101
|
Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses. Cell 2018; 173:1783-1795.e14. [PMID: 29731169 DOI: 10.1016/j.cell.2018.03.061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022]
Abstract
Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.
Collapse
|
102
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
103
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|
104
|
Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions. J Virol 2018; 92:JVI.02249-17. [PMID: 29386285 DOI: 10.1128/jvi.02249-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 11/20/2022] Open
Abstract
The 10E8 antibody targets a helical epitope in the membrane-proximal external region (MPER) and transmembrane domain (TMD) of the envelope glycoprotein (Env) subunit gp41 and is among the broadest known neutralizing antibodies against HIV-1. Accordingly, this antibody and its mechanism of action valuably inform the design of effective vaccines and immunotherapies. 10E8 exhibits unusual adaptations to attain specific, high-affinity binding to the MPER at the viral membrane interface. Reversing the charge of the basic paratope surface (from net positive to net negative) reportedly lowered its neutralization potency. Here, we hypothesized that by increasing the net positive charge in similar polar surface patches, the neutralization potency of the antibody may be enhanced. We found that an increased positive charge at this paratope surface strengthened an electrostatic interaction between the antibody and lipid bilayers, enabling 10E8 to interact spontaneously with membranes. Notably, the modified 10E8 antibody did not gain any apparent polyreactivity and neutralized virus with a significantly greater potency. Binding analyses indicated that the optimized 10E8 antibody bound with a higher affinity to the epitope peptide anchored in lipid bilayers and to Env spikes on virions. Overall, our data provide a proof of principle for the rational optimization of 10E8 via manipulation of its interaction with the membrane element of its epitope. However, the observation that a similar mutation strategy did not affect the potency of the first-generation anti-MPER antibody 4E10 shows possible limitations of this principle. Altogether, our results emphasize the crucial role played by the viral membrane in the antigenicity of the MPER-TMD of HIV-1.IMPORTANCE The broadly neutralizing antibody 10E8 blocks infection by nearly all HIV-1 isolates, a capacity which vaccine design seeks to reproduce. Engineered versions of this antibody also represent a promising treatment for HIV infection by passive immunization. Understanding its mechanism of action is therefore important to help in developing effective vaccines and biologics to combat HIV/AIDS. 10E8 engages its helical MPER epitope where the base of the envelope spike submerges into the viral membrane. To enable this interaction, this antibody evolved an unusual property: the ability to interact with the membrane surface. Here, we provide evidence that 10E8 can be made more effective by enhancing its interactions with membranes. Our findings strengthen the idea that to elicit antibodies similar to 10E8, vaccines must reproduce the membrane environment where these antibodies perform their function.
Collapse
|
105
|
Zhao C, Xu J. Toward universal influenza virus vaccines: from natural infection to vaccination strategy. Curr Opin Immunol 2018; 53:1-6. [PMID: 29604600 DOI: 10.1016/j.coi.2018.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Conceptually, a universal influenza vaccine should elicit broadly protective antibody responses targeting highly conserved epitope(s) shared by various virus strains. Strategically directing antibody immunity to the conserved hemagglutinin stalk has recently emerged as a promising approach that is substantiated by the identification of naturally occurring, stalk-reactive human antibodies capable of conferring broad protection against influenza virus challenge in animal models. Despite all the advancements, future realization of this strategy still faces many challenges, particularly whether it is able to induce enough of cross-reactive antibody response to protect against pandemic viruses. In this respect, recent in-depth dissections of human immune responses to H7N9 virus and vaccination provide much-needed new insights.
Collapse
Affiliation(s)
- Chen Zhao
- Shanghai Public Health Clinic Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Shanghai Public Health Clinic Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
106
|
Cheedarla N, Hemalatha B, Anangi B, Muthuramalingam K, Selvachithiram M, Sathyamurthi P, Kailasam N, Varadarajan R, Swaminathan S, Tripathy SP, Vaniambadi SK, Vadakkupattu DR, Hanna LE. Evolution of Neutralization Response in HIV-1 Subtype C-Infected Individuals Exhibiting Broad Cross-Clade Neutralization of HIV-1 Strains. Front Immunol 2018; 9:618. [PMID: 29662494 PMCID: PMC5890096 DOI: 10.3389/fimmu.2018.00618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
Strain-specific neutralizing antibodies develop in all human immunodeficiency virus type 1 (HIV-1)-infected individuals. However, only 10–30% of infected individuals produce broadly neutralizing antibodies (bNAbs). Identification and characterization of these bNAbs and understanding their evolution dynamics are critical for obtaining useful clues for the development of an effective HIV vaccine. Very recently, we published a study in which we identified 12 HIV-1 subtype C-infected individuals from India whose plasma showed potent and broad cross-clade neutralization (BCN) ability (1). In the present study, we report our findings on the evolution of host bNAb response over a period of 4 years in a subset of these individuals. Three of the five individuals (NAB033, NAB059, and NAB065) demonstrated a significant increase (p < 0.05) in potency. Interestingly, two of the three samples also showed a significant increase in CD4 binding site-specific antibody response, maintained stable CD4+ T cell counts (>350 cells/mm3) and continued to remain ART-naïve for more than 10 years after initial diagnosis, implying a strong clinical correlation with the development and evolution of broadly neutralizing antibody response against HIV-1.
Collapse
Affiliation(s)
- Narayanaiah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Babu Hemalatha
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Brahmaiah Anangi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | | | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
107
|
Waltari E, Jia M, Jiang CS, Lu H, Huang J, Fernandez C, Finzi A, Kaufmann DE, Markowitz M, Tsuji M, Wu X. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice. Front Immunol 2018; 9:628. [PMID: 29632541 PMCID: PMC5879793 DOI: 10.3389/fimmu.2018.00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022] Open
Abstract
Using 5′ rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.
