101
|
Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci U S A 2013; 110:E4894-903. [PMID: 24282297 DOI: 10.1073/pnas.1308905110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coordination of cell metabolism and immune signals is crucial for lymphocyte priming. Emerging evidence also highlights the importance of cell metabolism for the activation of innate immunity upon pathogen challenge, but there is little evidence of how this process contributes to immune cell development. Here we show that differentiation of dendritic cells (DCs) from bone marrow precursors is associated with dynamic regulation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling and cell metabolism. Unexpectedly, enhancing mTORC1 activity via ablation of its negative regulator tuberous sclerosis 1 (Tsc1) impaired DC development in vivo and in vitro, associated with defective cell survival and proliferation. Moreover, Tsc1 deficiency caused DC spontaneous maturation but a propensity to differentiate into other lineages, and attenuated DC-mediated effector TH1 responses. Mechanistically, Tsc1-deficient DCs exhibited increased glycolysis, mitochondrial respiration, and lipid synthesis that were partly mediated by the transcription factor Myc, highlighting a key role of Tsc1 in modulating metabolic programming of DC differentiation. Further, Tsc1 signaled through Rheb to down-regulate mTORC1 for proper DC development, whereas its effect at modulating mTOR complex 2 (mTORC2) activity was largely dispensable. Our results demonstrate that the interplay between Tsc1-Rheb-mTORC1 signaling and Myc-dependent bioenergetic and biosynthetic activities constitutes a key metabolic checkpoint to orchestrate DC development.
Collapse
|
102
|
Geissler EK. The influence of mTOR inhibitors on immunity and the relationship to post-transplant malignancy. Transplant Res 2013; 2:S2. [PMID: 24565200 PMCID: PMC3834556 DOI: 10.1186/2047-1440-2-s1-s2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The known role of mammalian target of rapamycin (mTOR) in the immune response has been rapidly evolving, from what was once thought to be a simple immunosuppressive antiproliferative effect on T cells to a very complex central role that serves to integrate multiple signals given to T cells, B cells and antigen-presenting cells. The complexity of this topic is demonstrated by recent data suggesting that mTOR inhibition can either inhibit or promote certain aspects of immune responses, depending on the nature of the antigenic stimulus, and the environmental conditions cueing the cellular immunological players. There is even evidence that, under mTOR inhibition, an immune response to one foreign entity (for example, an organ transplant) may be simultaneously completely different to that of another (for example, tumour or microorganism). To understand how this might be possible, it is necessary to investigate the central role that mTOR seems to have in shaping the immune response. This review is aimed at examining how mTOR controls the development and function of key immune cells, and puts this information primarily in the context of organ transplant rejection and post-transplant malignancy.
Collapse
|
103
|
Ramos MI, Tak PP, Lebre MC. Fms-like tyrosine kinase 3 ligand-dependent dendritic cells in autoimmune inflammation. Autoimmun Rev 2013; 13:117-24. [PMID: 24113138 DOI: 10.1016/j.autrev.2013.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are specialized in capture, processing and presentation of antigens to T cells. Depending on the type of DC and its activation state, the interaction of DCs with naive T cells can lead to different types of immune response, or to T-cell tolerance. The existence of many specialized subtypes of DCs with particular functions has raised the need to distinguish DCs formed in steady-state from those produced during an inflammatory response. In patients with autoimmune disease and in experimental animal models of autoimmunity, DCs show abnormalities in both numbers and activation state, expressing immunogenic levels of co-stimulatory molecules and pro-inflammatory cytokines. Initial in vitro studies of cytokines in DC development revealed distinct and important roles for the receptor tyrosine kinases, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF, also called CSF1) and fms-like tyrosine kinase 3 ligand (Flt3L) in the generation of DCs. Flt3L is critical for instructing DC generation throughout different organs and regulates DC development from Flt3(+) lymphoid and myeloid-committed progenitors to DCs in vivo. The aim of this review is to provide an overview of the role of Flt3L-dependent DCs in the immunopathogenesis of autoimmunity and chronic inflammation and its potential as therapeutic targets.
