101
|
Meyer PWA, Ally MMTM, Tikly M, Tintinger G, Winchow LL, Steel H, Anderson R. Tobacco-Derived Lipopolysaccharide, Not Microbial Translocation, as a Potential Contributor to the Pathogenesis of Rheumatoid Arthritis. Mediators Inflamm 2019; 2019:4693870. [PMID: 31780859 PMCID: PMC6874965 DOI: 10.1155/2019/4693870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial lipopolysaccharides (LPS) have been implicated in the pathogenesis of rheumatoid arthritis (RA), possibly driving a systemic inflammatory response that may trigger the development and/or exacerbation of the disease. To explore the existence of this mechanism in African RA patients, we have measured systemic levels of LPS and its surrogate, LPS-binding protein (LBP), as well as those of intestinal fatty acid-binding protein (I-FABP), pulmonary surfactant protein D (SP-D), and cotinine in serum to identify possible origins of LPS, as well as associations of these biomarkers with rheumatoid factor (RF) and anticitrullinated peptide (aCCP) autoantibodies and the DAS 28-3 clinical disease severity score. A cohort of 40 disease-modifying antirheumatic drug-naïve, black South African RA patients rated by compound disease scores and 20 healthy subjects and 10 patients with chronic obstructive pulmonary disease (COPD) as controls were included in this study. Levels of the various biomarkers and autoantibodies were measured using a combination of ELISA and immunofluorimetric and immunoturbidometric procedures. LPS levels were lowest in the RA group compared to the healthy controls (p = 0.026) and COPD patients (p = 0.017), while LBP levels were also significantly lower in RA compared to the healthy individuals (p = 0.036). Levels of I-FABP and SP-D were comparable between all three groups. Categorisation of RA patients according to tobacco usage revealed the following significant positive correlations: LBP with C-reactive protein (p = 0.0137); a trend (p = 0.073) towards an association of LBP with the DAS 28-3 disease severity score; RF-IgG antibodies with both LPS and LBP (p = 0.033 and p = 0.041, respectively); aCCP-IgG antibodies with LPS (p = 0.044); and aCCP-IgG with RF-IgM autoantibodies (p = 0.0016). The findings of this study, several of them novel, imply that tobacco products, as opposed to microbial translocation, represent a potential source of LPS in this study cohort of RA patients, again underscoring the risks posed by tobacco usage for the development and severity of RA.
Collapse
Affiliation(s)
- Pieter W. A. Meyer
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0001, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Mahmood M. T. M. Ally
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Mohammed Tikly
- Division of Rheumatology, Chris Hani Baragwaneth Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Chris Hani Road, Johannesburg 2013, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Lai Ling Winchow
- Division of Rheumatology, Chris Hani Baragwaneth Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Chris Hani Road, Johannesburg 2013, South Africa
| | - Helen Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
102
|
Campoccia D, Mirzaei R, Montanaro L, Arciola CR. Hijacking of immune defences by biofilms: a multifront strategy. BIOFOULING 2019; 35:1055-1074. [PMID: 31762334 DOI: 10.1080/08927014.2019.1689964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Biofilm formation by pathogens and opportunistic bacteria is the basis of persistent or recurrent infections. Up to 80% of bacterial infections in humans are associated with biofilms. Despite the efficiency of the evolved and complex human defence system against planktonic bacteria, biofilms are capable of subverting host defences. The immune system is not completely effective in opposing bacteria and preventing infection. Increasing attention is being focussed on the mechanisms enabling bacterial biofilms to skew the coordinate action of humoral and cell mediated responses. Knowledge of the interactions between biofilm bacteria and the immune system is critical to effectively address biofilm infections, which have multiplied over the years with the spread of biomaterials in medicine. In this article, the latest information on the interactions between bacterial biofilms and immune cells is examined and the areas where of information is still lacking are explored.
Collapse
Affiliation(s)
- Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rasoul Mirzaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lucio Montanaro
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
103
|
CAO LI, WU XIAOHONG, WANG XUEYANG, LI GEGE. Comparative evaluation of Lactobacillus strains with different adhesion ability on growth performance and immunomodulatory activity in broiler chickens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i9.93781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study was designed to assess the effect of 2 Lactobacillus strains (Lactobacillus kefiri 1.3207 and Lactobacillus plantarum 1.2567) with different adherence ability on growth performance and immunomodulatory activity in broiler. The BW and FCR were higher in L. kefiri 1.3207 and L. plantarum 1.2567 groups compared to control group at 42 days of age, and BW of broilers in L. kefiri 1.3207 group was significantly higher than that in L. plantarum 1.2567 group. IgA and IgG contents and the spleen and bursa of Fabricius indices in significantly increased in the L. kefiri 1.3207 group, but not in the L. plantarum 1.2567-treated group. L. kefiri 1.3207 had more significant effect on growth performance, plasma IgA and IgG levels and immune organs indices because it had better adhesion ability.
Collapse
|
104
|
McBain AJ, O'Neill CA, Amezquita A, Price LJ, Faust K, Tett A, Segata N, Swann JR, Smith AM, Murphy B, Hoptroff M, James G, Reddy Y, Dasgupta A, Ross T, Chapple IL, Wade WG, Fernandez-Piquer J. Consumer Safety Considerations of Skin and Oral Microbiome Perturbation. Clin Microbiol Rev 2019; 32:e00051-19. [PMID: 31366612 PMCID: PMC6750131 DOI: 10.1128/cmr.00051-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care regimes. Changes in the composition and activities of the microbial communities in these environments can be utilized to promote consumer health benefits, for example, by reducing the numbers, composition, or activities of microbes implicated in conditions such as acne, axillary odor, dandruff, and oral diseases. It is, however, important to ensure that innovative approaches for microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where major changes in the composition or activities of the microbiome may occur, these require evaluation to ensure that critical biological functions are unaffected. This article is based on a 2-day workshop held at SEAC Unilever, Sharnbrook, United Kingdom, involving 31 specialists in microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, mathematical modeling, and immunology. The first day focused on understanding the potential implications of skin and oral microbiome perturbation, while approaches to characterize those perturbations were discussed during the second day. This article discusses the factors that the panel recommends be considered for personal care products that target the microbiomes of the skin and the oral cavity.
Collapse
Affiliation(s)
- Andrew J McBain
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Catherine A O'Neill
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Alejandro Amezquita
- Unilever, Safety & Environmental Assurance Centre (SEAC), Sharnbrook, United Kingdom
| | - Laura J Price
- Unilever, Safety & Environmental Assurance Centre (SEAC), Sharnbrook, United Kingdom
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Jonathan R Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | - Tom Ross
- University of Tasmania, Hobart, Tasmania, Australia
| | - Iain L Chapple
- Periodontal Research Group, The University of Birmingham, Birmingham, United Kingdom
| | - William G Wade
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | | |
Collapse
|
105
|
Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M, Eslami M. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol 2019; 234:14941-14950. [PMID: 30786013 DOI: 10.1002/jcp.28333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Recent studies demonstrated that a combination of the gut microbiome has the vital effect on the efficacy of anticancer immune therapies. Regulatory effects of microbiota have been shown in different types of cancer therapies such as chemotherapy and immunotherapy. Immune-checkpoint-blocked therapies are the recent efficient cancer immunotherapy strategies. The target of immune-checkpoint blocking is cytotoxic T lymphocyte protein-4 (CTLA-4) or blockade of programmed death-1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) that they have been considered as cancer immunotherapy in recent years. In the latest studies, it have been demonstrated that several gut bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Faecalibacterium spp., and Bacteroides fragilis have the regulatory effects on PD-1, PD-L1, and CTLA-4 blocked anticancer therapy outcome.
Collapse
Affiliation(s)
- Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Darabi
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Rafee Habib Askandar
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Mansoreh Shariati
- Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
106
|
Examination of the Expression of Immunity Genes and Bacterial Profiles in the Caecum of Growing Chickens Infected with Salmonella Enteritidis and Fed a Phytobiotic. Animals (Basel) 2019; 9:ani9090615. [PMID: 31462004 PMCID: PMC6770741 DOI: 10.3390/ani9090615] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Salmonellosis is among the most common infectious poultry diseases that also represent a high risk to human health. The pathological process caused by Salmonella enterica serovar Enteritidis (SE) triggers in the caecum the expression of certain genes, e.g., avian β-defensins (gallinacins), cytokines (interleukins), etc. On the other hand, gut microbiota influences the infection potential of pathogens. The present study aimed at revealing the differential expression of genes associated with the immune system and changes in the bacterial communities in the intestine of growing chickens in response to SE infection. We also tested a feed additive, essential oils-based phytobiotic Intebio, as a potential alternative to antibiotics and showed effects of its administration on the caecal microbiome composition and the expression of some genes related to immunity. The phytobiotic showed its efficiency for application in poultry rearing and production. Abstract This study was performed to investigate the differential expression of eight immunity genes and the bacterial profiles in the caecum of growing chickens challenged with Salmonella enterica serovar Enteritidis (SE) at 1 and 23 days post inoculation (dpi) in response to SE infection at 19 days of age and administration of the phytobiotic Intebio. Following infection, the genes CASP6 and IRF7 were upregulated by greater than twofold. Chicks fed Intebio showed at 1 dpi upregulation of AvBD10, IL6, IL8L2, CASP6 and IRF7. At 23 dpi, expression of AvBD11, IL6, IL8L2, CASP6 and IRF7 lowered in the experiment subgroups as compared with the control. Examination of the caecal contents at 1 dpi demonstrated a significant decrease in the microbial biodiversity in the infected subgroup fed normal diet. Bacterial content of Lactobacillus and Bacillus declined, while that of Enterobacteriaceae rose. In the infected subgroup fed Intebio, a pronounced change in composition of the microflora was not observed. In the early infection stages, the phytobiotic seemed to promote response to infection. Subsequently, an earlier suppression of the inflammatory reaction took place in chickens fed Intebio. Thus, use of Intebio as a drug with phytobiotic activity in chickens, including those infected with Salmonella, proved to be promising.