Collapse
Affiliation(s)
- Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Hospital Biostatistics, The Rockefeller University, New York, NY, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Cristina Fernandez
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, United States
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| |
Collapse
|
108
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
109
|
Zhou T, Zheng A, Baxa U, Chuang GY, Georgiev IS, Kong R, O'Dell S, Shahzad-Ul-Hussan S, Shen CH, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CCD, Wu CY, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong CH, Mascola JR, Kwong PD, Wu X. A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity 2018; 48:500-513.e6. [PMID: 29548671 PMCID: PMC6421865 DOI: 10.1016/j.immuni.2018.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/26/2023]
Abstract
Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syna K Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Catherine H Stevenson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun D Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
110
|
Gao N, Wang W, Wang C, Gu T, Guo R, Yu B, Kong W, Qin C, Giorgi EE, Chen Z, Townsley S, Hu SL, Yu X, Gao F. Development of broad neutralization activity in simian/human immunodeficiency virus-infected rhesus macaques after long-term infection. AIDS 2018; 32:555-563. [PMID: 29239895 DOI: 10.1097/qad.0000000000001724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nonhuman primates (NHPs) are the only animal model that can be used to evaluate protection efficacy of HIV-1 envelope vaccines. However, whether broadly neutralizing antibodies (bnAbs) can be elicited in NHPs infected with simian/human immunodeficiency virus (SHIV) has not been fully understood. The objective of this study is to investigate whether broad neutralization activities were developed in SHIV-infected macaques after long-term infection as in humans. DESIGN Neutralization breadth and specificities in plasmas from SHIV-infected macaques were determined by analyzing a panel of tier 2 viruses and their mutants. METHODS Forty-four Chinese macaques infected with SHIV1157ipd3N4, SHIVSF162P3 or SHIVCHN19P4 were followed for 54-321 weeks. Archived plasmas from 19 macaques were used to determine neutralization breadth and specificities against 17 tier 2 envelope-pseudoviruses. RESULTS Longitudinal plasma from three SHIVSF162P3-infected macaques and three SHIV1157ipd3N4-infected macaques rarely neutralized viruses (<25%) within 1 year of infection. The neutralization breadth in two SHIV1157ipd3N4-infected macaques significantly increased (≥65%) by year 6. Four of six SHIV1157ipd3N4-infected macaques could neutralize 50-75% viruses, whereas none of macaques infected with SHIVSF162P3 or SHIVCHN19P4 could neutralize more than 25% of viruses after 6 years of infection (P = 0.035). Neutralization specificity analysis showed mutations resistant to bnAbs in V2, V3 or CD4bs regions could abrogate neutralization by year-6 plasma from three SHIV1157ipd3N4-infected macaques. CONCLUSION These results demonstrate that bnAbs targeting common HIV-1 epitopes can be elicited in SHIV1157ipd3N4-infected macaques as in humans after 4-6 years of infection, and SHIV/NHP can serve as an ideal model to study bnAb maturation.
Collapse
|
111
|
Nguyen QN, Martinez DR, Himes JE, Whitney Edwards R, Han Q, Kumar A, Mangan R, Nicely NI, Xie G, Vandergrift N, Shen X, Pollara J, Permar SR. Predominant envelope variable loop 2-specific and gp120-specific antibody-dependent cellular cytotoxicity antibody responses in acutely SIV-infected African green monkeys. Retrovirology 2018. [PMID: 29523166 PMCID: PMC5845189 DOI: 10.1186/s12977-018-0406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The initial envelope (Env)-specific antibody response in acutely HIV-1-infected individuals and simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs) is dominated by non-neutralizing antibodies targeting Env gp41. In contrast, natural primate SIV hosts, such as African green monkeys (AGMs), develop a predominant Env gp120-specific antibody response to SIV infection. However, the fine-epitope specificity and function of SIV Env-specific plasma IgG, and their potential role on autologous virus co-evolution in SIV-infected AGMs and RMs remain unclear. Results Unlike the dominant linear gp41-specific IgG responses in RMs, SIV-infected AGMs demonstrated a unique linear variable loop 2 (V2)-specific plasma IgG response that arose concurrently with high gp120-directed antibody-dependent cellular cytotoxicity (ADCC) activity, and SIVsab-infected cell binding responses during acute infection. Moreover, SIV variants isolated from SIV-infected AGMs exhibited high amino acid mutation frequencies within the Env V1V2 loop compared to those of RMs. Notably, the linear V2-specific IgG epitope in AGMs overlaps with an analogous region of the HIV V2 loop containing the K169 mutation epitope identified in breakthrough viruses from RV144 vaccinees. Conclusion Vaccine-elicited Env V2-specific IgG responses have been proposed as an immune correlate of reduced risk in HIV-1/SIV acquisition in humans and RMs. Yet the pathways to elicit these potentially-protective V2-specific IgG responses remain unclear. In this study, we demonstrate that SIV-infected AGMs, which are the natural hosts of SIV, exhibited high plasma linear V2-specific IgG binding responses that arose concurrently with SIV Env gp120-directed ADCC-mediating, and SIV-infected cell plasma IgG binding responses during acute SIV infection, which were not present in acutely SIV-infected RMs. The linear V2-specific antibody response in AGMs targets an overlapping epitope of the proposed site of vaccine-induced immune pressure defined in the moderately protective RV144 HIV-1 vaccine trial. Identifying host factors that control the early elicitation of Env V2-specific IgG and ADCC antibody responses in these natural SIV hosts could inform vaccination strategies aimed at rapidly inducing potentially-protective HIV-1 Env-specific responses in humans. Electronic supplementary material The online version of this article (10.1186/s12977-018-0406-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quang N Nguyen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David R Martinez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jonathon E Himes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - R Whitney Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Riley Mangan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guanhua Xie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
112
|
Wagh K, Seaman MS, Zingg M, Fitzsimons T, Barouch DH, Burton DR, Connors M, Ho DD, Mascola JR, Nussenzweig MC, Ravetch J, Gautam R, Martin MA, Montefiori DC, Korber B. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathog 2018; 14:e1006860. [PMID: 29505593 PMCID: PMC5854441 DOI: 10.1371/journal.ppat.1006860] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/15/2018] [Accepted: 01/08/2018] [Indexed: 12/18/2022] Open
Abstract
There is great interest in passive transfer of broadly neutralizing antibodies (bnAbs) and engineered bispecific antibodies (Abs) for prevention of HIV-1 infections due to their in vitro neutralization breadth and potency against global isolates and long in vivo half-lives. We compared the potential of eight bnAbs and two bispecific Abs currently under clinical development, and their 2 Ab combinations, to prevent infection by dominant HIV-1 subtypes in sub-Saharan Africa. Using in vitro neutralization data for Abs against 25 subtype A, 100 C, and 20 D pseudoviruses, we modeled neutralization by single Abs and 2 Ab combinations assuming realistic target concentrations of 10μg/ml total for bnAbs and combinations, and 5μg/ml for bispecifics. We used IC80 breadth-potency, completeness of neutralization, and simultaneous coverage by both Abs in the combination as metrics to characterize prevention potential. Additionally, we predicted in vivo protection by Abs and combinations by modeling protection as a function of in vitro neutralization based on data from a macaque simian-human immunodeficiency virus (SHIV) challenge study. Our model suggests that nearly complete neutralization of a given virus is needed for in vivo protection (~98% neutralization for 50% relative protection). Using the above metrics, we found that bnAb combinations should outperform single bnAbs, as expected; however, different combinations are optimal for different subtypes. Remarkably, a single bispecific 10E8-iMAb, which targets HIV Env and host-cell CD4, outperformed all combinations of two conventional bnAbs, with 95-97% predicted relative protection across subtypes. Combinations that included 10E8-iMAb substantially improved protection over use of 10E8-iMAb alone. Our results highlight the promise of 10E8-iMAb and its combinations to prevent HIV-1 infections in sub-Saharan Africa.