Collapse
Affiliation(s)
- M I Ramos
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
104
|
Persson EK, Scott CL, Mowat AM, Agace WW. Dendritic cell subsets in the intestinal lamina propria: ontogeny and function. Eur J Immunol 2013; 43:3098-107. [PMID: 23966272 PMCID: PMC3933733 DOI: 10.1002/eji.201343740] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
The intestinal mucosa is exposed to large amounts of foreign antigen (Ag) derived from commensal bacteria, dietary Ags, and intestinal pathogens. Dendritic cells (DCs) are believed to be involved in the induction of tolerance to harmless Ags and in mounting protective immune responses to pathogens and, as such, to play key roles in regulating intestinal immune homeostasis. The characterization of classical DCs (cDCs) in the intestinal lamina propria has been under intense investigation in recent years but the use of markers (including CD11c, CD11b, MHC class II), which are also expressed by intestinal MΦs, has led to some controversy regarding their definition. Here we review recent studies that help to distinguish cDCs subsets from monocyte-derived cells in the intestinal mucosa. We address the phenotype and ontogeny of these cDC subsets and highlight recent findings indicating that these subsets play distinct roles in the regulation of mucosal immune responses in vivo.
Collapse
Affiliation(s)
- Emma K Persson
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
105
|
Soliman GA. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 2013; 5:2231-57. [PMID: 23783557 PMCID: PMC3725503 DOI: 10.3390/nu5062231] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022] Open
Abstract
The mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase which is a member of the PI3K related kinase (PIKK) family. mTOR emerged as a central node in cellular metabolism, cell growth, and differentiation, as well as cancer metabolism. mTOR senses the nutrients, energy, insulin, growth factors, and environmental cues and transmits signals to downstream targets to effectuate the cellular and metabolic response. Recently, mTOR was also implicated in the regulation of both the innate and adaptive immune responses. This paper will summarize the current knowledge of mTOR, as related to the immune microenvironment and immune responses.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Health Promotion, Social and Behavioral Health Sciences, College of Public Health, University of Nebraska Medical Center, 984365 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
106
|
Guo F, Zhang S, Grogg M, Cancelas JA, Varney ME, Starczynowski DT, Du W, Yang JQ, Liu W, Thomas G, Kozma S, Pang Q, Zheng Y. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 2013; 98:1353-8. [PMID: 23716557 DOI: 10.3324/haematol.2012.080424] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis.
Collapse
Affiliation(s)
- Fukun Guo
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Li HS, Watowich SS. Diversification of dendritic cell subsets: Emerging roles for STAT proteins. JAKSTAT 2013; 2:e25112. [PMID: 24416644 PMCID: PMC3876424 DOI: 10.4161/jkst.25112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023] Open
Abstract
The term dendritic cell (DC) refers to a population of hematopoietic cells with critical roles in immunity, including immune activation in response to pathogen-elicited danger signals and immune tolerance. Aberrant DC activity is an important contributing factor in autoimmunity, while severe DC depletion accompanies certain immunodeficiency conditions. By contrast, DCs have become attractive candidates to manipulate in immune therapy. Recent studies show that STAT transcription factors have unique roles in DCs, a feature that might be exploited in future DC-based therapies. Here, we focus on the functions of STAT1, STAT3, and STAT5 in DC generation and DC-mediated immune responses.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Stephanie S Watowich
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA ; The University of Texas Graduate School of Biomedical Sciences; Houston, TX USA
| |
Collapse
|
108
|
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2013; 249:43-58. [PMID: 22889214 DOI: 10.1111/j.1600-065x.2012.01152.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
109
|
Abstract
Histiocytic disorders represent a group of complex pathologies characterized by the accumulation of histiocytes, an old term for tissue-resident macrophages and dendritic cells. Langerhans cell histiocytosis is the most frequent of histiocytosis in humans and has been thought to arise from the abnormal accumulation of epidermal dendritic cells called Langerhans cells. In this chapter, we discuss the origin and differentiation of Langerhans cells and dendritic cells and present accumulated evidence that suggests that Langerhans cell histiocytosis does not result from abnormal Langerhans cell homeostasis but rather is a consequence of misguided differentiation programs of myeloid dendritic cell precursors. We propose reclassification of Langerhans cell histiocytosis, juvenile xanthogranuloma, and Erdheim-Chester disease as inflammatory myeloid neoplasias.
