptosis via STAT3 suppression.
Collapse
Affiliation(s)
- Joo Young Hong
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Hyo-Sun Gil
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Eunwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Ahmed H.E. Hassan
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
111
|
Shan H, Yao S, Ye Y, Yu Q. 3-Deoxy-2β,16-dihydroxynagilactone E, a natural compound from Podocarpus nagi, preferentially inhibits JAK2/STAT3 signaling by allosterically interacting with the regulatory domain of JAK2 and induces apoptosis of cancer cells. Acta Pharmacol Sin 2019; 40:1578-1586. [PMID: 31201357 PMCID: PMC7471446 DOI: 10.1038/s41401-019-0254-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, especially the JAK2/STAT3 pathway, play vital roles in the development of many malignancies. Overactivation of STAT3 promotes cancer cell survival and proliferation. Therefore, the JAK2/STAT3-signaling pathway has been considered a promising target for cancer therapy. In this study, we identified a natural compound 3-deoxy-2β,16-dihydroxynagilactone E (B6) from the traditional Chinese medicinal plant Podocarpus nagi as a potent inhibitor of STAT3 signaling. B6 preferentially inhibited the phosphorylation of STAT3 by interacting with and inactivating JAK2, the main upstream kinase of STAT3. B6 dose-dependently inhibited IL-6-induced STAT3 signaling with an IC50 of 0.2 μM. In contrast to other JAK2 inhibitors, B6 did not interact with the catalytic domain but instead with the FERM-SH2 domain of JAK2. This interaction was JAK-specific since B6 had little effect on other tyrosine kinases. Furthermore, B6 potently inhibited the growth and induced apoptosis of MDA-MB-231 and MDA-MB-468 breast cancer cells with overactivated STAT3. Taken together, our study uncovers a novel compound and a novel mechanism for the regulation of JAK2 and offers a new therapeutic approach for the treatment of cancers with overactivated JAK2/STAT3.
Collapse
|
112
|
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019; 11:cancers11121826. [PMID: 31756933 PMCID: PMC6966464 DOI: 10.3390/cancers11121826] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) family contains four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3 and Her4/ErbB4) and 13 secreted polypeptide ligands. EGFRs are overexpressed in many solid tumors, including breast, pancreas, head-and-neck, prostate, ovarian, renal, colon, and non-small-cell lung cancer. Such overexpression produces strong stimulation of downstream signaling pathways, which induce cell growth, cell differentiation, cell cycle progression, angiogenesis, cell motility and blocking of apoptosis.The high expression and/or functional activation of EGFRs correlates with the pathogenesis and progression of several cancers, which make them attractive targets for both diagnosis and therapy. Several approaches have been developed to target these receptors and/or the EGFR modulated effects in cancer cells. Most approaches include the development of anti-EGFRs antibodies and/or small-molecule EGFR inhibitors. This review presents the state-of-the-art and future prospects of targeting EGFRs to treat breast cancer.