Collapse
Affiliation(s)
- Kshitij Wagh
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, United States of America
- New Mexico Consortium, Los Alamos, United States of America
- * E-mail: (BK); (KW)
| | - Michael S. Seaman
- Center for Virology & Vaccine Research, Beth Israel Deaconness Medical Center, Boston, United States of America
| | - Marshall Zingg
- Center for Virology & Vaccine Research, Beth Israel Deaconness Medical Center, Boston, United States of America
| | - Tomas Fitzsimons
- Center for Virology & Vaccine Research, Beth Israel Deaconness Medical Center, Boston, United States of America
| | - Dan H. Barouch
- Center for Virology & Vaccine Research, Beth Israel Deaconness Medical Center, Boston, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda,United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Insitutes of Health, Bethesda, United States of America
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States of America
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, United States of America
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States of America
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Bette Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, United States of America
- New Mexico Consortium, Los Alamos, United States of America
- * E-mail: (BK); (KW)
| |
Collapse
|
113
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
114
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
115
|
Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY, Chambers M, Druz A, Geng H, McKee K, Kwon YD, O'Dell S, Sastry M, Schmidt SD, Xu K, Chen L, Chen RE, Louder MK, Pancera M, Wanninger TG, Zhang B, Zheng A, Farney SK, Foulds KE, Georgiev IS, Joyce MG, Lemmin T, Narpala S, Rawi R, Soto C, Todd JP, Shen CH, Tsybovsky Y, Yang Y, Zhao P, Haynes BF, Stamatatos L, Tiemeyer M, Wells L, Scorpio DG, Shapiro L, McDermott AB, Mascola JR, Kwong PD. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Rep 2018; 19:719-732. [PMID: 28445724 DOI: 10.1016/j.celrep.2017.04.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
116
|
Decoding Selection Bias Imparted by Unpaired Cysteines: a Tug of War Between Expression and Affinity. Appl Biochem Biotechnol 2018; 185:778-785. [PMID: 29330770 DOI: 10.1007/s12010-017-2691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022]
Abstract
In a recombinant antibody scFv format, the presence of an unpaired cysteine (Cys) is implicated in reduced soluble expression and inefficient presentation in phage display. Compared to other species, antibodies derived from rabbits are more likely to contain this unpaired Cys residue at position 80 (Cys80), when generated in a scFv format. In a screening campaign to isolate rabbit scFv against cardiac troponin I (cTnI), it was found that, a large proportion of isolated cTnI-specific clones contained unpaired Cys80. To analyze the factors that led to the selection of anti-cTnI Cys80 scFv, after five rounds of biopanning, the biopanning experiments were repeated with a Cys80 scFv (MG4Cys), its alanine variant (MG4Ala), and an irrelevant high expressing scFv control. It was found that the selection and subsequent enrichment of MG4Cys scFv was ousted by the superior expressing variant MG4Ala, indicating that the Cys80 scFv was selected primarily due to its affinity. It is evident that phage-based selection is influenced by specific sequence characteristics affecting the expression as well as the binding specificity and this needs to be taken into account for selection of optimal antibody derivatives.
Collapse
|
117
|
Van Regenmortel MHV. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design. Front Immunol 2018; 8:2009. [PMID: 29387066 PMCID: PMC5776009 DOI: 10.3389/fimmu.2017.02009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems.
Collapse
|
118
|
HIV Broadly Neutralizing Antibodies: VRC01 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:53-72. [PMID: 30030789 DOI: 10.1007/978-981-13-0484-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developing an effective prophylaxis HIV-1 vaccine is likely to require the elicitation of broadly neutralizing antibodies (bnAbs). As the HIV-1 envelope (Env) glycoprotein - the sole target of bnAbs - has evolved multiple mechanisms to evade antibody neutralization, the processes for bnAb generation are highly selective and time-consuming. Benefiting from antibody isolation technologies of single B cell culturing and direct single B cell sorting and cloning, a new generation of monoclonal bnAbs has been isolated since 2009, exhibiting remarkable breadths and potencies, thus breaking through a nearly 20-year-long limit of four monoclonal bnAbs with moderate breadth and potency. The discovery of a long list of monoclonal bnAbs has provided in-depth understanding of the sites of vulnerability on the HIV-1 Env and the complexity of human B cell immunology to generate such responses, thus presenting both guidance and challenges to move the Env immunogen design effort forward.