Collapse
|
110
|
Li HS, Greeley N, Sugimoto N, Liu YJ, Watowich SS. miR-22 controls Irf8 mRNA abundance and murine dendritic cell development. PLoS One 2012; 7:e52341. [PMID: 23251709 PMCID: PMC3522651 DOI: 10.1371/journal.pone.0052341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/15/2012] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of many cellular responses, through the action of miRNA-induced silencing complex (miRISC)- or miRNA ribonucleoprotein complex (miRNP)-mediated gene repression. Here we studied the role of miRNAs in the development of dendritic cells (DCs), an important immune cell type that is divided into conventional DC (cDC) and plasmacytoid DC (pDC) subsets. We found that miR-22 was highly expressed in mouse CD11c+ CD11b+ B220− cDCs compared to pDCs, and was induced in DC progenitor cell cultures with GM-CSF, which stimulate CD11c+ CD11b+ B220− cDC differentiation. Enforced overexpression of miR-22 during DC development enhanced CD11c+ CD11b+ B220− cDC generation at the expense of pDCs, while miR-22 knockdown demonstrated opposite effects. Moreover, overexpression and knockdown of miR-22 showed significant effects on the mRNA abundance of Irf8, which encodes the transcription factor IRF8 that plays essential roles in DC development. Luciferase reporter assays confirmed that miR-22 binds directly to the 3′UTR of the mouse Irf8 mRNA. Collectively, these results suggest that miR-22 targets Irf8 mRNA for posttranscriptional repression and controls DC subset differentiation.
Collapse
Affiliation(s)
- Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HSL); (SSW)
| | - Nathaniel Greeley
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Naoshi Sugimoto
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, United States of America
| | - Yong-Jun Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, United States of America
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail: (HSL); (SSW)
| |
Collapse
|
111
|
Abstract
The PI3K/Akt/mTOR pathway has emerged as a critical regulator of dendritic cell (DC) development and function. The kinase mTOR is found in 2 distinct complexes, mTORC1 and mTORC2. In this study, we show that mTORC1 but not mTORC2 is required for epidermal Langerhans cell (LC) homeostasis. Although the initial seeding of the epidermis with LCs is not affected, the lack of mTORC1 activity in DCs by conditional deletion of Raptor leads to a progressive loss of LCs in the skin of mice. Ablation of mTORC2 function by deletion of Rictor results in a modest reduction of LCs in skin draining lymph nodes. In young mice Raptor-deficient LCs show an increased tendency to leave the skin, leading to a higher frequency of migratory DCs in skin draining lymph nodes, indicating that the loss of LCs results from enhanced migration. LCs lacking Raptor are smaller and display reduced expression of Langerin, E-cadherin, β-catenin, and CCR7 but unchanged levels of MHC-II, ruling out enhanced spontaneous maturation. Ki-67 and annexin V stainings revealed a faster turnover rate and increased apoptosis of Raptor-deficient LCs, which might additionally affect the preservation of the LC network. Taken together our results show that the homeostasis of LCs strictly depends on mTORC1.
Collapse
|
112
|
PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood 2012; 120:4982-91. [PMID: 23091295 DOI: 10.1182/blood-2012-02-413229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are considered potential tools or targets for immunotherapy. However, current knowledge concerning methodologies to manipulate their development or function remains limited. Here, we investigated the role of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mammalian target of rapamycin (mTOR) axis in human pDC development, survival, and function. In vitro pDC generation from human cord blood-derived CD34(+) hematopoietic progenitors was reduced by pharmacologic inhibition of PI3K, PKB, or mTOR activity, and peripheral blood pDCs required PI3K-PKB-mTOR signaling to survive. Accordingly, activity of this pathway in circulating pDCs correlated with their abundance in peripheral blood. Importantly, introduction of constitutively active PKB or pharmacologic inhibition of negative regulator phosphatase and tensin homolog (PTEN) resulted in increased pDC numbers in vitro and in vivo. Furthermore, MHC class II and costimulatory molecule expression, and production of IFN-α and TNF-α, were augmented, which could be explained by enhanced IRF7 and NF-κB activation. Finally, the numerically and functionally impaired pDCs of chronic hepatitis B patients demonstrated reduced PI3K-PKB-mTOR activity. In conclusion, intact PI3K-PKB-mTOR signaling regulates development, survival, and function of human pDCs, and pDC development and functionality can be promoted by PI3K-PKB hyperactivation. Manipulation of this pathway or its downstream targets could be used to improve the generation and function of pDCs to augment immunity.