Collapse
|
107
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
108
|
Qiao G, Xu C, Sun Q, Xu DH, Zhang M, Chen P, Li Q. Effects of dietary poly-β-hydroxybutyrate supplementation on the growth, immune response and intestinal microbiota of soiny mullet (Liza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2019; 91:251-263. [PMID: 31121290 DOI: 10.1016/j.fsi.2019.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Soiny mullet (Liza haematocheila) is an important economic fish species in China, but stress and diseases have seriously restricted its culture. There are no effective methods including vaccines to prevent or control these diseases. Alternative methods should be employed, such as using novel immunostimulant poly-β-hydroxybutyrate (PHB). The present study aimed to evaluate effects of dietary PHB supplementation on the growth, antioxidant enzymes activity, immune-related genes expression and intestinal microbiota in soiny mullet. The fish was fed for 30 or 60 days with six diets at different PHB supplementation of 0, 0.5, 1, 2, 4 and 8%, named as groups P0, P0.5, P1, P2, P4 and P8. The results showed that the weight gain and specific growth rate of fish in P2 and P0.5 groups were significantly higher than those in control P0 group at 30 and 60 days, respectively (P < 0.05). The antioxidant enzymes activity of catalase and superoxide dismutase in serum were significantly increased in P0.5/P1/P2 groups after 30 days. The transcriptional levels of penicillin-binding protein A and interleukin-8 analyzed by qRT-PCR were significantly upregulated in P2 and P4 groups compared to those in P0/P0.5/P1/P8 groups at 30 days. The transcriptional level of major histocompatibility complex class II in P2 group was significantly upregulated, and aldehyde oxidase downregulated compared to P0 group. Intestinal microbiota analysis by Illumina high-throughput sequencing showed that the microbiota diversity was not changed significantly, but the microbiota structure shifted significantly post PHB treatment. At the phyla level, Firmicutes and Proteobacteria were predominant in both P0 and P2 groups. At the genus level, the relative abundance of Bacillus spp. in P2 group increased significantly, and abundance of Achromobacter spp. decreased significantly. KEGG pathway analysis by PICRUSt showed that oral administration PHB significantly upregulated abundances of genes responsible for 10 pathways and downregulated genes involved in 17 pathways. In conclusion, soiny mullet fed with 2% PHB supplemental diets for 30 days showed better growth performance, higher antioxidant enzymes activity and immune-related genes expression. Their regulation of growth and immunity might be related with the intestinal microbiota change post PHB supplementation. It will provide very useful basic information to study the regulation mechanism of PHB in aquatic animals, and provide good green method to prevent disease in soiny mullet.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Chen Xu
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qirui Sun
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832, USA
| | - Mingming Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Peng Chen
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiang Li
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| |
Collapse
|
109
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
110
|
Probiotics for Alleviating Alcoholic Liver Injury. Gastroenterol Res Pract 2019; 2019:9097276. [PMID: 31263495 PMCID: PMC6556793 DOI: 10.1155/2019/9097276] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Many animal experiments and clinical trials showed that probiotics are effective for the treatment of alcoholic liver disease. Alcohol disrupts the composition of intestinal flora; probiotics modulate the gut microbiota and reverse alcohol-associated intestinal barrier dysfunction by decreasing intestinal mucosal permeability and preventing intestinal bacteria from translocating. Probiotics enhance immune responses and reduce the levels of alcohol-induced inflammatory cytokines and reactive oxygen species (ROS) production in the liver and intestine. Probiotics also increase fatty acid β-oxidation and reduce lipogenesis, combating alcohol-induced hepatic steatosis. In this review, we summarize the current knowledge regarding the mechanism of action of probiotics for reducing the effects of alcoholic liver disease.
Collapse
|
111
|
Species, Risk Factors, and Antimicrobial Susceptibility Profiles of Bacterial Isolates from HIV-Infected Patients Suspected to Have Pneumonia in Mekelle Zone, Tigray, Northern Ethiopia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8768439. [PMID: 31192259 PMCID: PMC6525850 DOI: 10.1155/2019/8768439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Background Pneumonia is a condition, where bacterial infections are implicated as the most common causes of morbidity and mortality in humans. The actual burden of HIV-infected patients with pneumonia is not well documented in Mekelle region of Ethiopia. This study estimated the prevalence of bacterial pneumonia in HIV patients, antimicrobial susceptibility patterns of pathogens implicated in pneumonia, and associated risk factors in Mekelle zone, Tigray, Northern Ethiopia, during August-December 2016. Methods Sputum specimens were collected from 252 HIV seropositive individuals with suspected pneumonia. Data on sociodemographics and risk factors were also collected using a structured questionnaire. Blood, Chocolate, and Mac Conkey agar plates (Oxoid, Hampshire, UK) were used to grow the isolates. The isolated colonies were identified based on Gram stain, colony morphology, pigmentation, hemolysis, and biochemical tests. The antimicrobial susceptibility test was performed using the modified Kirby-Bauer disc diffusion method. The analysis was performed using SPSS version 22 and p-value < 0.05 with corresponding 95% confidence interval (CI) was considered statistically significant. Results Out of the 252 samples, 110 (43.7%) were positive for various bacterial species. The predominant bacterial species were Klebsiella pneumoniae (n=26, 23.6 %) followed by Streptococcus pneumoniae (n=17, 15.5 %), Escherichia coli (n=16, 14.5%), Klebsiella spp. (n=15, 13.6%), Staphylococcus aureus (n=9, 8.2%), Enterobacter spp. (n=7, 6.3%), Pseudomonas aeruginosa (4, n=3.6%), Proteus spp. (n=4, 3.6%), Citrobacter freundii (n=7, 6.3%), Streptococcus pyogenes (3, 2.7%), and Haemophilus influenzae (n=2, 1.8%). Young age (18-29), recent CD4+ count less than 350 cells/mL, alcohol consumption, and HIV WHO stage II showed significant association with the occurrence of bacterial pneumonia. Resistance to penicillin, co-trimoxazole, and tetracycline was observed in 81.8%, 39.8%, and 24.5% of the isolates, respectively. Conclusions The problem of pneumonia among HIV patients was significant in the study area. The high prevalence of drug-resistant bacteria isolated from the patient's samples possesses a health risk in immunocompromised HIV patients. There is a need to strengthen and expand culture and susceptibility procedures for the administration of appropriate therapy to improve patients management and care which may aid in decreasing the mortality.
Collapse
|
112
|
Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in Children. Clin Microbiol Rev 2019; 32:32/3/e00103-18. [PMID: 31043389 DOI: 10.1128/cmr.00103-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal exposure to various stressors can influence both early and later life childhood health. Microbial infection of the intrauterine environment, specifically within the placenta, has been associated with deleterious birth outcomes, such as preterm birth, as well as adverse neurological outcomes later in life. The relationships among microorganisms in the placenta, placental function, and fetal development are not well understood. Microorganisms have been associated with perinatal inflammatory responses that have the potential for disrupting fetal brain development. Microbial presence has also been associated with epigenetic modifications in the placenta, as well other tissues. Here we review research detailing the presence of microorganisms in the placenta and associations among such microorganisms, placental DNA methylation, perinatal inflammation, and neurodevelopmental outcomes.
Collapse
|
113
|
Zhang L, Hu Y, Xu Y, Li P, Ma H, Li X, Li M. The correlation between intestinal dysbiosis and the development of ankylosing spondylitis. Microb Pathog 2019; 132:188-192. [PMID: 31039390 DOI: 10.1016/j.micpath.2019.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
The pathogenesis and development of ankylosing spondylitis (AS) is concealed and complicated. In recent years, alterations in gut microbiota of AS patients have been largely investigated, although the underlying mechanisms remain unclear. This article reviews the recent studies on changes of gut microbiota in AS patients, and discusses the possible correlation between intestinal dysbiosis and AS development from aspects including genetic factor HLA-B27, mucosal immune responses and the depression accompanying AS.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yuqi Hu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yao Xu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Pengfei Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Hong Ma
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Xia Li
- Department of Immunology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China.
| |
Collapse
|
114
|
Cathepsin L promotes secretory IgA response by participating in antigen presentation pathways during Mycoplasma Hyopneumoniae infection. PLoS One 2019; 14:e0215408. [PMID: 30986254 PMCID: PMC6464228 DOI: 10.1371/journal.pone.0215408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Cathepsin L (CTSL) has been proved to help contain leishmaniasis and mycoplasma infection in mice by supporting cellular immune responses, but the regulatory functions of CTSL on mucosal immune responses haven't been tested and remain undefined. Here, we investigated the effects of CTSL on SIgA responses and invariant chain (Ii) degradations in the co-cultured swine dendritic cells (DCs) and B cells system in vitro. When the cells system were transfected with vector CTSL-GFP or incubated with recombinant CTSL (rCTSL) before they were infected with Mycoplasma hyopneumoniae (M.hp), SIgA significantly increased and Ii chain was degraded into smaller intermediates, while SIgA decreased when CTSL was knockdown or inhibited with E64. To confirm the SIgA responses promoted by CTSL contribute to the resistance to mycoplasma pneumonia, pigs injected with rCTSL before they were challenged with M.hp, showed milder clinical symptoms and histopathological damage of lungs, less mycoplasma burden together with higher secretion of SIgA, percentages of CD4+ T cells and level of MHC II molecules comparing with the group without rCTSL. Collectively, these results suggested that rCTSL could provide effective protection for piglets against mycoplasma pneumonia by enhancing M.hp-specific mucosal immune responses through its role in antigen presentation by processing the invariant chain.