Collapse
|
119
|
Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. PLoS Med 2018; 15:e1002493. [PMID: 29364886 PMCID: PMC5783347 DOI: 10.1371/journal.pmed.1002493] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. METHODS AND FINDINGS This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccine Research Center (VRC) at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD). The age range of the study volunteers was 21-50 years; 51% of study volunteers were male and 49% were female. Primary objectives were safety and tolerability of VRC01LS intravenous (IV) infusions at 5, 20, and 40 mg/kg infused once, 20 mg/kg given three times at 12-week intervals, and subcutaneous (SC) delivery at 5 mg/kg delivered once, or three times at 12-week intervals. Secondary objectives were pharmacokinetics (PK), serum neutralization activity, and development of antidrug antibodies. Enrollment began on November 16, 2015, and concluded on August 23, 2017. This report describes the safety data for the first 37 volunteers who received administrations of VRC01LS. There were no serious adverse events (SAEs) or dose-limiting toxicities. Mild malaise and myalgia were the most common adverse events (AEs). There were six AEs assessed as possibly related to VRC01LS administration, and all were mild in severity and resolved during the study. PK data were modeled based on the first dose of VRC01LS in the first 25 volunteers to complete their schedule of evaluations. The mean (±SD) serum concentration 12 weeks after one IV administration of 20 mg/kg or 40 mg/kg were 180 ± 43 μg/mL (n = 7) and 326 ± 35 μg/mL (n = 5), respectively. The mean (±SD) serum concentration 12 weeks after one IV and SC administration of 5 mg/kg were 40 ± 3 μg/mL (n = 2) and 25 ± 5 μg/mL (n = 9), respectively. Over the 5-40 mg/kg IV dose range (n = 16), the clearance was 36 ± 8 mL/d with an elimination half-life of 71 ± 18 days. VRC01LS retained its expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. Potential limitations of this study include the small sample size typical of Phase I trials and the need to further describe the PK properties of VRC01LS administered on multiple occasions. CONCLUSIONS The human bnMAb VRC01LS was safe and well tolerated when delivered intravenously or subcutaneously. The half-life was more than 4-fold greater when compared to wild-type VRC01 historical data. The reduced clearance and extended half-life may make it possible to achieve therapeutic levels with less frequent and lower-dose administrations. This would potentially lower the costs of manufacturing and improve the practicality of using passively administered monoclonal antibodies (mAbs) for the prevention of HIV-1 infection. TRIAL REGISTRATION ClinicalTrials.gov NCT02599896.
Collapse
|
120
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
121
|
Vzorov AN, Uryvaev LV. Requirements for the Induction of Broadly Neutralizing Antibodies against HIV-1 by Vaccination. Mol Biol 2017. [DOI: 10.1134/s0026893317060176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
122
|
Davis-Gardner ME, Gardner MR, Alfant B, Farzan M. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients. PLoS Pathog 2017; 13:e1006786. [PMID: 29253851 PMCID: PMC5749896 DOI: 10.1371/journal.ppat.1006786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/02/2018] [Accepted: 12/03/2017] [Indexed: 12/17/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxity (ADCC) can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env) trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8). Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1) can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2) exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.
Collapse
Affiliation(s)
- Meredith E. Davis-Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Matthew R. Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Barnett Alfant
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
123
|
Wang H, Chen X, Wang D, Yao C, Wang Q, Xie J, Shi X, Xiang Y, Liu W, Zhang L. Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses. J Biol Chem 2017; 293:830-846. [PMID: 29187598 DOI: 10.1074/jbc.m117.816447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1-infected individuals have led to the identification of several major "vulnerable sites" on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display-based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the "vulnerable sites," the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.
Collapse
Affiliation(s)
- Hua Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Yao
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Qian Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Jiayu Xie
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xuanling Shi
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Linqi Zhang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine,
| |
Collapse
|
124
|
Yacoob C, Pancera M, Vigdorovich V, Oliver BG, Glenn JA, Feng J, Sather DN, McGuire AT, Stamatatos L. Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors. Cell Rep 2017; 17:1560-1570. [PMID: 27806295 DOI: 10.1016/j.celrep.2016.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies remains a long-standing goal of HIV vaccine research. Although such antibodies can arise during HIV-1 infection, gaps in our knowledge of their germline, pre-immune precursor forms, as well as on their interaction with viral Env, limit our ability to elicit them through vaccination. Studies of broadly neutralizing antibodies from the VRC01-class provide insight into progenitor B cell receptors (BCRs) that could develop into this class of antibodies. Here, we employed high-throughput heavy chain variable region (VH)/light chain variable region (VL) deep sequencing, combined with biophysical, structural, and modeling antibody analyses, to interrogate circulating potential VRC01-progenitor BCRs in healthy individuals. Our study reveals that not all humans are equally predisposed to generate VRC01-class antibodies, not all predicted progenitor VRC01-expressing B cells can bind to Env, and the CDRH3 region of germline VRC01 antibodies influence their ability to recognize HIV-1. These findings will be critical to the design of optimized immunogens that should consider CDRH3 interactions.
Collapse
Affiliation(s)
- Christina Yacoob
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vladimir Vigdorovich
- Center for Infectious Disease Research, 307 Westlake Avenue North #500, Seattle, WA 98109, USA
| | - Brian G Oliver
- Center for Infectious Disease Research, 307 Westlake Avenue North #500, Seattle, WA 98109, USA
| | - Jolene A Glenn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Infectious Disease Research, 307 Westlake Avenue North #500, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Department of Global Health, University of Washington, 1410 Northeast Campus Parkway, Seattle, WA 98195, USA.
| |
Collapse
|
125
|
De Boer RJ, Perelson AS. How Germinal Centers Evolve Broadly Neutralizing Antibodies: the Breadth of the Follicular Helper T Cell Response. J Virol 2017; 91:e00983-17. [PMID: 28878083 PMCID: PMC5660473 DOI: 10.1128/jvi.00983-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than other lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing.IMPORTANCE Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. We suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
126
|
Amadori C, van der Velden YU, Bonnard D, Orlov I, van Bel N, Le Rouzic E, Miralles L, Brias J, Chevreuil F, Spehner D, Chasset S, Ledoussal B, Mayr L, Moreau F, García F, Gatell J, Zamborlini A, Emiliani S, Ruff M, Klaholz BP, Moog C, Berkhout B, Plana M, Benarous R. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity. Retrovirology 2017; 14:50. [PMID: 29121950 PMCID: PMC5680779 DOI: 10.1186/s12977-017-0373-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
Background
HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells. Results
Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4+ T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable. Conclusions
Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response against HIV-1 in animal models. Electronic supplementary material The online version of this article (10.1186/s12977-017-0373-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Céline Amadori
- Biodim Mutabilis, 93230, Romainville, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Igor Orlov
- Centre for Integrative Biology, IGBMC, CNRS, INSERM, University of Strasbourg, Strasbourg, France
| | - Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Laia Miralles
- AIDS Research Group, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Julie Brias
- Biodim Mutabilis, 93230, Romainville, France
| | | | - Daniele Spehner
- Centre for Integrative Biology, IGBMC, CNRS, INSERM, University of Strasbourg, Strasbourg, France
| | | | | | | | | | - Felipe García
- AIDS Research Group, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - José Gatell
- AIDS Research Group, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Alessia Zamborlini
- CNRS, UMR7212, INSERM U944, Université Paris Diderot, Conservatoire National des Arts et Métiers, Paris, France
| | - Stéphane Emiliani
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Ruff
- Centre for Integrative Biology, IGBMC, CNRS, INSERM, University of Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, IGBMC, CNRS, INSERM, University of Strasbourg, Strasbourg, France
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Montserrat Plana
- AIDS Research Group, IDIBAPS, Hospital Clinic, Barcelona, Spain.