Collapse
Affiliation(s)
- Amaia Eleonora Maennling
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, 6229 MD Maastricht, The Netherlands
| | - Marcus Niebert
- Department of Molecular Cytology and Functional Genomics, Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Torsten Klockenbring
- Department of Biological Sensing and Detection, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-64199930570
| |
Collapse
|
113
|
Liu C, Wang K, Zhuang J, Gao C, Li H, Liu L, Feng F, Zhou C, Yao K, Deng L, Wang L, Li J, Sun C. The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method. Front Pharmacol 2019; 10:1171. [PMID: 31680955 PMCID: PMC6802460 DOI: 10.3389/fphar.2019.01171] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 09/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Studies have shown that the natural products of Astragalus membranaceus (AM) can effectively interfere with a variety of cancers, but their mechanism of action on breast cancer remains unclear. Triple-negative breast cancer (TNBC) is associated with a severely poor prognosis due to its invasive phenotype and lack of biomarker-driven-targeted therapies. In this study, the potential mechanism of the target composition acting on TNBC was explored by integrated pharmacological models and in vitro experiments. Materials and Methods: Based on the Gene Expression Omnibus (GEO) database and the relational database of Traditional Chinese Medicines (TCMs), the drug and target components were initially screened to construct a common network module, and multiattribute analysis was then used to characterize the network and obtain key drug-target information. Furthermore, network topology analysis was used to characterize the betweenness and closeness of key hubs in the network. Molecular docking was used to evaluate the affinity between compounds and targets and obtain accurate combination models. Finally, in vitro experiments verified the key component targets. The cell counting kit-8 (CCK-8) assay, invasion assay, and flow cytometric analysis were used to assess cell viability, invasiveness, and apoptosis, respectively, after Astragalus polysaccharides (APS) intervention. We also performed western blot analysis of key proteins to probe the mechanisms of correlated signaling pathways. Results: We constructed “compound-target” (339 nodes and 695 edges) and “compound-disease” (414 nodes and 6458 edges) networks using interaction data. Topology analysis and molecular docking were used as secondary screens to identify key hubs of the network. Finally, the key component APS and biomarkers PIK3CG, AKT, and BCL2 were identified. The in vitro experimental results confirmed that APS can effectively inhibit TNBC cell activity, reduce invasion, promote apoptosis, and then counteract TNBC symptoms in a dose-dependent manner, most likely by inhibiting the PIK3CG/AKT/BCL2 pathway. Conclusion: This study provides a rational approach to discovering compounds with a polypharmacology-based therapeutic value. Our data established that APS intervenes with TNBC cell invasion, proliferation, and apoptosis via the PIK3CG/AKT/BCL2 pathway and could thus offer a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Zhuang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Kang Yao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Laijun Deng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Lu Wang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Jia Li
- College of Basic Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Basic Medical Science, Qingdao University, Qingdao, China.,Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
114
|
Xanthones from the Bark of Garcinia xanthochymus and the Mechanism of Induced Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells via the Mitochondrial Pathway. Int J Mol Sci 2019; 20:ijms20194803. [PMID: 31569691 PMCID: PMC6801373 DOI: 10.3390/ijms20194803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Xanthones are important chemical constituents of Garcinia xanthochymus and varied bioactivities including cytotoxicity. However, their anti-tumor mechanism has remained unknown. Here, we isolated and identified a new xanthone named garciniaxanthone I (1) and five known compounds from the bark of G. xanthochymus. Their structures were elucidated by NMR analysis and HRESIMS. The anti-proliferation activities of all isolated compounds were evaluated on four human tumor cell lines (HepG2, A549, SGC7901, MCF-7). The results demonstrated that the anti-proliferation activity of xanthone was related to the number and location of prenyl groups. We further found that garciniaxanthone I (GXI) could induce HepG2 apoptosis and enhance the expression of cleaved caspase-8, caspase-9, and caspase-3. GXI could also increase Bax level and concurrently reduce the overexpression of Bcl-2, Bcl-XL, Mcl-1, and surviving in HepG2 cells. Moreover, GXI could inhibit cell migration of HepG2 cells by inhibiting the expressions of MMP-7 and MMP-9. In summary, our study suggests that GXI could induce HepG2 apoptosis via the mitochondrial pathway and might become a lead compound for liver cancer treatment.
Collapse
|
115
|
Han Y, Liao Q, Wang H, Rao S, Yi P, Tang L, Tian Y, Oyang L, Wang H, Shi Y, Zhou Y. High expression of calreticulin indicates poor prognosis and modulates cell migration and invasion via activating Stat3 in nasopharyngeal carcinoma. J Cancer 2019; 10:5460-5468. [PMID: 31632490 PMCID: PMC6775705 DOI: 10.7150/jca.35362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Emerging evidence suggests that calreticulin (CALR) has great impacts on the tumor formation and progression of various cancers, but the role of CALR remains controversial. We investigated the expression and clinical significance of CALR in nasopharyngeal carcinoma (NPC). Methods: Immunohistochemistry was used to detect the expression of CALR in NPC tissues, and the correlation of CALR with clinicopathological characteristics and prognosis were analyzed. The cell functions of CALR in NPC cells were also performed in vitro. Results: Compared with non-tumor nasopharyngeal epithelium (NPE) tissues, CALR expression was markedly up-regulated in NPC tissues (P < 0.001), and the high expression of CALR was positively associated with advanced clinical stage (P=0.003) and metastasis (P=0.023). Compared to the patients with low expression of CALR, patients who displayed high expression of CALR may achieve a poorer progression-free survival (PFS) and overall survival (OS) (P < 0.001). Furthermore, multivariate analysis showed that high expression of CALR was an independent predictor of poor prognosis. In addition, we found that knockdown of CALR significantly inhibited the proliferation, migration and invasion of CNE2 and HONE1 cells in vitro, and the mechanism might be associated with inactivation of Stat3 signaling pathway. Conclusion: CALR may promote NPC progression and metastasis via involving Stat3 signaling pathway, and can be regarded as an effective potential predictor for progression and prognosis of NPC.