Collapse
|
113
|
The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin. Cell Mol Immunol 2012; 9:446-54. [PMID: 23085949 DOI: 10.1038/cmi.2012.48] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dendritic cells (DCs) are immune cells specialized to capture, process and present antigen to T cells in order to initiate an appropriate adaptive immune response. The study of mouse DC has revealed a heterogeneous population of cells that differ in their development, surface phenotype and function. The study of human blood and spleen has shown the presence of two subsets of conventional DC including the CD1b/c(+) and CD141(+)CLEC9A(+) conventional DC (cDC) and a plasmacytoid DC (pDC) that is CD304(+)CD123(+). Studies on these subpopulations have revealed phenotypic and functional differences that are similar to those described in the mouse. In this study, the three DC subsets have been generated in vitro from human CD34(+) precursors in the presence of fms-like tyrosine kinase 3 ligand (Flt3L) and thrombopoietin (TPO). The DC subsets so generated, including the CD1b/c(+) and CLEC9A(+) cDCs and CD123(+) pDCs, were largely similar to their blood and spleen counterparts with respect to surface phenotype, toll-like receptor and transcription factor expression, capacity to stimulate T cells, cytokine secretion and cross-presentation of antigens. This system may be utilized to study aspects of DC development and function not possible in vivo.
Collapse
|
114
|
Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL, Pearce EJ. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2151-8. [PMID: 22826320 PMCID: PMC3424310 DOI: 10.4049/jimmunol.1103741] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are potent inducers of T cell immunity, and autologous DC vaccination holds promise for the treatment of cancers and chronic infectious diseases. In practice, however, therapeutic vaccines of this type have had mixed success. In this article, we show that brief exposure to inhibitors of mechanistic target of rapamycin (mTOR) in DCs during the period that they are responding to TLR agonists makes them particularly potent activators of naive CD8+ T cells and able to enhance control of B16 melanoma in a therapeutic autologous vaccination model in the mouse. The improved performance of DCs in which mTOR has been inhibited is correlated with an extended life span after activation and prolonged, increased expression of costimulatory molecules. Therapeutic autologous vaccination with DCs treated with TLR agonists plus the mTOR inhibitor rapamycin results in improved generation of Ag-specific CD8+ T cells in vivo and improved antitumor immunity compared with that observed with DCs treated with TLR agonists alone. These findings define mTOR as a molecular target for augmenting DC survival and activation, and document a novel pharmacologic approach for enhancing the efficacy of therapeutic autologous DC vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immunotherapy, Adoptive/methods
- Lipopolysaccharides/physiology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/physiology
- Transplantation, Autologous
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Eyal Amiel
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Lewis KL, Reizis B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb Perspect Biol 2012; 4:a007401. [PMID: 22855722 DOI: 10.1101/cshperspect.a007401] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) link innate immune sensing of the environment to the initiation of adaptive immune responses. Given their supreme capacity to interact with and present antigen to T cells, DCs have been proposed as key mediators of immunological tolerance in the steady state. However, recent evidence suggests that the role of DCs in central and peripheral T-cell tolerance is neither obligate nor dominant. Instead, DCs appear to regulate multiple aspects of T-cell physiology including tonic antigen receptor signaling, priming of effector T-cell response, and the maintenance of regulatory T cells. These diverse contributions of DCs may reflect the significant heterogeneity and "division of labor" observed between and within distinct DC subsets. The emerging complex role of different DC subsets should form the conceptual basis of DC-based therapeutic approaches toward induction of tolerance or immunization.