| | - Richard Benarous
- Biodim Mutabilis, 93230, Romainville, France. .,, 19 rue de Croulebarbe, 75013, Paris, France.
| |
Collapse
|
127
|
Kwong PD. What Are the Most Powerful Immunogen Design Vaccine Strategies? A Structural Biologist's Perspective. Cold Spring Harb Perspect Biol 2017; 9:a029470. [PMID: 28159876 PMCID: PMC5666634 DOI: 10.1101/cshperspect.a029470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of structure-based design to control the shape and reactivity-the atomic-level chemistry-of an immunogen argues for it being one of the "most powerful" immunogen-design strategies. But antigenic reactivity is only one of the properties required to induce a protective immune response. Here, a multidimensional approach is used to exemplify the enabling role atomic-level information can play in the development of immunogens against three viral pathogens, respiratory syncytial virus, influenza A virus, and human immunodeficiency virus (HIV), which have resisted standard approaches to vaccine development. Overall, structure-based strategies incorporating B-cell ontogenies and viral evasion mechanisms appear exceptionally powerful.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
128
|
Rodriguez S, Roussel M, Tarte K, Amé-Thomas P. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response. Front Immunol 2017; 8:1434. [PMID: 29163507 PMCID: PMC5671495 DOI: 10.3389/fimmu.2017.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Mikaël Roussel
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| |
Collapse
|
129
|
Cai H, Orwenyo J, Giddens JP, Yang Q, Zhang R, LaBranche CC, Montefiori DC, Wang LX. Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses. Cell Chem Biol 2017; 24:1513-1522.e4. [PMID: 29107699 DOI: 10.1016/j.chembiol.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/08/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023]
Abstract
Eliciting broadly neutralizing antibody (bNAb) responses against HIV-1 is a major goal for a prophylactic HIV-1 vaccine. One approach is to design immunogens based on known broadly neutralizing epitopes. Here we report the design and synthesis of an HIV-1 glycopeptide immunogen derived from the V3 domain. We performed glycopeptide epitope mapping to determine the minimal glycopeptide sequence as the epitope of V3-glycan-specific bNAbs PGT128 and 10-1074. We further constructed a self-adjuvant three-component immunogen that consists of a 33-mer V3 glycopeptide epitope, a universal T helper epitope P30, and a lipopeptide (Pam3CSK4) that serves as a ligand of Toll-like receptor 2. Rabbit immunization revealed that the synthetic self-adjuvant glycopeptide could elicit substantial glycan-dependent antibodies that exhibited broader recognition of HIV-1 gp120s than the non-glycosylated V3 peptide. These results suggest that the self-adjuvant synthetic glycopeptides can serve as an important component to elicit glycan-specific antibodies in HIV vaccine design.
Collapse
Affiliation(s)
- Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Jared Orwenyo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
130
|
HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the CD4 binding site. PLoS One 2017; 12:e0177863. [PMID: 29020058 PMCID: PMC5636061 DOI: 10.1371/journal.pone.0177863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
Here we report the construction, antigenicity and initial immunogenicity testing of DNA and modified vaccinia Ankara (MVA) vaccines expressing virus-like particles (VLPs) displaying sequential clade C Envelopes (Envs) that co-evolved with the elicitation of broadly neutralizing antibodies (bnAbs) to the CD4 binding site (CD4bs) in HIV-infected individual CH0505. The VLP-displayed Envs showed reactivity for conformational epitopes displayed on the receptor-binding form of Env. Two inoculations of the DNA-T/F vaccine, followed by 3 inoculations of the MVA-T/F vaccine and a final inoculation of the MVA-T/F plus a gp120-T/F protein vaccine elicited nAb to the T/F virus in 2 of 4 rhesus macaques (ID50 of ~175 and ~30). Neutralizing Ab plateaued at 100% neutralization and mapped to the CD4bs like the bnAbs elicited in CH0505. The nAb did not have breadth for other tier 2 viruses. Immunizations with T/F followed by directed-lineage vaccines, both with and without co-delivery of directed-lineage gp120 boosts, failed to elicit tier 2 neutralizing Ab for the CD4bs. Thus, pulsed exposures to DNA and MVA-expressed VLPs plus gp120 protein of a T/F Env can induce autologous tier 2 nAbs to the CD4bs.
Collapse
|
131
|
Sequence analysis of feline immunoglobulin mRNAs and the development of a felinized monoclonal antibody specific to feline panleukopenia virus. Sci Rep 2017; 7:12713. [PMID: 28983085 PMCID: PMC5629197 DOI: 10.1038/s41598-017-12725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022] Open
Abstract
In response to immunization, B-cells generate a repertoire of antigen-specific antibodies. Antibody-based immunotherapies hold great promise for treating a variety of diseases in humans. Application of antibody-based immunotherapy in cats is limited by the lack of species-specific complete sequences for mRNAs encoding rearranged heavy and light chain immunoglobulins in B cells. To address this barrier, we isolated mRNAs from feline peripheral blood mononuclear cells (PBMCs), and used available immunoglobulin sequences and 5′ and 3′ RACE to clone and sequence heavy and light chain immunoglobulin mRNAs. We recovered mRNA from PBMCs from two cats, cloned and sequenced the variable and constant domains of the feline heavy chains of IgG1a (IGHG1a), IgG2 (IGHG2), and IgA (IGHA), and the light chains (lambda and kappa). Using these sequences, we prepared two bicistronic vectors for mammalian expression of a representative feline heavy (IGHG1a) together with a light (lambda or kappa) chain. Here we report novel feline Ig sequences, a technique to express antigen-specific felinized monoclonal antibodies, and the initial characterization of a functional felinized monoclonal antibody against feline panleukopenia virus.
Collapse
|
132
|
Leibman RS, Richardson MW, Ellebrecht CT, Maldini CR, Glover JA, Secreto AJ, Kulikovskaya I, Lacey SF, Akkina SR, Yi Y, Shaheen F, Wang J, Dufendach KA, Holmes MC, Collman RG, Payne AS, Riley JL. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog 2017; 13:e1006613. [PMID: 29023549 PMCID: PMC5638568 DOI: 10.1371/journal.ppat.1006613] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.