Collapse
Affiliation(s)
- Yaqian Han
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Pin Yi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Linda Oyang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
116
|
Carboxypeptidase A4 promotes cell growth via activating STAT3 and ERK signaling pathways and predicts a poor prognosis in colorectal cancer. Int J Biol Macromol 2019; 138:125-134. [PMID: 31279884 DOI: 10.1016/j.ijbiomac.2019.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
Carboxypeptidase A4 (CPA4) is a novel cancer-related gene that is aberrantly expressed in various malignant tumors. However, the roles and mechanisms of CPA4 have not been explored in colorectal cancer (CRC). In this study, we investigated the functions and mechanisms by which CPA4 promotes CRC progression. Quantitative real-time PCR (qRT-PCR) and western blot showed that CPA4 mRNA and CPA4 protein levels were up-regulated in CRC compared to levels in adjacent normal tissue. Immunohistochemistry (IHC) results indicating high CPA4 levels were positively associated with poor prognoses. In addition, Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays demonstrated that CPA4 overexpression facilitated the growth of CRC cells, whereas CPA4 knockdown resulted in decreased proliferation, G1/S phase transition arrest, and apoptosis. Subcutaneous tumorigenesis was performed in nude mice to confirm the tumor-promoting effects of CPA4 in vivo. Western blot revealed that activation of the STAT3 and ERK pathways is one of the oncogenic functions of CPA4 in CRC. Accordingly, CPA4 promotes CRC cell growth via activating the STAT3 and ERK pathways and may be a prognostic factor or therapeutic target for CRC.
Collapse
|
117
|
Lin F, Wu D, Fang D, Chen Y, Zhou H, Ou C. STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo. Inflamm Res 2019; 68:739-749. [PMID: 31218443 DOI: 10.1007/s00011-019-01257-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/01/2019] [Accepted: 05/30/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to investigate the roles of SMYD3 and STAT3 in chronic lymphocytic leukemia (CLL) and the possible underlying mechanisms. MATERIALS Blood samples were collected from 20 patients with CLL and 20 hematologically normal donors. Human cell lines K562, HL-60, MEG-1, and BALL-1 were performed in vitro and BALB/c nude mouse was used in subcutaneous tumor experiments. TREATMENT WP1066 (30 mg/kg) was also injected intratumorally two days after the first lentivirus treatment and then every four days for a total of four injections and 3 µM WP1066 was carried out for 48 h to downregulate STAT3 phosphorylation. METHODS We performed studies using the human CLL cell line MEG-1 in vitro and nude mouse subcutaneous tumor experiments in vivo. Differential expression of RNAs was determined using qRT-PCR. The CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. Flow cytometry was performed to assess cell apoptosis. The relative protein levels were detected using western blotting. Chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays and WP1066, a STAT3 inhibitor, were used to explore the regulatory mechanisms of proteases and transcription factors. A subcutaneous tumor model was constructed to verify the results in vivo. RESULTS SMYD3 and STAT3 expressions positively correlated with the progression of CLL. Upregulation of SMYD3 significantly promoted the proliferation and inhibited the expression of apoptosis-related genes. The results of the ChIP assays and luciferase reporter assays suggested that STAT3 targeted the promoter region of SMYD3 and, thus, promoted SMYD3 transcription. Downregulation of the phosphorylation of STAT3 by WP1066 notably inhibited the binding of STAT3 to the SMYD3 promoter, and subsequently downregulated SMYD3 transcription. The STAT3 inhibitor inhibited CLL cell growth in vivo, and overexpression of SMYD3 promoted CLL cell growth. Furthermore, overexpression of SMYD3 reversed the inhibitory effects of the STAT3 inhibitor on CLL cell growth. CONCLUSIONS The STAT3-mediated transcription of SMYD3 plays a role in promoting the progression of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Fujia Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Danjuan Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yao Chen