Collapse
Affiliation(s)
- Kanako L Lewis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, 10032, USA
| | | |
Collapse
|
116
|
Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I. Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 2012; 42:1226-36. [PMID: 22539295 DOI: 10.1002/eji.201142053] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells(DCs) are important sentinels of the immune system and frequently reside in areas of low oxygen availability, in particular in the course of inflammatory processes. Hypoxia-inducible transcription factor (HIF)1α is responsible for major alterations in gene expression as part of the cellular adaptation to low oxygen concentration. In this study, we generated mice with a conditional deletion of HIF1α in DCs. Bone marrow-derived DCs from WT and conditional mutant mice expressed elevated levels of major histocompatibility complex class II and CD86 when grown in a hypoxic environment, whereas production of the cytokines interleukin (IL)-12p70, IL-10, IL-6, TNF-α, IL-1β, and IL-23 was reduced, both independent of HIF1α expression. In contrast, secretion of IL-22 was strongly enhanced under hypoxic conditions in an HIF1α-dependent manner. The chemokine receptor CCR7 was expressed at higher levels in wild-type DCs compared with HIF1α-deficient DCs, whereas the production of CCL17 and CCL22 was increased in conditions of low oxygen. Using in vitro as well as in vivo migration assays, we observed an enhanced migratory capability of DCs generated under hypoxia, which was HIF1α-dependent. Taken together, our data indicate that HIF1α plays an important role for DC differentiation and migration in a low oxygen environment.
Collapse
Affiliation(s)
- Theresa Köhler
- Molecular Immunology, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
117
|
Abstract
DCs have a vital role in the immune system by recognizing exogenous or self-antigens and eliciting appropriate stimulatory or tolerogenic adaptive immune responses. DCs also contribute to human autoimmune disease and, when depleted, to immunodeficiency. Moreover, DCs are being explored for potential use in clinical therapies including cancer treatment. Thus, understanding the molecular mechanisms that regulate DCs is crucial to improving treatments for human immune disease and cancer. DCs constitute a heterogeneous population including plasmacytoid (pDC) and classic (cDC) subsets; however, the majority of DCs residing in lymphoid organs and peripheral tissues in steady state share common progenitor populations, originating with hematopoietic stem cells. Like other hematopoietic lineages, DCs require extracellular factors including cytokines, as well as intrinsic transcription factors, to control lineage specification, commitment, and maturation. Here, we review recent findings on the roles for cytokines and cytokine-activated STAT transcription factors in DC subset development. We also discuss how cytokines and STATs intersect with lineage-regulatory transcription factors and how insight into the molecular basis of human disease has revealed transcriptional regulators of DCs. Whereas this is an emerging area with much work remaining, we anticipate that knowledge gained by delineating cytokine and transcription factor mechanisms will enable a better understanding of DC subset diversity, and the potential to manipulate these important immune cells for human benefit.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
118
|
Ohtani M, Hoshii T, Fujii H, Koyasu S, Hirao A, Matsuda S. Cutting edge: mTORC1 in intestinal CD11c+ CD11b+ dendritic cells regulates intestinal homeostasis by promoting IL-10 production. THE JOURNAL OF IMMUNOLOGY 2012; 188:4736-40. [PMID: 22504639 DOI: 10.4049/jimmunol.1200069] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mammalian target of rapamycin (mTOR) controls cell growth and survival through two distinct complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although several reports have suggested the involvement of mTORC1 in development and function of dendritic cells (DCs), its physiological roles remain obscure. We therefore established mTORC1 signal-deficient mice lacking Raptor, an essential component of mTORC1 signal, specifically in DC lineage (referred to here as Raptor(DC-/-)). Raptor(DC-/-) mice exhibited cell expansion in specific subsets of DCs such as splenic CD8(+) DCs and intestinal CD11c(+)CD11b(+) DCs. We also found that impaired mTORC1 signal resulted in the suppression of IL-10 production along with enhanced CD86 expression in intestinal CD11c(+)CD11b(+) DCs and that Raptor(DC-/-) mice were highly susceptible to dextran sodium sulfate-induced colitis. Our results uncover mTORC1-mediated anti-inflammatory programs in intestinal CD11c(+)CD11b(+) DCs to limit the intestinal inflammation.