Collapse
|
115
|
Influence of Preoperative Oropharyngeal Microflora on the Occurrence of Postoperative Pneumonia and Survival in Patients Undergoing Esophagectomy for Esophageal Cancer. Ann Surg 2019; 272:1035-1043. [PMID: 30946087 DOI: 10.1097/sla.0000000000003287] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to clarify the correlation between oropharyngeal microflora and postoperative complications as well as long-term survival after esophagectomy. BACKGROUND Although the oral cavity is known to be a potential reservoir for pathogens, the influence of abnormal oropharyngeal microflora on the outcomes of patients undergoing esophagectomy remains unknown. METHODS This study included 675 patients who underwent esophagectomy between 2007 and 2014. Saliva samples from the oropharynx were collected 2 days before the operation. There were 442 patients with indigenous flora (Ind group) and 233 with allopatric flora. Among the patients with allopatric flora, 140 had antibiotic-sensitive microbes only (Allo-S group) while 93 had different types of antibiotic-resistant microbes (Allo-R group). We investigated the correlation between the types of oropharyngeal microflora and the incidence of postoperative complications as well as long-term outcomes. RESULTS Sixteen microbes could be cultivated from the saliva samples. The incidence of postoperative pneumonia in the Allo-S and Allo-R groups was significantly higher than in the Ind group (P < 0.001). In addition, acute respiratory distress syndrome was more often observed in the Allo-R group than in the other groups (P = 0.002). A significantly higher rate of antibiotic use and longer hospital stays were observed in the Allo-R group compared with the Ind group. Multivariate logistic regression analysis revealed that the presence of allopatric antibiotic-resistant microbes in the oropharynx was an independent risk factor for postoperative pneumonia (odds ratio, 3.93; 95% confidence interval, 2.41-6.42). The overall survival was significantly poorer in the Allo-R group than in the other groups. CONCLUSIONS Preoperative oropharyngeal culture is a simple and low-cost method that can predict both the occurrence of postoperative pneumonia and poor prognosis after esophagectomy.
Collapse
|
116
|
Commensal microflora in human conjunctiva; characteristics of microflora in the patients with chronic ocular graft-versus-host disease. Ocul Surf 2019; 17:265-271. [DOI: 10.1016/j.jtos.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 11/19/2022]
|
117
|
Roubalová R, Procházková P, Papežová H, Smitka K, Bilej M, Tlaskalová-Hogenová H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clin Nutr 2019; 39:676-684. [PMID: 30952533 DOI: 10.1016/j.clnu.2019.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa is a psychiatric disorder defined by an extremely low body weight, a devastating fear of weight gain, and body image disturbance, however the etiopathogenesis remains unclear. The objective of the article is to provide a comprehensive review on the potential role of gut microbiota in pathogenesis of anorexia nervosa. Recent advances in sequencing techniques used for microbial detection revealed that this disease is associated with disruption of the composition of normal gut microbiota (dysbiosis), manifested by low microbial diversity and taxonomic differences as compared to healthy individuals. Microorganisms present in the gut represent a part of the so called "microbiota-gut-brain" axis that affect the central nervous system and thus human behavior via the production of various neuroactive compounds. In addition, cells of the immune system are equipped with receptors for these neuroactive substances. Microbiota of the intestinal system also represent a very important antigenic source. These antigens can mimic some host neuropeptides and neurohormones and thus trigger the production of autoantibodies which cross-react with these compounds. The levels and affinities of these antibodies are thought to be associated with neuropsychiatric conditions including anxiety, depression, and eating and sleep disorders. The study of microbiota function in diseases could bring new insights to the pathogenetic mechanisms.
Collapse
Affiliation(s)
- Radka Roubalová
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic.
| | - Petra Procházková
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, Prague 2, Czech Republic
| | - Kvido Smitka
- The Institute of Physiology, First Faculty of Medicine, Charles University, Albertov 5, Prague 2, Czech Republic
| | - Martin Bilej
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | | |
Collapse
|
118
|
Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev 2019; 32:e00060-18. [PMID: 30700431 PMCID: PMC6431131 DOI: 10.1128/cmr.00060-18] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gut bacteria play a key role in initiating and maintaining the inflammatory process in the gut tissues of inflammatory bowel disease (IBD) patients, by supplying antigens or other stimulatory factors that trigger immune cell activation. Changes in the composition of the intestinal microbiota in IBD patients compared to that in healthy controls and a reduced diversity of intestinal microbial species are linked to the pathogenesis of IBD. Adherent invasive Escherichia coli (AIEC) has been linked to Crohn's disease (CD) patients, while diffusely adherent E. coli (DAEC) has been associated with ulcerative colitis (UC). Bacteriological analysis of intestinal biopsy specimens and fecal samples from IBD patients shows an increased number of E. coli strains belonging to the B2 phylogenetic group, which are typically known as extraintestinal pathogenic E. coli (ExPEC). Results from studies of both cell cultures and animal models reveal pathogenic features of these E. coli pathobionts, which may link them to IBD pathogenesis. This suggests that IBD-associated E. coli strains play a facilitative role during IBD flares. In this review, we explain IBD-associated E. coli and its role in IBD pathogenesis.
Collapse
Affiliation(s)
| | - Bruce Andrew Vallance
- Division of Gastroenterology, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Viral and Microbiological Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Department of Gastroenterology, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Microbiology, Hvidovre University Hospital, Copenhagen, Denmark
| |
Collapse
|
119
|
Beck BR, Park GS, Lee YH, Im S, Jeong DY, Kang J. Whole Genome Analysis of Lactobacillus plantarum Strains Isolated From Kimchi and Determination of Probiotic Properties to Treat Mucosal Infections by Candida albicans and Gardnerella vaginalis. Front Microbiol 2019; 10:433. [PMID: 30894844 PMCID: PMC6414439 DOI: 10.3389/fmicb.2019.00433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Three Lactobacillus plantarum strains ATG-K2, ATG-K6, and ATG-K8 were isolated from Kimchi, a Korean traditional fermented food, and their probiotic potentials were examined. All three strains were free of antibiotic resistance, hemolysis, and biogenic amine production and therefore assumed to be safe, as supported by whole genome analyses. These strains demonstrated several basic probiotic functions including a wide range of antibacterial activity, bile salt hydrolase activity, hydrogen peroxide production, and heat resistance at 70°C for 60 s. Further studies of antimicrobial activities against Candida albicans and Gardnerella vaginalis revealed growth inhibitory effects from culture supernatants, coaggregation effects, and killing effects of the three probiotic strains, with better efficacy toward C. albicans. In vitro treatment of bacterial lysates of the probiotic strains to the RAW264.7 murine macrophage cell line resulted in innate immunity enhancement via IL-6 and TNF-α production without lipopolysaccharide (LPS) treatment and anti-inflammatory effects via significantly increased production of IL-10 when co-treated with LPS. However, the degree of probiotic effect was different for each strain as the highest TNF-α and the lowest IL-10 production by the RAW264.7 cell were observed in the K8 lysate treated group compared to the K2 and K6 lysate treated groups, which may be related to genomic differences such as chromosome size (K2: 3,034,884 bp, K6: 3,205,672 bp, K8: 3,221,272 bp), plasmid numbers (K2: 3, K6 and K8: 1), or total gene numbers (K2: 3,114, K6: 3,178, K8: 3,186). Although more correlative inspections to connect genomic information and biological functions are needed, genomic analyses of the three strains revealed distinct genomic compositions of each strain. Also, this finding suggests genome level analysis may be required to accurately identify microorganisms. Nevertheless, L. plantarum ATG-K2, ATG-K6, and ATG-K8 demonstrated their potential as probiotics for mucosal health improvement in both microbial and immunological contexts.