Collapse
Affiliation(s)
- Rachel S. Leibman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christoph T. Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Colby R. Maldini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua A. Glover
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony J. Secreto
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Simon F. Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah R. Akkina
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanjie Yi
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Farida Shaheen
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, California, United States of America
| | - Keith A. Dufendach
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael C. Holmes
- Sangamo BioSciences Inc., Richmond, California, United States of America
| | - Ronald G. Collman
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aimee S. Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
133
|
Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J, McKee K, Lord DM, Wei RR, Deng G, Louder M, Schmidt SD, Mankoff Z, Wu L, Asokan M, Beil C, Lange C, Leuschner WD, Kruip J, Sendak R, Kwon YD, Zhou T, Chen X, Bailer RT, Wang K, Choe M, Tartaglia LJ, Barouch DH, O'Dell S, Todd JP, Burton DR, Roederer M, Connors M, Koup RA, Kwong PD, Yang ZY, Mascola JR, Nabel GJ. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 2017; 358:85-90. [PMID: 28931639 DOI: 10.1126/science.aan8630] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
The development of an effective AIDS vaccine has been challenging because of viral genetic diversity and the difficulty of generating broadly neutralizing antibodies (bnAbs). We engineered trispecific antibodies (Abs) that allow a single molecule to interact with three independent HIV-1 envelope determinants: the CD4 binding site, the membrane-proximal external region (MPER), and the V1V2 glycan site. Trispecific Abs exhibited higher potency and breadth than any previously described single bnAb, showed pharmacokinetics similar to those of human bnAbs, and conferred complete immunity against a mixture of simian-human immunodeficiency viruses (SHIVs) in nonhuman primates, in contrast to single bnAbs. Trispecific Abs thus constitute a platform to engage multiple therapeutic targets through a single protein, and they may be applicable for treatment of diverse diseases, including infections, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Ling Xu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ercole Rao
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Dana M Lord
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Ronnie R Wei
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Gejing Deng
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Mark Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Zachary Mankoff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Lan Wu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | - Jochen Kruip
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Lawrence J Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Zhi-Yong Yang
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Gary J Nabel
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
134
|
Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. J Virol 2017; 91:JVI.00401-17. [PMID: 28490585 PMCID: PMC5599731 DOI: 10.1128/jvi.00401-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023] Open
Abstract
Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions.IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization.
Collapse
|
135
|
Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity 2017; 46:777-791.e10. [PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/09/2017] [Accepted: 04/21/2017] [Indexed: 11/21/2022]
Abstract
Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
Collapse
|
136
|
Douglas AO, Martinez DR, Permar SR. The Role of Maternal HIV Envelope-Specific Antibodies and Mother-to-Child Transmission Risk. Front Immunol 2017; 8:1091. [PMID: 28928750 PMCID: PMC5591431 DOI: 10.3389/fimmu.2017.01091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Despite the wide availability of antiretroviral therapy (ART) prophylaxis during pregnancy, >150,000 infants become infected through mother-to-child transmission (MTCT) of HIV worldwide. It is likely that additional intervention strategies, such as a maternal HIV vaccine, will be required to eliminate pediatric HIV infections. A deeper understanding of the fine specificity and function of maternal HIV envelope (Env)-specific responses that provide partial protection against MTCT will be critical to inform the design of immunologic strategies to curb the pediatric HIV epidemic. Recent studies have underlined a role of maternal HIV Env-specific neutralizing and non-neutralizing responses in reducing risk of MTCT of HIV and in prolonging survival rates in HIV-infected infants. However, critical gaps in our knowledge include (A) the specific role of maternal autologous-virus IgG-neutralizing responses in driving the selection of infant transmitted founder (T/F) viruses and (B) Env mechanisms of escape from maternal autologous virus-neutralizing antibodies (NAbs). A more refined understanding of the fine specificities of maternal autologous virus NAbs and ways that maternal circulating viruses escape from these antibodies will be crucial to inform maternal vaccination strategies that can block MTCT to help achieve an HIV-free generation.
Collapse
Affiliation(s)
| | - David R Martinez
- Duke Human Vaccine Institute, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Sallie R Permar
- Duke Human Vaccine Institute, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
137
|
Del Prete GQ, Keele BF, Fode J, Thummar K, Swanstrom AE, Rodriguez A, Raymond A, Estes JD, LaBranche CC, Montefiori DC, KewalRamani VN, Lifson JD, Bieniasz PD, Hatziioannou T. A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathog 2017; 13:e1006572. [PMID: 28945790 PMCID: PMC5629034 DOI: 10.1371/journal.ppat.1006572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/05/2017] [Accepted: 08/07/2017] [Indexed: 01/29/2023] Open
Abstract
Species-dependent variation in proteins that aid or limit virus replication determines the ability of lentiviruses to jump between host species. Identifying and overcoming these differences facilitates the development of animal models for HIV-1, including models based on chimeric SIVs that express HIV-1 envelope (Env) glycoproteins, (SHIVs) and simian-tropic HIV-1 (stHIV) strains. Here, we demonstrate that the inherently poor ability of most HIV-1 Env proteins to use macaque CD4 as a receptor is improved during adaptation by virus passage in macaques. We identify a single amino acid, A281, in HIV-1 Env that consistently changes during adaptation in macaques and affects the ability of HIV-1 Env to use macaque CD4. Importantly, mutations at A281 do not markedly affect HIV-1 Env neutralization properties. Our findings should facilitate the design of HIV-1 Env proteins for use in non-human primate models and thus expedite the development of clinically relevant reagents for testing interventions against HIV-1.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Jeannine Fode
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
| | - Keyur Thummar
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Anthony Rodriguez
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
| | - Alice Raymond
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Vineet N. KewalRamani
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jeffrey D. Lifson
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States of America
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
138
|
He L, Lin X, de Val N, Saye-Francisco KL, Mann CJ, Augst R, Morris CD, Azadnia P, Zhou B, Sok D, Ozorowski G, Ward AB, Burton DR, Zhu J. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Front Immunol 2017; 8:1025. [PMID: 28883821 PMCID: PMC5573810 DOI: 10.3389/fimmu.2017.01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiaohe Lin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Colin J Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Augst
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Charles D Morris
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
139
|
Kepler TB, Wiehe K. Genetic and structural analyses of affinity maturation in the humoral response to HIV-1. Immunol Rev 2017; 275:129-144. [PMID: 28133793 DOI: 10.1111/imr.12513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most broadly neutralizing antibodies (BNAbs) elicited in response to HIV-1 infection are extraordinarily mutated. One goal of HIV-1 vaccine development is to induce antibodies that are similar to the most potent and broad BNAbs isolated from infected subjects. The most effective BNAbs have very high mutation frequencies, indicative of the long periods of continual activation necessary to acquire the BNAb phenotype through affinity maturation. Understanding the mutational patterns that define the maturation pathways in BNAb development is critical to vaccine design efforts to recapitulate through vaccination the successful routes to neutralization breadth and potency that have occurred in natural infection. Studying the mutational changes that occur during affinity maturation, however, requires accurate partitioning of sequence data into B-cell clones and identification of the starting point of a B-cell clonal lineage, the initial V(D)J rearrangement. Here, we describe the statistical framework we have used to perform these tasks. Through the recent advancement of these and similar computational methods, many HIV-1 ancestral antibodies have been inferred, synthesized and their structures determined. This has allowed, for the first time, the investigation of the structural mechanisms underlying the affinity maturation process in HIV-1 antibody development. Here, we review what has been learned from this atomic-level structural characterization of affinity maturation in HIV-1 antibodies and the implications for vaccine design.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
140
|
Abstract
Induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccine development. BNAbs are made during HIV infection by a subset of individuals but currently cannot be induced in the setting of vaccination. Considerable progress has been made recently in understanding host immunologic controls of bNAb induction and maturation in the setting of HIV infection, and point to key roles for both central and peripheral immunologic tolerance mechanisms in limiting bnAb development. Immune tolerance checkpoint inhibition has been transformative in promotion of anti-tumor CD8 T-cell responses in the treatment of certain malignancies. Here, we review the evidence for host controls of bNAb responses, and discuss strategies for the transient modulation of immune responses with vaccines toward the goal of enhancing germinal center B-cell responses to favor bNAb B-cell lineages and to foster their maturation to full neutralization potency.