Collapse
Affiliation(s)
- Masashi Ohtani
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119:3383-93. [PMID: 22323450 DOI: 10.1182/blood-2011-11-370130] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset–specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF–induced signaling provide a molecular explanation for GM-CSF–dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF–differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF–dependent DC-based strategies to regulate immunity.
Collapse
|
120
|
Abstract
Th1 immunity protects against tuberculosis infection in mice and humans. The widely used BCG vaccine primes CD4 and CD8 T cells through signaling mechanisms from dendritic cells and macrophages. The latter express MHC-II and MHC-I molecules through which peptides from BCG vaccine are presented to CD4 and CD8 T cells, respectively. Since BCG sequesters within a phagosome that does not fuse with lysosomes, generation of peptides within antigen-presenting cells infected with BCG occurs with reduced efficiency. We demonstrate that activation of DCs containing BCG vaccine with rapamycin leads to an enhanced ability of DC vaccines to immunize mice against tuberculosis. Coadministration of rapamycin with BCG vaccine also enhanced Th1 immunity. We propose that rapamycin-mediated increase in Th1 responses offers novel models to study mTOR-mediated regulation of immunity.
Collapse
|
121
|
Abstract
Dendritic cells (DCs) represent a unique collection of innate immune cells present throughout the body as distinct subpopulations generally sharing the functions of pathogen recognition, cytokine production, and antigen presentation. A large body of work in recent years has examined DC functions during infection with Listeria monocytogenes (Lm), particularly in the murine model. Here, I review several aspects of DC biology in this model, with particular emphasis on the role DCs play in the establishment of a productive Lm infection and the role of DCs as cytokine producers and antigen-presenting cells in this system.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
122
|
Miloud T, Fiegler N, Suffner J, Hämmerling GJ, Garbi N. Organ-specific cellular requirements for in vivo dendritic cell generation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1125-35. [PMID: 22198954 DOI: 10.4049/jimmunol.1003920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived dendritic cell (DC) precursors seed peripheral organs, where they encounter diverse cellular environments during their final differentiation into DCs. Flt3 ligand (Flt3-L) is critical for instructing DC generation throughout different organs. However, it remains unknown which cells produce Flt3-L and, importantly, which cellular source drives DC development in such a variety of organs. Using a novel BAC transgenic Flt3-L reporter mouse strain coexpressing enhanced GFP and luciferase, we show ubiquitous Flt3-L expression in organs and cell types. These results were further confirmed at the protein level. Although Flt3-L was produced by immune and nonimmune cells, the source required for development of the DC compartment clearly differed among organs. In lymphoid organs such as the spleen and bone marrow, Flt3-L production by hemopoietic cells was critical for generation of normal DC numbers. This was unexpected for the spleen because both immune and nonimmune cells equally contributed to the Flt3-L content in that organ. Thus, localized production rather than the total tissue content of Flt3-L in spleen dictated normal splenic DC development. No differences were observed in the number of DC precursors, suggesting that the immune source of Flt3-L promoted pre-cDC differentiation in spleen. In contrast, DC generation in the lung, kidney, and pancreas was mostly driven by nonhematopoietic cells producing Flt3-L, with little contribution by immune cells. These findings demonstrate a high degree of flexibility in Flt3-L-dependent DC generation to adapt this process to organ-specific cellular environments encountered by DC precursors during their final differentiation.
Collapse
Affiliation(s)
- Tewfik Miloud
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg 60120, Germany
| | | | | | | | | |
Collapse
|
123
|
Araki K, Ellebedy AH, Ahmed R. TOR in the immune system. Curr Opin Cell Biol 2011; 23:707-15. [PMID: 21925855 PMCID: PMC3241972 DOI: 10.1016/j.ceb.2011.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 01/05/2023]
Abstract
The target of rapamycin (TOR) is a crucial intracellular regulator of the immune system. Recent studies have suggested that immunosuppression by TOR inhibition may be mediated by modulating differentiation of both effector and regulatory CD4 T cell subsets. However, it was paradoxically shown that inhibiting TOR signaling has immunostimulatory effects on the generation of long-lived memory CD8 T cells. Beneficial effects of TOR inhibition have also been observed with dendritic cells and hematopoietic stem cells. This immune modulation may contribute to lifespan extension seen in mice with mTOR inhibition. Here, we review recent findings on TOR modulation of innate and adaptive immune responses, and discuss potential applications of regulating TOR to provide longer and healthier immunity.