Collapse
|
120
|
Liu Y, Zheng Z, Yu L, Wu S, Sun L, Wu S, Xu Q, Cai S, Qin N, Bao W. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Sci Rep 2019; 9:3453. [PMID: 30837612 PMCID: PMC6400902 DOI: 10.1038/s41598-019-40235-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Intestinal microbiota plays a crucial role in immune development and disease progression in mammals from birth onwards. The gastrointestinal tract of newborn mammals is rapidly colonized by microbes with tremendous biomass and diversity. Understanding how this complex of segmental communities evolves in different gastrointestinal sites over time has great biological significance and medical implications. However, most previous reports examining intestinal microbiota have focused on fecal samples, a strategy that overlooks the spatial microbial dynamics in different intestinal segments. Using intestinal digesta from six intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of newborn piglets, we herein conducted a large-scale 16S rRNA gene sequencing-based study to characterize the segmental dynamics of porcine gut microbiota at eight postnatal intervals (days 1, 7, 14, 21, 28, 35, 120 and 180). A total of 4,465 OTUs were obtained and showed that the six intestinal segments could be divided into three parts; in the duodenum-jejunum section, the most abundant genera included Lactobacillus and Bacteroides; in the ileum, Fusobacterium and Escherichia; and in the cecum-rectum section, Prevotella. Although the microbial communities of the piglets were similar among the six intestinal segments on postnatal day 1, they evolved and quickly differentiated at later intervals. An examination of time-dependent alterations in the dominant microbes revealed that the microbiome in the large intestine was very different from and much more stable than that in the small intestine. The gut microbiota in newborn piglets exhibited apparent temporal and spatial variations in different intestinal segments. The database of gut microbes in piglets could be a referable resource for future studies on mammalian gut microbiome development in early host growth phases.
Collapse
Affiliation(s)
- Ying Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,School of Life Science, Huaiyin Normal University, Huaian, 223001, China
| | - Zhijun Zheng
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sen Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Li Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Qian Xu
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Shunfeng Cai
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Nan Qin
- Realbio Genomics Institute, Shanghai, 200123, China. .,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
121
|
Lindenberg FCB, Ellekilde M, Thörn AC, Kihl P, Larsen CS, Hansen CHF, Metzdorff SB, Aalbæk B, Hansen AK. Dietary LPS traces influences disease expression of the diet-induced obese mouse. Res Vet Sci 2019; 123:195-203. [PMID: 30682583 DOI: 10.1016/j.rvsc.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharides (LPS) from Gram negative bacteria are generally present in laboratory animal chow diets in unknown amounts, which has been correlated to significant immunological differences between animals receiving diets with either low or high "naturally" occurring LPS content. LPS in the blood stream has been linked to glucose intolerance through Toll-like receptor mediated release of pro-inflammatory cytokines, metabolic endotoxemia, adipose tissue inflammation. LPS uptake increases when co-administered with fat, therefore uncontrolled LPS levels in a high-fat diet may increase variation in development of disease when high-fat diets are used to induce obesity and type 2 diabetes. Three experiments were conducted, in which C57BL/6NTac mice received high-fat (60%) or low fat (10%) diets with or without LPS for 8 or 20 weeks investigating the short and long term effects. Three different doses of LPS were used to investigate dosage effect, and ampicillin to isolate the effect of dietary LPS. Dietary LPS increased LPS levels in the blood stream, and affected the level of glycated haemoglobin (HbA1c), a key parameter in this model, in a dose dependant manner (p < 0.05). There was a strong tendency toward slower glucose uptake in the LPS supplemented groups once obesity was established, but the differences disappeared after 20 weeks. A high-fat diet slightly increased serum LPS and altered ileal expression of il10 and tnfa (p < 0.05). In conclusion, LPS seems to affect the glucose metabolism in a time-dose dependant manner, and uncontrolled variation in LPS levels of a diet may therefore increase inter-study variation.
Collapse
Affiliation(s)
- Frederikke C B Lindenberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark; Brogaarden Diets Ltd., DK-3540 Lynge, Denmark.
| | - Merete Ellekilde
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Anna C Thörn
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Pernille Kihl
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Christian S Larsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Camilla H F Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Stine B Metzdorff
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Bent Aalbæk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Axel K Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| |
Collapse
|
122
|
Simpson T, Deleuil S, Echeverria N, Komanduri M, Macpherson H, Suo C, Gondalia S, Fard MT, Pipingas A, Scholey A, Stough C. The Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910) addendum: neuroimaging and gut microbiota protocol. Nutr J 2019; 18:1. [PMID: 30611275 PMCID: PMC6321680 DOI: 10.1186/s12937-018-0428-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The Australian Research Council Longevity Intervention (ARCLI) was designed to investigate the effects of two active supplements, Pycnogenol and Bacopa monnieri (CDRI08) on cognitive performance in a cohort of elderly participants. An additional antioxidant supplement has been included into the trial. A neuroimaging component has also been added to the ARCLI study to investigate the neurochemical biomarkers of oxidative stress in vivo, as well as structural and functional changes associated with ageing and oxidative stress. Faecal biomarkers of gut microflora will also be analysed to investigate if gut microbiota are associated with domains of cognition (e.g., attention, processing speed, memory), mood or other ARCLI outcome variables. The aim of this paper is to update the published methods of the ARCLI clinical trial before it is completed, and data analysis commences. METHODS ARCLI is a randomised, placebo controlled, double-blind, now 4-arm clinical trial including neuroimaging and gut microflora sub-studies. Along with the demographic, haematological, mood, cardiovascular and cognitive assessments described in the initial protocol, 80 eligible participants from the overall study pool of ~ 400 will be recruited into the neuroimaging study and undergo scans at baseline, 3 months and 12 months. Proton magnetic resonance spectroscopy, resting state functional connectivity and arterial spin labelled perfusion sequences are neuroimaging techniques included for each MRI visit in the study. Similarly, approximately 300 participants from the main study pool will be recruited to provide faecal samples at baseline, 3 months and 12 months so that the gut microbiome can be studied. DISCUSSION ARCLI is 12-month intervention study, currently underway with a group of older adults, investigating a range of outcomes and their association with ageing. The additional measurements in the ARCLI trial will further the understanding of the underlying mechanisms associated with healthy ageing and may provide insights into novel preventative therapeutic strategies for maintaining cognitive and brain health into old age. TRIAL REGISTRATION Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000487970 .
Collapse
Affiliation(s)
- Tamara Simpson
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Nicole Echeverria
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Helen Macpherson
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
- Institute for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Chao Suo
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Masoumeh Tangestani Fard
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, Melbourne, Australia
| |
Collapse
|
123
|
Lu T, Chen Y, Guo Y, Sun J, Shen W, Yuan M, Zhang S, He P, Jiao X. Altered Gut Microbiota Diversity and Composition in Chronic Urticaria. DISEASE MARKERS 2019; 2019:6417471. [PMID: 31827639 PMCID: PMC6881578 DOI: 10.1155/2019/6417471] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The pathogenesis of chronic urticaria (CU) is closely related to imbalances in immunity. The gastrointestinal microflora provides a vast and continuous stimulation for the immune system. However, the composition and diversity of gut microflora in CU patients are rarely reported. METHODS 10 CU patients and 10 healthy individuals were selected in this study, and their intestinal microbiome was detected by 16S rRNA sequencing. The data were analyzed using R language software. RESULTS 392 bacterial OTUs were common in the CU and healthy groups, but there were 159 OTUs particularly existing in the CU group, while 87 OTUs only were observed in healthy individuals. The bacterial diversity was reduced in CU patients compared with healthy individuals. The principal component analysis (PCA) and principal coordinate analysis (PCoA) revealed that the bacterial cluster in CU patients and the healthy controls were divided into different branches. Pathogenic strains including Escherichia coli were significantly higher in CU, while Faecalibacterium prausnitzii, Prevotella copri, and Bacteroides sp. were significantly lower in CU when compared with the healthy controls. CU patients with a high abundance of Escherichia coli had no ideal effect for probiotic therapy. CONCLUSION Our results demonstrated that the microbial composition was significantly different between CU patients and the healthy individual, which may be the reason leading to the various outcomes of probiotic treatment.
Collapse
Affiliation(s)
- Tao Lu
- The First Affiliated Hospital of Shantou University Medical College, China
| | - Yanxia Chen
- The First Affiliated Hospital of Shantou University Medical College, China
| | - Yangmin Guo
- The First Affiliated Hospital of Shantou University Medical College, China
| | - Jiayu Sun
- Biology and Genetic Department of Shantou University Medical College, China
| | - Weitao Shen
- The Second Affiliated Hospital of Shantou University Medical College, China
| | - Mengsi Yuan
- The First Affiliated Hospital of Shantou University Medical College, China
| | - Shuping Zhang
- The First Affiliated Hospital of Shantou University Medical College, China
| | - Ping He
- Biology and Genetic Department of Shantou University Medical College, China
| | - Xiaoyang Jiao
- Biology and Genetic Department of Shantou University Medical College, China
| |
Collapse
|
124
|
Silva MH, Dias HLT, Silva Filho ED, Scalercio SRRDA, Silva WBD, Espinheiro RDF. PERFIL DE SENSIBILIDADE A ANTIMICROBIANOS POR COMPONENTES DA MICROBIOTA BACTERIANA ORAL E RETAL DE PRIMATAS NÃO HUMANOS. CIÊNCIA ANIMAL BRASILEIRA 2019. [DOI: 10.1590/1089-6891v20e-47632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Os objetivos desta pesquisa foram identificar bactérias isoladas da cavidade oral e da ampola retal de Saimiri collinsi e Callithrix jacchus e determinar a sensibilidade a 16 antimicrobianos. Trinta indivíduos de cada espécie foram analisados e foram isoladas 136 bactérias em C. jacchus e 84 em S. collinsi. As bactérias isoladas em maior número em S. collinsi foram Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Raoutella ornithinolytica, Staphylococcus xylosus e Proteus mirabilis. As bactérias isoladas em C. jacchus foram K. pneumoniae, E. cloacae, E. coli, Serratia marcescens e S. xylosus na cavidade oral e ampola retal. O teste de sensibilidade mostrou que, dentre as cepas isoladas, os maiores percentuais de resistência foram observados para ampicilina, amoxicilina, cefalotina e nitrofurantoína. Na cavidade oral de ambas as espécies as cepas foram sensíveis à ceftazidima, ceftriaxona, meropenem, amicacina, levofloxacina e a sulfametoxazol/trimetoprim. Na ampola retal, as isoladas foram sensíveis à cefoxitina, ceftazidima, ceftriaxona, ertapenem, meropenem, amicacina e levofloxacina. Conclui-se que as espécies de S. collinsi e C. jacchus apresentam sua microbiota oral e retal composta por várias espécies bacterianas e que a resistência pode ser um problema no criatório, uma vez que as cepas mostraram percentuais elevados de resistência a diferentes antimicrobianos.