- Department of Hematology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Haitao Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Caiwen Ou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
118
|
Anti-cancer Activity of Boswellia Carterii Extract Alters the Stress Functional Gene Expression in the Pancreatic Cancer Cell. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3210-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
119
|
Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cell Signal 2019; 58:111-118. [DOI: 10.1016/j.cellsig.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
|
120
|
Cui H, Han W, Zhang J, Zhang Z, Su X. Advances in the Regulatory Effects of Bioactive Peptides on Metabolic Signaling Pathways in Tumor Cells. J Cancer 2019; 10:2425-2433. [PMID: 31258747 PMCID: PMC6584345 DOI: 10.7150/jca.31359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Changes in cell metabolism are an important feature of tumors that has always been an intense topic of study, particularly in regard to whether metabolic disorders are a cause or an effect of tumorigenesis. Studies have shown that the processes underlying metabolic changes in tumors involve the activation of protooncogenes and the inactivation of cancer suppressor genes, as well as changes in metabolic flux in cells due to the abnormal activation of signaling pathways that modulate metabolic enzymes and/or metabolic regulatory proteins at several levels, including transfer and posttranslational modification. Thus, the repair of abnormal metabolic pathways via intervention in the relevant tumor metabolic pathways that impact specific targets has become a new method of cancer prevention and treatment. Bioactive peptides, which have many biological functions, could specifically target malignant tumors. Their interaction with signal transduction molecules involved in the development and transference of tumors could regulate the relevant cell metabolic pathways and inhibit the development of tumors and/or accelerate apoptosis in tumor cells. In this review, several aspects of tumor suppression using bioactive peptides will be discussed and summarized, including the regulation of the PI3K/AKT/mTOR, AMPK, and STST3 signaling pathways, the modulation of the TRAIL death receptor signaling pathway, the regulation of aerobic glycolysis by PKM2, and the modulation of the NF-кB signaling pathway, to aid in the search for better and more specific antineoplastic drugs in the form of bioactive peptides.
Collapse
Affiliation(s)
- Hongwei Cui
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Wenyan Han
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Junyao Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Zhihui Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| |
Collapse
|
121
|
Boichuck M, Zorea J, Elkabets M, Wolfson M, Fraifeld VE. c-Met as a new marker of cellular senescence. Aging (Albany NY) 2019; 11:2889-2897. [PMID: 31085799 PMCID: PMC6535066 DOI: 10.18632/aging.101961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 05/09/2023]
Abstract
Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could contribute through its downstream targets or partners to at least two major phenotypical features of CS - resistance to apoptosis and senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Maria Boichuck
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
122
|
Wang JR, Shen GN, Luo YH, Piao XJ, Zhang Y, Wang H, Li JQ, Xu WT, Zhang Y, Wang SN, Zhang T, Xue H, Cao LK, Jin CH. 2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells. J Chemother 2019; 31:214-226. [PMID: 31074342 DOI: 10.1080/1120009x.2019.1610832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.