Collapse
Affiliation(s)
- Garnett Kelsoe
- Departments of Immunology and Medicine, Duke University School of Medicine, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Barton F Haynes
- Departments of Immunology and Medicine, Duke University School of Medicine, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| |
Collapse
|
141
|
Abstract
Beginning in 2009, studies of the humoral responses of HIV‐positive individuals have led to the identification of scores, if not hundreds, of antibodies that are both broadly reactive and potently neutralizing. This development has provided renewed impetus toward an HIV vaccine and led directly to the development of novel immunogens. Advances in identification of donors with the most potent and broad anti‐HIV serum neutralizing responses were crucial in this effort. Equally, development of methods for the rapid generation of human antibodies from these donors was pivotal. Primarily these methods comprise single B‐cell culture coupled to high‐throughput neutralization screening and flow cytometry‐based sorting of single B cells using HIV envelope protein baits. In this review, the advantages and disadvantages of these methodologies are discussed in the context of the specificities targeted by individual antibodies and the need for further improvements to evaluate HIV vaccine candidates.
Collapse
Affiliation(s)
- Laura E McCoy
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Division of Infection & Immunity, University College London, London, UK
| | - Dennis R Burton
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
142
|
Abstract
In 2009, Dimitrov's group reported that the inferred germline (iGL) forms of several HIV-1 broadly neutralizing antibodies (bNAbs) did not display measurable binding to a recombinant gp140 Env protein (derived from the dual-tropic 89.6 virus), which was efficiently recognized by the mature (somatically mutated) antibodies. At that time, a small number of bNAbs were available, but in the following years, the implementation of high-throughput B-cell isolation and sequencing assays and of screening methodologies facilitated the isolation of greater numbers of bNAbs from infected subjects. Using these newest bNAbs, and a wide range of diverse recombinant Envs, we and others confirmed the observations made by Dimitrov's group. The results from these studies created a paradigm shift in our collective thinking as to why recombinant Envs are ineffective in eliciting bNAbs and has led to the "germline-targeting" immunization approach. Here we discuss this approach in detail: what has been done so far, the advantages and limitations of the current germline-targeting immunogens and of the animal models used to test them, and we conclude with a few thoughts about future directions in this area of research.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
143
|
Bonsignori M, Liao HX, Gao F, Williams WB, Alam SM, Montefiori DC, Haynes BF. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev 2017; 275:145-160. [PMID: 28133802 PMCID: PMC5302796 DOI: 10.1111/imr.12509] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Induction of HIV-1 broadly neutralizing antibodies (bnAbs) to date has only been observed in the setting of HIV-1 infection, and then only years after HIV transmission. Thus, the concept has emerged that one path to induction of bnAbs is to define the viral and immunologic events that occur during HIV-1 infection, and then to mimic those events with a vaccine formulation. This concept has led to efforts to map both virus and antibody events that occur from the time of HIV-1 transmission to development of bnAbs. This work has revealed that a virus-antibody "arms race" occurs in which a HIV-1 transmitted/founder (TF) Env induces autologous neutralizing antibodies that can not only neutralize the TF virus but also can select virus escape mutants that in turn select affinity-matured neutralizing antibodies. From these studies has come a picture of bnAb development that has led to new insights in host-pathogen interactions and, as well, led to insight into immunologic mechanisms of control of bnAb development. Here, we review the progress to date in elucidating bnAb B cell lineages in HIV-1 infection, discuss new research leading to understanding the immunologic mechanisms of bnAb induction, and address issues relevant to the use of this information for the design of new HIV-1 sequential envelope vaccine candidates.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Feng Gao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Wilton B Williams
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
144
|
Verkoczy L, Alt FW, Tian M. Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies. Immunol Rev 2017; 275:89-107. [PMID: 28133799 DOI: 10.1111/imr.12505] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major challenge for HIV-1 vaccine research is developing a successful immunization approach for inducing broadly neutralizing antibodies (bnAbs). A key shortcoming in meeting this challenge has been the lack of animal models capable of identifying impediments limiting bnAb induction and ranking vaccine strategies for their ability to promote bnAb development. Since 2010, immunoglobulin knockin (KI) technology, involving inserting functional rearranged human variable exons into the mouse IgH and IgL loci has been used to express bnAbs in mice. This approach has allowed immune tolerance mechanisms limiting bnAb production to be elucidated and strategies to overcome such limitations to be evaluated. From these studies, along with the wealth of knowledge afforded by analyses of recombinant Ig-based bnAb structures, it became apparent that key functional features of bnAbs often are problematic for their elicitation in mice by classic vaccine paradigms, necessitating more iterative testing of new vaccine concepts. In this regard, bnAb KI models expressing deduced precursor V(D)J rearrangements of mature bnAbs or unrearranged germline V, D, J segments (that can be assembled into variable region exons that encode bnAb precursors), have been engineered to evaluate novel immunogens/regimens for effectiveness in driving bnAb responses. One promising approach emerging from such studies is the ability of sequentially administered, modified immunogens (designed to bind progressively more mature bnAb precursors) to initiate affinity maturation. Here, we review insights gained from bnAb KI studies regarding the regulation and induction of bnAbs, and discuss new Ig KI methodologies to manipulate the production and/or expression of bnAbs in vivo, to further facilitate vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Departments of Medicine and Pathology, Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
145
|
Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2017; 114:8614-8619. [PMID: 28747530 DOI: 10.1073/pnas.1709203114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1-infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms.