Collapse
|
125
|
Zhao Y, Liu H, Wang Q, Li B. The influence of three antibiotics on the growth, intestinal enzyme activities, and immune response of the juvenile sea cucumber Apostichopus japonicus selenka. FISH & SHELLFISH IMMUNOLOGY 2019; 84:434-440. [PMID: 30308294 DOI: 10.1016/j.fsi.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The global abuse and misuse of antibiotics in the treatment and prevention of bacterial infections has resulted in the ubiquitous existence of these drugs in aquatic environments, which causes frequent antimicrobial resistance and pollution in ecosystems. However, the chronic effects of antimicrobial agents on aquatic animal growth and health have not been fully evaluated. In the present study, three typical antibiotics (tetracycline, erythromycin, and norfloxacin) were administered orally to juvenile sea cucumbers Apostichopus japonicus for 45 days, to mimic the long-term use of antibiotics. As a result, tetracycline and erythromycin promoted the growth and digestive activity of lipase, pepsin, and trypsin, but norfloxacin did not show significant prompting effect on digestive activity and even retarded the weight gain of the sea cucumbers. The mortality was higher in antibiotic treated groups between the 2nd and 4th days after challenge with Vibrio splendidus. At the same time, lower immune-related parameters were found in antibiotic feeding juveniles, suggesting that the use of antibiotics might weaken the immune defense system of sea cucumbers. This study revealed that antibiotic administration could facilitate the growth of sea cucumbers to varying degrees yet coupled with high risks of impaired immune function and compromised disease resistance.
Collapse
Affiliation(s)
- Ye Zhao
- Ocean School, Yantai University, Yantai, PR China.
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China.
| | - Bingjun Li
- Ocean School, Yantai University, Yantai, PR China
| |
Collapse
|
126
|
Reddy YS, Srivalliputturu SB, Bharatraj DK. The effect of lead (Pb) exposure and iron (Fe) deficiency on intestinal lactobacilli, E. coli and yeast: A study in experimental rats. J Occup Health 2018; 60:475-484. [PMID: 30210097 PMCID: PMC6281633 DOI: 10.1539/joh.2017-0267-oa] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The current study investigated the additive effect of oral lead (Pb) exposure and dietary iron (Fe) deficiency on intestinal lactobacilli, E. coli, and yeast in SD rats. METHODS Weanling rats were fed on control diet (CD) or iron deficient diet (ID) for 4 weeks, followed by oral Pb exposure for another 4 weeks. Lead exposure was withdrawn for 2 weeks, and then resumed after 2 weeks. Blood samples were collected to determine haemoglobin (Hb), serum iron, blood Pb and δ-Aminolevulenic acid dehydratase (ALAD) activity. Fecal samples were collected to enumerate the lactobacilli, E. coli and yeast population on selective agar media and determine Pb levels. RESULTS Hb and serum Fe levels decreased significantly in iron deficient rats. Pb exposed rats had a significant increase in blood Pb levels and decreased ALAD activity. The lactobacilli population was significantly decreased (p<0.05) in ID rats compared to the CD group. Further, a significant decrease in the lactobacilli population was observed in Pb exposed rats irrespective of the dietary regimen. Upon withdrawal of Pb exposure, lactobacilli increased significantly in both the CD+Pb and ID+Pb groups, whereas re-exposure to Pb decreased lactobacilli population. The E. coli and yeast populations were inconsistent among both the ID and Pb exposed rats compared to controls. Fecal Pb levels increased significantly in Pb exposed rats irrespective of diet. CONCLUSION An additive effect of dietary Fe deficiency and oral Pb exposure resulted in greater reductions in the intestinal lactobacilli population compared to either treatment alone. In addition, transient withdrawal of Pb exposure led to improved lactobacilli population irrespective of Fe status.
Collapse
|
127
|
Bacteriologic Evaluation of Ventilator-Associated Pneumonia According to Stress Related Mucosal Disease Prophylaxis in the Intensive Care Unit. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.82521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
128
|
Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology 2018; 224:196-206. [PMID: 30470434 DOI: 10.1016/j.imbio.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Host-derived pattern recognition receptors (PRRs) are necessary for effective innate immune engagement of pathogens that express microbial-associated molecular patterns (MAMP) ligands for these PRRs. This study used a nonhuman primate model to evaluate the expression of these sensing molecules in gingival tissues. Macaca mulatta aged 12-24 with a healthy periodontium (n = 13) or periodontitis (n = 11) provided gingival tissues for assessment of naturally-occurring periodontitis. An additional group of animals (12-23 years; n = 18) was subjected to a 5 month longitudinal study examining the initiation and progression of periodontitis, RNA was isolated and microarray analysis conducted for gene expression of the sensing PRRs. The results demonstrated increased expression of various PRRs in naturally-occurring established periodontitis. Selected PRRs also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. The longitudinal model demonstrated multiple TLRs, as well as selected other PRRs that were significantly increased by 2 weeks during initiation of the lesion. While gene expression levels of various PRRs correlated with BOP and PD at baseline and resolution of disease, few correlated with these clinical parameters during initiation and progression of the lesion. These findings suggest that the levels of various PRRs are affected in established periodontitis lesions, and that PRR expression increased most dramatically during the initiation of the disease process, presumably in response to the juxtaposed microbial challenge to the tissues and goal of reestablishing homeostasis.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States.
| | - S Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - A J Stormberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - O A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
129
|
Boutin RCT, Dwyer Z, Farmer K, Rudyk C, Forbes MR, Hayley S. Perinatal antibiotic exposure alters composition of murine gut microbiota and may influence later responses to peanut antigen. Allergy Asthma Clin Immunol 2018; 14:42. [PMID: 30410548 PMCID: PMC6211427 DOI: 10.1186/s13223-018-0263-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background Accumulating evidence suggests that the gut microbiota shapes developmental processes within the immune system. Early life antibiotic use is one factor which may contribute to immune dysfunction and the recent surge in allergies by virtue of its effects on gut microbiota. Objective and methods As a first step towards determining whether a relationship exists between perinatal antibiotic induced changes in the gut microbiota and the later development of a peanut allergy, we exposed newborn mice to either the broad-spectrum antibiotic vancomycin or to a vehicle for 6 weeks and then used a novel murine model of peanut allergy. Results Early-life treatment with vancomycin resulted in a significant shift in the gut microbiota community characterized by a reduction in the abundance of firmicutes and preponderance of inflammatory proteobacteria. Mice with an antibiotic-altered microbiota, showed a localized allergic-like response characterized by ear swelling and scratching following intra-dermal peanut antigen challenge. Likewise, circulating IgE levels were increased in antibiotic-treated mice, but no evidence of a systemic allergic or anaphylactic-like response was observed. Importantly, we utilized the naturally occurring pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), rather than the more commonly used cholera toxin, as an adjuvant together with the peanut antigen. Conclusion Our data suggest that early antibiotic exposure promotes a shift in the gut microbiota community that may in turn, influence how mice later respond to a TNF-α + antigen challenge. However, further studies verifying the capacity of microbiota restoration to protect against allergic responses will be needed to confirm a causal role of antibiotic-induced microbiota variations in promoting allergic disease phenotypes.