Collapse
Affiliation(s)
- Jia-Ru Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Gui-Nan Shen
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Ying-Hua Luo
- b College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Xian-Ji Piao
- c Department of Gynaecology and Obstetrics , The Fifth Affiliated Hospital of Harbin Medical University , Daqing , China
| | - Yi Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hao Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Jin-Qian Li
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Wan-Ting Xu
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Yu Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Shi-Nong Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Tong Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hui Xue
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Long-Kui Cao
- d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Cheng-Hao Jin
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China.,d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| |
Collapse
|
123
|
Zhu M. Inhibitory effects of bortezomib in a subcutaneous tumor model of H22 mouse hepatocarcinoma cells. Pathol Res Pract 2019; 215:152388. [PMID: 30914235 DOI: 10.1016/j.prp.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the inhibition effects and mechanism of bortezomib in a subcutaneous H22 mouse hepatocarcinoma model. METHODS A subcutaneous xenograft model was constructed by subcutaneous injection of H22 cells in mice. The xenograft mice was randomly divided into bortezomib and control groups (n = 8 each). The bortezomib group was injected with 0.5 mg/kg bortezomib in saline via tail vein once every four days for a total of 4 times. The control group was intravenously given an equal volume of saline. The tumor size was measured every four days. At day 19, subcutaneous xenografts were obtained and the expression of apoptosis-related proteins in tumor was detected by immunochemical staining. RESULTS The tumor volume of H22 xenografts in bortezomib group was significantly smaller than that in control group on day 19 (p = 0.004). The tumor volume/mouse weight ratio in bortezomib group was significantly lower compared with control group on day 13, 16 and 19 (all p < 0.05). The bortezomib group exhibited significantly higher expression of pro-apoptotic protein TNF-α (p = 0.032), and lower expression of anti-apoptotic protein XIAP, Stat3, and Survivin (p = 0.024, 0.016, and 0.039, respectively). CONCLUSION Bortezomib effectively inhibited the growth of H22 xenografts without affecting the mouse weight. The anti-tumor effects of bortezomib is associated with its stimulation on tumor cell apoptosis.
Collapse
Affiliation(s)
- Mingao Zhu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
124
|
Tan ZB, Fan HJ, Wu YT, Xie LP, Bi YM, Xu HL, Chen HM, Li J, Liu B, Zhou YC. Rheum palmatum extract exerts anti-hepatocellular carcinoma effects by inhibiting signal transducer and activator of transcription 3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:62-72. [PMID: 30553869 DOI: 10.1016/j.jep.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is among the most common malignancies. Signal transducer and activator of transcription 3 (STAT3), with abnormal expression and constitutive activation, has been reported to promote proliferation, metastasis, survival and angiogenesis of HCC cells. Rheum palmatum (RP), a traditional Chinese medicinal herb, exhibited tumor-suppressing effects in multiple human cancers, but its potential functions in HCC remain unexplored. AIM OF THE STUDY This study aimed to examine the involvement of STAT3 signaling in the anti-HCC effects of RP extract. MATERIALS AND METHODS SMMC-7721 and HepG2 HCC cell lines were treated with RP extract for 24 h, and then viability, migration, and invasion of HCC cells and angiogenesis of human umbilical vein endothelial cells (HUVECs) were analyzed using MTS, wound-healing, Transwell invasion and tube formation assays, respectively. Western blotting and immunohistochemistry (IHC) were used to examine the activation of key molecules in STAT3 signaling, including STAT3, JAK2, and Src. Additionally, we explored the in vivo antitumor effects of RP extract in a xenograft tumor nude mouse model of HCC. RESULTS The result showed that RP extract reduced viability, migration, and invasion of SMMC-7721 and HepG2 cells and angiogenesis of HUVECs. It suppressed the phosphorylation of STAT3 and its upstream kinases including JAK2 and Src. In addition, RP extract treatment downregulated STAT3 target genes, including survivin, Bcl-xL, Mcl-1, Bcl-2, MMP-2, MMP-9, Cyclin D1, CDK4, c-Myc, and VEGF-C. Furthermore, RP extract suppressed the xenograft tumor growth and activation of STAT3 in xenograft tumor mice. CONCLUSION Collectively, the results showed that RP extract prevented HCC progression by inhibiting STAT3, and might be useful for the treatment of HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Survival/drug effects
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/physiology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Rheum