Collapse
Affiliation(s)
- Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University of School of Medicine
| | - Ali H. Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University of School of Medicine
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University of School of Medicine
| |
Collapse
|
124
|
Abstract
mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells.
Collapse
Affiliation(s)
- Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
125
|
Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011; 35:323-35. [PMID: 21943488 DOI: 10.1016/j.immuni.2011.09.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Indexed: 12/17/2022]
Abstract
Macrophage and dendritic cell (DC) are hematopoietic cells found in all tissues in the steady state that share the ability to sample the environment but have distinct function in tissue immunity. Controversies remain on the best way to distinguish macrophages from DCs in vivo. In this Perspective, we discuss how recent discoveries in the origin of the DC and macrophage lineage help establish key functional differences between tissue DC and macrophage subsets. We also emphasize the need to further understand the functional heterogeneity of the tissue DC and macrophage lineages to better comprehend the complex role of these cells in tissue homeostasis and immunity.
Collapse
Affiliation(s)
- Daigo Hashimoto
- Department of Oncological Sciences, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
126
|
Abstract
CD8(+) dendritic cells comprise a distinct cell type whose function is unclear. In this issue of Immunity, Mashayekhi et al. (2011) show these cells are essential for protection against the parasite Toxoplasma, but Edelson et al. (2011) show they are hijacked by Listeria during initial spreading.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
127
|
Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, KC W, Belizaire R, Aoshi T, Schreiber RD, Miller MJ, Murphy TL, Unanue ER, Murphy KM. CD8α(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 2011; 35:236-48. [PMID: 21867927 PMCID: PMC3172670 DOI: 10.1016/j.immuni.2011.06.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/26/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022]
Abstract
CD8α(+) dendritic cells (DCs) prime cytotoxic T lymphocytes during viral infections and produce interleukin-12 in response to pathogens. Although the loss of CD8α(+) DCs in Batf3(-/-) mice increases their susceptibility to several pathogens, we observed that Batf3(-/-) mice exhibited enhanced resistance to the intracellular bacterium Listeria monocytogenes. In wild-type mice, Listeria organisms, initially located in the splenic marginal zone, migrated to the periarteriolar lymphoid sheath (PALS) where they grew exponentially and induced widespread lymphocyte apoptosis. In Batf3(-/-) mice, however, Listeria organisms remain trapped in the marginal zone, failed to traffic into the PALS, and were rapidly cleared by phagocytes. In addition, Batf3(-/-) mice, which lacked the normal population of hepatic CD103(+) peripheral DCs, also showed protection from liver infection. These results suggest that Batf3-dependent CD8α(+) and CD103(+) DCs provide initial cellular entry points within the reticuloendothelial system by which Listeria establishes productive infection.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Satpathy AT, Murphy KM, KC W. Transcription factor networks in dendritic cell development. Semin Immunol 2011; 23:388-97. [PMID: 21924924 PMCID: PMC4010935 DOI: 10.1016/j.smim.2011.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/19/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population within the mononuclear phagocyte system (MPS) that derive from bone marrow precursors. Commitment and specification of hematopoietic progenitors to the DC lineage is critical for the proper induction of both immunity and tolerance. This review summarizes the important cytokines and transcription factors required for differentiation of the DC lineage as well as further diversification into specific DC subsets. We highlight recent advances in the characterization of immediate DC precursors arising from the common myeloid progenitor (CMP). Particular emphasis is placed on the corresponding temporal expression of relevant factors involved in regulating developmental options.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
129
|
Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J Theor Biol 2011; 287:160-70. [PMID: 21798267 DOI: 10.1016/j.jtbi.2011.06.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022]
Abstract
Adaptive immunity is initiated in secondary lymphoid tissues when naive T cells recognize foreign antigen presented as MHC-bound peptide on the surface of dendritic cells. Only a small fraction of T cells in the naive repertoire will express T cell receptors specific for a given epitope, but antigen recognition triggers T cell activation and proliferation, thus greatly expanding antigen-specific clones. Expanded T cells can serve a helper function for B cell responses or traffic to sites of infection to secrete cytokines or kill infected cells. Over the past decade, two-photon microscopy of lymphoid tissues has shed important light on T cell development, antigen recognition, cell trafficking and effector functions. These data have enabled the development of sophisticated quantitative and computational models that, in turn, have been used to test hypotheses in silico that would otherwise be impossible or difficult to explore experimentally. Here, we review these models and their principal findings and highlight remaining questions where modeling approaches are poised to advance our understanding of complex immunological systems.