Collapse
Affiliation(s)
- Rozlyn C T Boutin
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| | - Zach Dwyer
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| | - Kyle Farmer
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| | - Chris Rudyk
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| | - Mark R Forbes
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| | - Shawn Hayley
- 1Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada.,2Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 ON Canada
| |
Collapse
|
130
|
De Santis F, Del Vecchio M, Castagnoli L, De Braud F, Di Cosimo S, Franceschini D, Fucà G, Hiscott J, Malmberg KJ, McGranahan N, Pietrantonio F, Rivoltini L, Sangaletti S, Tagliabue E, Tripodo C, Vernieri C, Zitvogel L, Pupa SM, Di Nicola M. Innovative therapy, monoclonal antibodies, and beyond: Highlights from the eighth annual meeting. Cytokine Growth Factor Rev 2018; 44:1-10. [PMID: 30393044 DOI: 10.1016/j.cytogfr.2018.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The eighth annual conference of "Innovative therapy, monoclonal antibodies, and beyond" was held in Milan on Jan. 26, 2018, and hosted by Fondazione IRCCS-Istituto Nazionale dei Tumori (Fondazione IRCCS INT). The conference was divided into two main scientific sessions, of i) pre-clinical assays and novel biotargets, and ii) clinical translation, as well as a third session of presentations from young investigators, which focused on recent achievements within Fondazione IRCCS INT on immunotherapy and targeted therapies. Presentations in the first session addressed the issue of cancer immunotherapy activity with respect to tumor heterogeneity, with key topics addressing: 1) tumor heterogeneity and targeted therapy, with the definition of the evolutionary Index as an indicator of tumor heterogeneity in both space and time; 2) the analysis of cancer evolution, with the introduction of the TRACERx Consortium-a multi-million pound UK research project focused on non-small cell lung cancer (NSCLC); 3) the use of anti-estrogen agents to boost immune recognition of breast cancer cells; and 4) the high degree of functional plasticity within the NK cell repertoire, including the expansion of adaptive NK cells following viral challenges. The second session addressed: 1) the effectiveness of radiotherapy to enhance the proportion of patients responsive to immune-checkpoint blockers (ICBs); 2) the use of MDSC scores in selecting melanoma patients with high probability to be responsive to ICBs; and 3) the relevance of the gut microbiome as a predictive factor, and the potential of its perturbation in increasing the immune response rate to ICBs. Overall, a picture emerged of tumor heterogeneity as the main limitation that impairs the effectiveness of anti-cancer therapies. Thus, the choice of a specific therapy based on reproducible and selective predictive biomarkers is an urgent unmet clinical need that should be addressed in order to increase the proportion of long-term responding patients and to improve the sustainability of novel drugs.
Collapse
Affiliation(s)
- F De Santis
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Del Vecchio
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Unit of Melanoma Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - L Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F De Braud
- Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Di Cosimo
- Department of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Franceschini
- Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Via Manzoni 56 20089 Rozzano (Milano) Italy
| | - G Fucà
- Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - J Hiscott
- Laboratorio Pasteur, Istituto Pasteur-Fondazione Cenci-Bolognetti, 00161 Rome, Italy
| | - K J Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden; Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; The KG Jebsen Centre for Cancer Immunotherapy, University of Oslo, Oslo, Norway
| | - N McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - F Pietrantonio
- Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - L Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - C Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - C Vernieri
- Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - L Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), Villejuif, France; Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - S M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Di Nicola
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Medical Oncology Unit, Dept of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
131
|
Microbial and Nutritional Programming-The Importance of the Microbiome and Early Exposure to Potential Food Allergens in the Development of Allergies. Nutrients 2018; 10:nu10101541. [PMID: 30340391 PMCID: PMC6212882 DOI: 10.3390/nu10101541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The “microbiota hypothesis” ties the increase in allergy rates observed in highly developed countries over the last decades to disturbances in the gut microbiota. Gut microbiota formation depends on a number of factors and occurs over approximately 1000 days of life, including the prenatal period. During this period the microbiota helps establish the functional immune phenotype, including immune tolerance. The development of immune tolerance depends also on early exposure to potential food allergens, a process referred to as nutritional programming. This article elaborates on the concepts of microbial and nutritional programming and their role in the primary prevention of allergy.
Collapse
|
132
|
Yoon K, Kim N. The Effect of Microbiota on Colon Carcinogenesis. J Cancer Prev 2018; 23:117-125. [PMID: 30370256 PMCID: PMC6197845 DOI: 10.15430/jcp.2018.23.3.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Although genetic background is known to contribute to colon carcinogenesis, the exact etiology of the disease remains elusive. The organ’s extensive interaction with microbes necessitated research on the role of microbiota on development of colon cancer. In this review, we summarized the defense mechanism of colon from foreign organism, and germ-free animal models that have been employed to elucidate microbial effect. We also comprehensively discussed the metabolic property of microbiota such as butyrate production, facilitation of heme toxicity, bile acid transformation, and nitrate reduction that has been shown to contribute to the development of the tumor. Finally, up-to-date subjects such as the effect of age and gender on microbiota are briefly discussed.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
133
|
Weimer BC, Chen P, Desai PT, Chen D, Shah J. Whole Cell Cross-Linking to Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs. Front Microbiol 2018; 9:1585. [PMID: 30072965 PMCID: PMC6060266 DOI: 10.3389/fmicb.2018.01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In this study, we designed an approach to discover cognate host–microbe receptor/ligand pairs using a covalent cross-linking strategy with whole cells. Protein/protein cross-linking occurred when the interacting molecules were within 9–12 Å, allowing for identification of specific pairs of proteins from the host and microbe that define the molecular interaction during association. To validate the method three different bacteria with three previously known protein/protein partnerships were examined. The exact interactions were confirmed and led to discovery of additional partnerships that were not recognized as cognate partners, but were previously reported to be involved in bacterial interactions. Additionally, three unknown receptor/ligand partners were discovered and validated with in vitro infection assays by blocking the putative host receptor and deleting the bacterial ligand. Subsequently, Salmonella enterica sv. Typhimurium was cross-linked to differentiated colonic epithelial cells (caco-2) to discover four previously unknown host receptors bound to three previously undefined host ligands for Salmonella. This approach resulted in a priori discovery of previously unknown and biologically important molecules for host/microbe association that were casually reported to mediate bacterial invasion. The whole cell cross-linking approach promises to enable discovery of possible targets to modulate interaction of the microbiome with the host that are important in infection and commensalism, both of with initiate a host response.
Collapse
Affiliation(s)
- Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Prerak T Desai
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| | - Dong Chen
- Department of Biology, Utah State University, Logan, UT, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
134
|
Velliyagounder K, Bahdila D, Pawar S, Fine DH. Role of lactoferrin and lactoferrin‐derived peptides in oral and maxillofacial diseases. Oral Dis 2018; 25:652-669. [DOI: 10.1111/odi.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/20/2018] [Accepted: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- K Velliyagounder
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - D Bahdila
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - S Pawar
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - DH Fine
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| |
Collapse
|
135
|
Chen J, Ren Y, Li Y, Xia B. Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems. FISH & SHELLFISH IMMUNOLOGY 2018; 77:175-186. [PMID: 29609025 DOI: 10.1016/j.fsi.2018.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Bioflocs are not only a source of supplemental nutrition but also provide substantial probiotic bacteria and bioactive compounds, which play an important role in improving physiological health of aquatic organisms. A 60-day experiment was conducted to investigate the growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber in biofloc systems with different carbon sources (glucose, sucrose and starch). Control (no biofloc) and three biofloc systems were set up, and each group has three replicates. The results showed that biofloc volume (BFV) and total suspended solids (TSS) increased in the sequences of glucose > sucrose > starch and green sea cucumber > white sea cucumber during the experiment. The highest specific growth rates (SGRs) were observed in biofloc system with glucose as carbon source, which also had relatively lower glucose, lactate and cortisol levels in coelomic fluid and higher glycogen content in muscle compared to other groups. There were significant increased Bacillus and Lactobacillus counts of sea cucumber intestine in biofloc systems, and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) also showed obvious ascending trends. Significant increases in total coelomocytes counts (TCC), phagocytosis, respiratory burst, complement C3 content and lysozyme (LSZ) and acid phosphatase (ACP) activities of sea cucumber were all found in biofloc system (glucose). The expression patterns of most immune-related genes (i.e. Hsp90, Hsp70, c-type lectin (CL), toll-like receptor (TLR)) were up-regulated, suggesting the promotion of pathogen recognition ability and immune signaling pathways activation by biofloc. Furthermore, green and white sea cucumber had significantly higher survival rates in biofloc systems during the 14-day challenge test. In conclusion, biofloc technology could improve growth and physiological health of A. japonicus, by optimizing intestinal microbiota, strengthening antioxidant ability, enhancing non-specific immune response and disease resistance against pathogens, meanwhile glucose was recommended as optimal carbon source in biofloc system of sea cucumber culturing.
Collapse
Affiliation(s)
- Jinghua Chen
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yuquan Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Bin Xia
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
136
|
Nie Y, Luo F, Lin Q. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
137
|
Vujicic M, Saksida T, Despotovic S, Bajic SS, Lalić I, Koprivica I, Gajic D, Golic N, Tolinacki M, Stojanovic I. The Role of Macrophage Migration Inhibitory Factor in the Function of Intestinal Barrier. Sci Rep 2018; 8:6337. [PMID: 29679061 PMCID: PMC5910418 DOI: 10.1038/s41598-018-24706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein that is involved in the development of gut-related inflammation. To investigate the role of MIF in the function of the intestinal barrier, we have explored intestinal permeability and gut-associated immune response in MIF-deficient (MIF-KO) mice. The absence of MIF provoked impairment of tight and adherens epithelial junctions in the colon through the disturbance of E-cadherin, zonula occludens-1, occludin and claudin-2 expression, which lead to the increase of intestinal barrier permeability. In these circumstances the diversity and content of gut microbiota in MIF-KO mice was considerably different compared to wild type mice. This change in microbiota was accompanied by an increased intestinal IgA concentration and a higher production of pro-inflammatory cytokines TNF and IFN-γ in mesenteric lymph nodes of MIF-KO mice. The forced changes of microbiota executed by antibiotics prevented the "leakage" of the barrier in MIF-KO mice, probably through up-regulation of occludin expression and normalization of cellular pore diameters. In addition, cytokine secretion was normalized after the treatment with antibiotics. These results suggest that MIF participates in the maintenance of physiological microbiota diversity and immunosurveillance, which in turn enables the proper intestinal barrier function.