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Zhang-Bin Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Jie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ling-Peng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yi-Ming Bi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hong-Lin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hong-Mei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
125
|
Cheng H, Hao Y, Gao Y, He Y, Luo C, Sun W, Yuan M, Wu X. PLCε promotes urinary bladder cancer cells proliferation through STAT3/LDHA pathway‑mediated glycolysis. Oncol Rep 2019; 41:2844-2854. [PMID: 30864733 PMCID: PMC6448096 DOI: 10.3892/or.2019.7056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Phospholipase Cε (PLCε) and anaerobic glycolysis were determined to be involved in the development of human urinary bladder cancer (UBC), but the mechanisms remain unclear. In the present study, 64 bladder cancer specimens and 42 adjacent tissue specimens were obtained from 64 patients, and immunochemistry indicated that PLCε and lactate dehydrogenase (LDHA) are overexpressed in UBC. PLCε and LDHA were demonstrated to be positively correlated at transcription levels, indicating that one of these two genes may be regulated by another. To elucidate the mechanisms, PLCε was knocked down in T24 cells by short hairpin RNA, and then signal transducer and activator of transcription 3 (STAT3) phosphorylation and LDHA were determined to be downregulated, which indicated that PLCε may serve roles upstream of LDHA through STAT3 to regulate glycolysis in UBC. Furthermore, chromatin immunoprecipitation and luciferase reporter assays were performed to confirm that STAT3 could bind to the promoter of the LDHA gene to enhance its expression. A xenograft tumor mouse model also demonstrated similar results as the in vitro experiments, further confirming the role of PLCε in regulating bladder cell growth in vivo. Collectively, the present study demonstrated that PLCε may regulate glycolysis through the STAT3/LDHA pathway to take part in the development of human UBC.
Collapse
Affiliation(s)
- Honglin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yingying Gao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yunfeng He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
126
|
Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 2019; 16:331-345. [DOI: 10.1080/17425247.2019.1587408] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Pharmacology and Toxicology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khosro Adibkia
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
127
|
Li C, Wang Y, Zhang H, Li M, Zhu Z, Xue Y. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized gold nanoparticles using Cardiospermum halicacabum on AGS gastric carcinoma cells. Int J Nanomedicine 2019; 14:951-962. [PMID: 30787609 PMCID: PMC6368113 DOI: 10.2147/ijn.s193064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Gastric cancer is the fourth most common cancer and second leading cause of cancer death worldwide. Cardiospermum halicacabum is used to treat nerve disorders, stiffness, rheumatism, ear ache, snake bite, and so on. Methods In this study, the reaction parameters were optimized to control the size of the nanoparticle, which was confirmed by transmission electron microscopy. Various characterization techniques such as selected area diffraction pattern, UV-visible spectroscopy, energy-dispersive X-ray analysis, dynamic light scattering, Fourier-transform infrared spectroscopy, and atomic force microscopy were employed to analyze the synthesized AuNPs obtained from C. halicacabum (CH-AuNP) against gastric carcinoma cell line. Results The cytotoxic effect of CH-AuNP against AGS, SNU-5, and SNU-16 cell lines was detected by MTT assay. The induction of apoptosis by CH-AuNP in AGS was analyzed by double staining technique using TUNEL and DAPI staining assays. Further to confirm the molecular mechanism exhibited by CH-AuNP to induce apoptosis, the intracellular ROS level was assessed and immunoblotting was performed to assess the apoptotic signaling molecules that often deregulated in cancerous condition. Conclusion The results clearly prove that CH-AuNP increases ROS and induces apoptosis in AGS, suggesting that CH-AuNP may be an effective anticancer drug with no side effects to treat gastric cancer.
Collapse
Affiliation(s)
- Chunfeng Li
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China,
| | - Yimin Wang
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China,
| | - Hongfeng Zhang
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China,
| | - Man Li
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Ziyu Zhu
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China,
| | - Yingwei Xue
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China,
| |
Collapse
|
128
|
Saik OV, Demenkov PS, Ivanisenko TV, Bragina EY, Freidin MB, Dosenko VE, Zolotareva OI, Choynzonov EL, Hofestaedt R, Ivanisenko VA. Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature. J Integr Bioinform 2018; 15:/j/jib.2018.15.issue-4/jib-2018-0054/jib-2018-0054.xml. [PMID: 30864351 PMCID: PMC6348743 DOI: 10.1515/jib-2018-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes.