Collapse
|
130
|
Salmond RJ, Zamoyska R. The influence of mTOR on T helper cell differentiation and dendritic cell function. Eur J Immunol 2011; 41:2137-41. [PMID: 21725971 DOI: 10.1002/eji.201141523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022]
Abstract
The mammalian target of rapamycin (mTOR) integrates signalling responses to growth factors and nutrients. The macrolide rapamycin inhibits mTOR function and has been used extensively to demonstrate a critical role for mTOR in immune responses. This mini-review summarizes recent evidence demonstrating an integral role for mTOR in the differentiation of T helper cell subsets and the development, maturation and antigen-presenting capacity of DCs in both mice and humans.
Collapse
Affiliation(s)
- Robert J Salmond
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
131
|
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29:163-83. [PMID: 21219184 DOI: 10.1146/annurev-immunol-031210-101345] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon (IFN-α/β) in response to foreign nucleic acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. pDCs combine features of both lymphocytes and classical dendritic cells and display unique molecular adaptations to nucleic acid sensing and IFN production. In the decade since the identification of the pDC as a distinct immune cell type, our understanding of its molecular underpinnings and role in immunity has progressed rapidly. Here we review select aspects of pDC biology including cell fate establishment and plasticity, specific molecular mechanisms of pDC function, and the role of pDCs in T cell responses, antiviral immunity, and autoimmune diseases. Important unresolved questions remain in these areas, promising exciting times in pDC research for years to come.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
132
|
Kushwah R, Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011; 133:409-19. [PMID: 21627652 DOI: 10.1111/j.1365-2567.2011.03457.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that are critical for induction of adaptive immunity and tolerance. Traditionally DCs have been divided into two discrete subtypes, which comprise conventional and non-conventional DCs. They are distributed across various organs in the body and comprise a heterogeneous population, which has been shown to display differences in terms of surface marker expression, function and origins. Recent studies have shed new light on the process of DC differentiation and distribution of DC subtypes in various organs. Although monocytes, macrophages and DCs share a common macrophage-DC progenitor, a common DC progenitor population has been identified that exclusively gives rise to DCs and not monocytes or macrophages. In this review, we discuss the recent advances in our understanding of DC differentiation and subtypes and provide a comprehensive overview of various DC subtypes with emphasis on their function and origins. Furthermore, in light of recent developments in the field of DC biology, we classify DCs based on the precursor populations from which the various DC subsets originate. We classify DCs derived from common DC progenitor and pre-DC populations as conventional DCs, which includes both migratory and lymphoid-resident DC subsets and classify monocyte-derived DCs and plasmacytoid DCs as non-conventional DCs.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
133
|
Research Highlights. Nat Immunol 2010. [DOI: 10.1038/ni1210-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
134
|
Abstract
The signaling pathway of the cytokine Flt3L in dendritic cells (DCs) is poorly defined. In this issue of Immunity, Sathaliyawala et al. (2010) report that the kinase mTOR functions as a mediator of Flt3L signaling in the development and homeostasis of DCs, particularly of the CD8(+) and CD103(+) DCs.
Collapse
Affiliation(s)
- Li Wu
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Parkville Victoria 3052, Australia.
| |
Collapse
|