Collapse
Affiliation(s)
- Milica Vujicic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Sanja Despotovic
- Faculty of Medicine, University of Belgrade, Institute of Histology and Embryology, Belgrade, 11000, Serbia
| | - Svetlana Sokovic Bajic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Ivana Lalić
- Faculty of Medicine, University of Belgrade, Institute of Histology and Embryology, Belgrade, 11000, Serbia
| | - Ivan Koprivica
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Dragica Gajic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Natasa Golic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Maja Tolinacki
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Ivana Stojanovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia.
| |
Collapse
|
138
|
Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front Microbiol 2018; 9:774. [PMID: 29731748 PMCID: PMC5920026 DOI: 10.3389/fmicb.2018.00774] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.
Collapse
Affiliation(s)
- Klara Klimesova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, Prague, Czechia
| | | | | |
Collapse
|
139
|
Local growth rules can maintain metabolically efficient spatial structure throughout growth. Proc Natl Acad Sci U S A 2018; 115:3593-3598. [PMID: 29555757 DOI: 10.1073/pnas.1801853115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A ubiquitous feature of bacterial communities is the existence of spatial structures. These are often coupled to metabolism, whereby the spatial organization can improve chemical reaction efficiency. However, it is not clear whether or how a desired colony configuration, for example, one that optimizes some overall global objective, could be achieved by individual cells that do not have knowledge of their positions or of the states of all other cells. By using a model which consists of cells producing enzymes that catalyze coupled metabolic reactions, we show that simple, local rules can be sufficient for achieving a global, community-level goal. In particular, even though the optimal configuration varies with colony size, we demonstrate that cells regulating their relative enzyme levels based solely on local metabolite concentrations can maintain the desired overall spatial structure during colony growth. We also show that these rules can be very simple and hence easily implemented by cells. Our framework also predicts scenarios where additional signaling mechanisms may be required.
Collapse
|
140
|
Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, Rossetti S, Berretta M, Facchini G, Perdonà S, Turco MC, Arra C. Microbiota effects on cancer: from risks to therapies. Oncotarget 2018; 9:17915-17927. [PMID: 29707157 PMCID: PMC5915165 DOI: 10.18632/oncotarget.24681] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota, a group of 1014 bacteria, eukaryotes and virus living in gastrointestinal tract, is crucial for many physiological processes in particular plays an important role in inflammatory and immune reactions. Several internal and external factors can influence this population, and shifts in their composition, have been demonstrated to contribute and affect different diseases. During dysbiosis several bacteria related to inflammation, one of the most necessary factors in carcinogenesis; it has been shown that some bacterial strains through deregulation of different signals/pathways may affect tumor development through the production of many factors. Gut microbiota might be considered as a holistic hub point for cancer development: direct and indirect involvements have been studying in several neoplasms such as colon rectal cancer, hepatocellular carcinoma and breast cancer. This review discuss over the evidence of crosstalk between gut microbiota and cancer, its ability to modulate chemotherapy, radiotherapy and immunotherapy, and the possibility that the intestinal microbial is a new target for therapeutic approaches to improve the prognosis and quality of life of cancer patients.
Collapse
Affiliation(s)
- Domenica Rea
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Giovanni Coppola
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Giuseppe Palma
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Antonio Barbieri
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Antonio Luciano
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Paola Del Prete
- Direzione Scientifica, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Sabrina Rossetti
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO- Aviano, National Cancer Institute, Aviano, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Sisto Perdonà
- Department of Urology, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| | - Maria Caterina Turco
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Claudio Arra
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
141
|
Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol 2018; 11:47. [PMID: 29580257 PMCID: PMC5870075 DOI: 10.1186/s13045-018-0592-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy is a novel strategy for cancer treatments in recent years. However, it was observed that most patients treated with ICIs could not get benefit from the therapy, which led to the limitation of clinical application. Motivated by potent and durable efficacy of ICIs, oncologists endeavor to explore the mechanisms of resistance to ICIs and increase the drug sensitivity. It is known that heterogeneity of gut microbiome in populations may result in different outcomes of therapy. In xenograft model, bacteria in gut have been proved as a crucial factor regulating immunotherapy efficacy. And the similar phenomenon was obtained in patients. In this review, we summarized relevant advancements about gut microbiome and ICIs. Furthermore, we focused on modulatory function of gut microbiome in ICIs therapy and possible antitumor mechanism of specific commensals in ICIs treatment. We propose that gut microbiome is an important predictive factor, and manipulation of gut microbiome is feasible to elevate response rate in ICIs therapy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
142
|
Terato K, Waritani T, Fukai R, Shionoya H, Itoh H, Katayama K. Contribution of bacterial pathogens to evoking serological disease markers and aggravating disease activity in rheumatoid arthritis. PLoS One 2018; 13:e0190588. [PMID: 29408886 PMCID: PMC5800560 DOI: 10.1371/journal.pone.0190588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022] Open
Abstract
Commensal bacteria and their pathogenic components in the gastrointestinal tract and oral cavity may play pathological roles in autoimmune diseases. To study the possible involvement of bacterial pathogens in autoimmune diseases, IgG and IgA antibodies against pathogenic components produced by three strains of commensal bacteria, Escherichia coli-lipopolysaccharide (E. coli-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and peptidoglycan polysaccharide (PG-PS) from Streptococcus pyogenes, were determined by an improved ELISA system for sera from two groups of patients with rheumatoid arthritis (RA), who met rapid radiographic progression (RRP) criteria and non-RRP, and compared to normal (NL) controls. Antibody responses to these bacterial pathogens are unique and consistent in individuals, and no fundamental difference was observed between RA and NL controls. Despite the similar antibody responses to pathogens, lower IgG or higher IgA and consequent higher IgA/IgG antibody ratio among the patients with RA related to disease marker levels and disease activity. Peculiarly, the IgA/IgG anti-Pg-LPS antibody ratio resulted from lower IgG and higher IgA antibody responses to Pg-LPS strongly correlated not only with rheumatoid factor (RF), but also correlated with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and disease activity score of 28 joints with ESR (DAS28-ESR) in the RRP group. In contrast, the IgA/IgG anti-E. coli-LPS and anti-PG-PS antibody ratio correlated or tended to correlate with RF, ESR, CRP, and DAS28-ESR in the non-RRP group, whereas either the IgG or IgA anti-Pg-LPS antibody levels and consequent IgA/IgG anti-Pg-LPS antibody ratio did not correlate with any clinical marker levels in this group. Notably, anti-circular-citrullinated peptide (CCP) antibody levels, which did not correlate with either IgG or IgA antibody levels to any pathogens, did not correlate with severity of arthritis in both RRP and non-RRP. Taken together, we propose that multiple environmental pathogens, which overwhelm the host antibody defense function, contribute independently or concomitantly to evoking disease makers and aggravating disease activity, and affect disease outcomes. TRIAL REGISTRATION UMIN CTR UMIN000012200.
Collapse
Affiliation(s)
- Kuniaki Terato
- Department of Research and Development, Chondrex Inc. Redmond, WA, United States of America
| | - Takaki Waritani
- Department of Research and Development, Chondrex Inc. Redmond, WA, United States of America
| | | | - Hiroshi Shionoya
- Research Lab Section 5, Asama Chemicals Inc. Chiyoda, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Orthopedic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kou Katayama
- Katayama Orthopedic Rheumatology Clinic, Asahikawa, Hokkaido, Japan
| |
Collapse
|
143
|
Springer S, Zieger M, Hipler UC, König K, Lademann J, Kaatz M, Koehler MJ. Non‐invasive evaluation of human mucosal structures by multiphoton laser scanning tomography in vitro. Skin Res Technol 2018; 24:445-449. [DOI: 10.1111/srt.12451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Affiliation(s)
- S. Springer
- Department of DermatologyUniversity Hospital Jena Jena Germany
| | - M. Zieger
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Wald‐Klinikum Gera GmbH Gera GmbH Germany
| | - U. C. Hipler
- Department of DermatologyUniversity Hospital Jena Jena Germany
| | | | - J. Lademann
- Department of Dermatology, Venereology and AllergologyCenter of Experimental and Cutaneous Physiology (CCP)Charité‐Universitätsmedizin Berlin Berlin Germany
| | - M. Kaatz
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Wald‐Klinikum Gera GmbH Gera GmbH Germany
| | - M. J. Koehler
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Zentralklinikum Suhl Suhl Germany
| |
Collapse
|
144
|
Mandal P. Molecular mechanistic pathway of colorectal carcinogenesis associated with intestinal microbiota. Anaerobe 2018; 49:63-70. [DOI: 10.1016/j.anaerobe.2017.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/24/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
|
145
|
Slate AJ, Wickens DJ, El Mohtadi M, Dempsey-Hibbert N, West G, Banks CE, Whitehead KA. Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications. Sci Rep 2018; 8:1497. [PMID: 29367635 PMCID: PMC5784091 DOI: 10.1038/s41598-018-20013-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Severely broken bones often require external bone fixation pins to provide support but they can become infected. In order to reduce such infections, novel solutions are required. Titanium zirconium nitride (Ti-ZrN) and Ti-ZrN silver (Ti-ZrN/Ag) coatings were deposited onto stainless steel. Surface microtopography demonstrated that on the silver containing surfaces, Sa and Sv values demonstrated similar trends whilst the Ra, average height and RMS value and Sp values increased with increasing silver concentration. On the Ti-ZrN/Ag coatings, surface hydrophobicity followed the same trend as the Sa and Sv values. An increase in dead Staphylococcus aureus and Staphylococcus epidermidis cells was observed on the coatings with a higher silver concentration. Using CTC staining, a significant increase in S. aureus respiration on the silver containing surfaces was observed in comparison to the stainless steel control whilst against S. epidermidis, no significant difference in viable cells was observed across the surfaces. Cytotoxicity testing revealed that the TiZrN coatings, both with and without varying silver concentrations, did not possess a detrimental effect to a human monocyte cell line U937. This work demonstrated that such coatings have the potential to reduce the viability of bacteria that result in pin tract infections.