Collapse
Affiliation(s)
- Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey V Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Victor E Dosenko
- Bogomoletz Institute of Physiology, National Academy of Science, Kiev, Ukraine
| | - Olga I Zolotareva
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes", Bielefeld, Germany
| | - Evgeniy L Choynzonov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ralf Hofestaedt
- Bielefeld University, Technical Faculty, AG Bioinformatics and Medical Informatics, Bielefeld, Germany
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
129
|
Li J, Ma X, Liu C, Li H, Zhuang J, Gao C, Zhou C, Liu L, Wang K, Sun C. Exploring the Mechanism of Danshen against Myelofibrosis by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8363295. [PMID: 30622613 PMCID: PMC6304517 DOI: 10.1155/2018/8363295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Danshen (Salvia miltiorrhiza Bunge), a natural powerful drug for various conditions treatment, has traditionally been used in Asian countries for centuries as anticancer agent, anti-inflammatory agent, and antioxidant. More recently, it is explored in combination with other herbs for skeletal diseases therapy; bone-targeting compounds with pharmacological activities have been isolated from various sources of traditional Chinese medicine (TCM), including Danshen. In this case, some evidence supports that Danshen may treat myelofibrosis (MF) by exerting its antitumor effect. To study the specific mechanism of Danshen in the treatment of MF, we used bioinformatics databases to determine its active ingredients. Then, identification of target proteins related to MF was made using a network pharmacology analysis platform. In our results, 20 key active compounds and 457 key targets of Danshen were identified. In-depth network analysis of the top diseases, functions, and pathways suggested that a common underlying mechanism linked Danshen involvement with MF. Finally, 5 potential targets were confirmed by the analysis; these 5 targets, as well as 20 previously identified compounds, were subjected to molecular docking experiments. The results indicated that cryptotanshinone of Danshen may affect MF by acting on the key genes in the JAK-STAT signalling pathway and the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| |
Collapse
|
130
|
Fathi N, Ahmadian E, Shahi S, Roshangar L, Khan H, Kouhsoltani M, Maleki Dizaj S, Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 2018; 109:391-401. [PMID: 30399574 DOI: 10.1016/j.biopha.2018.10.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral cancer is known as one of the most common cancers, with a poor prognosis, related to delayed clinical diagnosis, either due to the lack of particular biomarkers related to the disease or costly therapeutic alternatives. Vitamin D executes its functions by interacting with the vitamin D receptor (VDR), both in healthy and diseased individuals, including oral cancer. This review discusses the role of vitamin D and VDR on tumorigenesis, emphasizing on oral cancer. Furthermore, regulation of VDR expression, mechanisms of anticancer effects of calcitriol, oral cancer chemoresistance and its relation with VDR and polymorphisms of VDR gene will be discussed. The manuscript is prepared mainly using the information collected from PubMed and MEDLINE.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan university, Mardan, 23200, Pakistan
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
131
|
Wang L, Wang Q, Gao M, Fu L, Li Y, Quan H, Lou L. STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer. Cancer Sci 2018; 109:3305-3315. [PMID: 30076657 PMCID: PMC6172075 DOI: 10.1111/cas.13761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
Trastuzumab‐emtansine (T‐DM1) is an antibody‐drug conjugate that has been approved for the treatment of human epidermal growth factor receptor 2 (HER2)‐positive metastatic breast cancer. Despite the remarkable efficacy of T‐DM1 in many patients, resistance to this therapeutic has emerged as a significant clinical problem. In the current study, we used BT‐474/KR cells, a T‐DM1‐resistant cell line established from HER2‐positive BT‐474 breast cancer cells, as a model to investigate mechanisms of T‐DM1 resistance and explore effective therapeutic regimens. We show here for the first time that activation of signal transducer and activator of transcription 3 (STAT3) mediated by leukemia inhibitory factor receptor (LIFR) overexpression confers resistance to T‐DM1. Moreover, secreted factors induced by activated STAT3 in resistant cells limit the responsiveness of cells that were originally sensitive to T‐DM1. Importantly, STAT3 inhibition sensitizes resistant cells to T‐DM1, both in vitro and in vivo, suggesting that the combination T‐DM1 with STAT3‐targeted therapy is a potential treatment for T‐DM1‐refractory patients.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Quanren Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhao Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|