Collapse
Affiliation(s)
- Anthony J Slate
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | | | - Mohamed El Mohtadi
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina Dempsey-Hibbert
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Glen West
- Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Craig E Banks
- School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
146
|
Cheng M, Hu S, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, Lin Y, Zhang M, Tao R, Zhong J. Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation. Oncotarget 2018; 7:35643-35654. [PMID: 27224922 PMCID: PMC5094951 DOI: 10.18632/oncotarget.9543] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Neddylation, a newly identified post-translational modification, is significant for the activity and stability of target proteins. The exact role of neddylation in the pathogenesis of inflammatory bowel disease, specifically those mediated by dendritic cells (DCs), was still rarely reported. Here, we showed that inhibition of neddylation protected mice from mucosal inflammation. Targeting neddylation also inhibited DC maturation characterized by reduced cytokine production, down-regulated costimulatory molecules and suppressed capacity in allogeneic T cell stimulation. Additionally, inactivation of neddylation promotes caspase dependent apoptosis of DCs. These phenomena were attributed to the inactivation of mTOR, which was caused by Cullin-1 deneddylation induced Deptor accumulation. Together, our findings revealed that neddylation inhibition suppressed DC functions through mTOR signaling pathway and provided a potential therapeutic opportunity in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shurong Hu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofei Pei
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiqiang Liu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sichang Zheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Lin
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
147
|
Sherwani MA, Tufail S, Muzaffar AF, Yusuf N. The skin microbiome and immune system: Potential target for chemoprevention? PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:25-34. [PMID: 28766918 PMCID: PMC7289174 DOI: 10.1111/phpp.12334] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
There has been increasing interest in understanding the role of the human microbiome in skin diseases. Microbiome studies are being utilized in skin cancer research in numerous ways. Commensal bacteria are being studied as a potential tool to judge the biggest environmental risk of skin cancer, ultraviolet (UV) radiation. Owing to the recognized link of skin microbes in the process of inflammation, there have been theories linking commensal bacteria to skin cancer. Viral metagenomics has also provided insight into virus linked forms of skin cancers. Speculations can be drawn for skin microbiome that in a manner similar to gut microbiome, they can be involved in chemoprevention of skin cancer. Nonetheless, there are definitely huge gaps in our knowledge of the relationship of microbiome and skin cancers, especially in relation to chemoprevention. The utilization of microbiome in skin cancer research seems to be a promising field and may help yield novel skin cancer prevention and treatment options. This review focuses on recent utilization of the microbiome in skin cancer research, and it explores the potential of utilizing the microbiome in prevention, earlier diagnosis, and treatment of skin cancers.
Collapse
Affiliation(s)
| | - Saba Tufail
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | | | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
148
|
Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis. Mediators Inflamm 2017; 2017:5047403. [PMID: 29445257 PMCID: PMC5763206 DOI: 10.1155/2017/5047403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/24/2017] [Accepted: 10/22/2017] [Indexed: 12/16/2022] Open
Abstract
A genuine microbiota resides in the lungs which emanates from the colonization by the oropharyngeal microbiota. Changes in the oropharyngeal microbiota might be the source of dysbiosis observed in the lower airways in patients suffering from asthma or cystic fibrosis (CF). To examine this hypothesis, we compared the throat microbiota from healthy children (n = 62) and that from children with asthma (n = 27) and CF (n = 57) aged 6 to 12 years using 16S rRNA amplicon sequencing. Our results show high levels of similarities between healthy controls and children with asthma and CF revealing the existence of a core microbiome represented by Prevotella, Streptococcus, Neisseria, Veillonella, and Haemophilus. However, in CF, the global diversity, the bacterial load, and abundances of 53 OTUs were significantly reduced, whereas abundances of 6 OTUs representing opportunistic pathogens such as Pseudomonas, Staphylococcus, and Streptococcus were increased compared to those in healthy controls controls and asthmatics. Our data reveal a core microbiome in the throat of healthy children that persists in asthma and CF indicating shared host regulation favoring growth of commensals. Furthermore, we provide evidence for dysbiosis with a decrease in diversity and biomass associated with the presence of known pathogens consistent with impaired host defense in children with CF.
Collapse
|
149
|
Rubio CA, Langner C, Schmidt PT. Partial to complete abrogation of the subepithelial macrophage barrier against the gut microbiota in patients with ulcerative colitis and Crohn's colitis. Histopathology 2017; 72:580-587. [PMID: 29023984 DOI: 10.1111/his.13417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023]
Abstract
AIMS The integrity of the band of indigenous macrophages in the subepithelial layer of the lamina propria (SLP) is crucial in preventing the commensal gut microbiota from attacking the host. The breakdown of the SLP macrophage barrier results in microbiota inflow and improper immune responses; this might lead to inflammatory bowel disease (IBD). During inflammation, the SLP macrophage barrier is reinforced by inflammation-elicited macrophages (IEMs), which are derived from blood-circulating monocytes. The aim was to explore the characteristics of the SLP macrophage band in a cohort of biopsies without inflammation, in patients with ulcerative colitis in remission (UCre), and in patients with right-sided Crohn's colitis (RCC). METHODS AND RESULTS Endoscopic biopsies were taken from endoscopically normal descending colon in 247 patients; 80 with IBD (27 UCre and 53 RCC), and 167 without IBD [90 had colonic diarrhoea, 63 were enrolled in a colorectal cancer (CRC) surveillance programme, seven had microscopic colitis in remission, and seven had miscellaneous colonic ailments]. Sections showed no inflammatory changes; they were immunostained with CD68. Among patients with UCre and RCC, the SLP band of CD68+ macrophages was fragmented or minute in 59% (47/80) and negative in 9% (7/80). In contrast, only 31% (51/167) of the biopsies from control patients had a fragmented/minute SLP band of CD68+ macrophages, and none had a negative SLP band of CD68+ macrophages (IBD versus controls, P < 0.05). CONCLUSIONS The finding that the SLP macrophage barrier was fragmented to totally abrogated in UCre and RCC patients suggests a longlasting defect in the SLP CD68+ macrophage barrier in these patients. The lack of ongoing inflammation in colonic biopsies should rule out the participation of bone marrow-derived IEMs in the abrogation of the SLP macrophage barrier reported here.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Cord Langner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter T Schmidt
- Department of Medicine, Karolinska Institute, Centre for Digestive Diseases, University Hospital, Stockholm, Sweden
| |
Collapse
|
150
|
Xiong M, Bao Y, Xu X, Wang H, Han Z, Wang Z, Liu Y, Huang S, Song Z, Chen J, Peek RM, Yin L, Chen LF, Cheng J. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc Natl Acad Sci U S A 2017; 114:12675-12680. [PMID: 29133389 PMCID: PMC5715757 DOI: 10.1073/pnas.1710408114] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Current clinical treatment of Helicobacter pylori infection, the main etiological factor in the development of gastritis, gastric ulcers, and gastric carcinoma, requires a combination of at least two antibiotics and one proton pump inhibitor. However, such triple therapy suffers from progressively decreased therapeutic efficacy due to the drug resistance and undesired killing of the commensal bacteria due to poor selectivity. Here, we report the development of antimicrobial polypeptide-based monotherapy, which can specifically kill H. pylori under acidic pH in the stomach while inducing minimal toxicity to commensal bacteria under physiological pH. Specifically, we designed a class of pH-sensitive, helix-coil conformation transitionable antimicrobial polypeptides (HCT-AMPs) (PGA)m-r-(PHLG-MHH)n, bearing randomly distributed negatively charged glutamic acid and positively charged poly(γ-6-N-(methyldihexylammonium)hexyl-l-glutamate) (PHLG-MHH) residues. The HCT-AMPs showed unappreciable toxicity at physiological pH when they adopted random coiled conformation. Under acidic condition in the stomach, they transformed to the helical structure and exhibited potent antibacterial activity against H. pylori, including clinically isolated drug-resistant strains. After oral gavage, the HCT-AMPs afforded comparable H. pylori killing efficacy to the triple-therapy approach while inducing minimal toxicity against normal tissues and commensal bacteria, in comparison with the remarkable killing of commensal bacteria by 65% and 86% in the ileal contents and feces, respectively, following triple therapy. This strategy renders an effective approach to specifically target and kill H. pylori in the stomach while not harming the commensal bacteria/normal tissues.
Collapse
Affiliation(s)
- Menghua Xiong
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yan Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Jiangsu, China 215123
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhiyuan Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhiyu Wang
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yeqing Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China 510120
| | - Songyin Huang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China 510120
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jinjing Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Jiangsu, China 215123;
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Jiangsu, China 215123
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|