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW The purpose of the present review is to provide an update on the current development in the field of broadly neutralizing antibodies (bNabs) and their potential use in the prevention and therapeutic settings, and an evaluation of the B-cell abnormalities that may impair antibody responses in HIV infection. RECENT FINDINGS Major advances have been achieved in the characterization of bNabs directed against different vulnerable regions of HIV Envelope (Env). Recent observations have clearly demonstrated the ability of bNabs to prevent HIV infection in the nonhuman primate model of HIV infection and to suppress viremia in individuals with chronic HIV infection in the absence of antiretroviral therapy. Furthermore, substantial advances have also been obtained in the development of HIV Env proteins and immunization strategies inducing bNabs in small animal models. Several studies have also shed light on the B-cell abnormalities associated with the viremic phase of HIV infection that cause impaired B-cell maturation and antibody responses. Of note, preliminary observations have provided evidence for a correlation between the expansion of a specific population of B cells, for example, germinal center B cells, the expansion of T follicular helper cells (Tfh), and the generation of neutralizing antibodies. SUMMARY The recent observations on the antiviral effects of bNabs in vivo indicate that bNabs may play a central role in both the prevention and the therapeutic settings. The identification of the role of germinal center B cells and Tfh cells as critical components of the immune response leading to the generation of neutralizing antibodies, will allow the development of specific immunization strategies for the stimulation of germinal center B cells and Tfh cells. A lot of work still remains to be done for the delineation of B-cell and Tfh cell biology from human lymphoid tissues and in the development of HIV Env proteins and immunization strategies leading to the generation of bNabs.
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW Since 2009 many broadly neutralizing antibodies against HIV have been identified, yet there is still no vaccine capable of inducing such antibodies in humans. This review considers the early observations of HIV sera neutralization in light of more recent studies and highlights areas for future research. RECENT FINDINGS Large clinical cohort studies using standardized neutralization assays and pseudoviruses derived from primary isolates have shown that 10-30% of HIV infections result in some level of serum neutralization breadth. However, less than 10% of individuals develop a greater breadth of neutralization and are termed elite neutralizers. SUMMARY During HIV infection, many individuals develop strain-specific neutralization against their viral quasispecies, and similar immunogen-matched activity can now be induced in animal models. However, only in a minority of infections do broadly neutralizing antibodies develop. Therefore, understanding how the viral diversity, host immune environment, and antibody repertoires intersect to support the generation of neutralization breadth in elite neutralizers could provide guidelines as to how to improve immunization responses.
Collapse
|
148
|
Sun Y, Qiao Y, Zhu Y, Chong H, He Y. Identification of a novel HIV-1-neutralizing antibody from a CRF07_BC-infected Chinese donor. Oncotarget 2017; 8:63047-63063. [PMID: 28968970 PMCID: PMC5609902 DOI: 10.18632/oncotarget.18594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
The identification of human monoclonal antibodies (mAbs) able to neutralize a broad spectrum of primary HIV-1 isolates is highly important for understanding the immune response of HIV-1 infection and developing vaccines and therapeutics. In this study, we isolated a novel human mAb termed Y498 from a phage display antibody library constructed with the PBMC samples of a CRF07_BC-infected Chinese donor whose sera exhibited broadly neutralizing activity. Y498 cross-reacted with diverse Env antigens and neutralized 30% of 70 tested HIV-1 isolates. It efficiently blocked the binding of soluble CD4 to gp120 and competed with the CD4-binding site (CD4bs)-specific mAbs. By combining molecular docking and site-directed mutagenesis, the epitope of Y498 was characterized to contain three antigenic sites on gp120, including the CD4 binding loop in C3, the β23 in C4 and the β24-α5 in C5, which overlap the binding sites of CD4 and CD4bs-directed mAbs (b12, VRC01, A16). Therefore, Y498 is a novel neutralizing human mAb targeting a conformation-dependent CD4bs-based epitope, and its isolation and characterization could provide helpful information for elucidating human immune response to HIV-1 infection and designing effective vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Youxiang Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanyuan Qiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
149
|
Erwin S, Ciupe SM. Germinal center dynamics during acute and chronic infection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:655-671. [PMID: 28092957 DOI: 10.3934/mbe.2017037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of the immune system to clear pathogens is limited during chronic virus infections where potent long-lived plasma and memory B-cells are produced only after germinal center B-cells undergo many rounds of somatic hypermutations. In this paper, we investigate the mechanisms of germinal center B-cell formation by developing mathematical models for the dynamics of B-cell somatic hypermutations. We use the models to determine how B-cell selection and competition for T follicular helper cells and antigen influences the size and composition of germinal centers in acute and chronic infections. We predict that the T follicular helper cells are a limiting resource in driving large numbers of somatic hypermutations and present possible mechanisms that can revert this limitation in the presence of non-mutating and mutating antigen.
Collapse
Affiliation(s)
- Samantha Erwin
- 460 McBryde Hall, Virginia Tech, Blacksburg, VA 24061, United States .
| | | |
Collapse
|
150
|
Chaipan C, Pryszlak A, Dean H, Poignard P, Benes V, Griffiths AD, Merten CA. Single-Virus Droplet Microfluidics for High-Throughput Screening of Neutralizing Epitopes on HIV Particles. Cell Chem Biol 2017; 24:751-757.e3. [PMID: 28552581 DOI: 10.1016/j.chembiol.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022]
Abstract
Analyzing surface epitopes of single HIV particles holds great potential for the development of vaccine candidates. However, existing technologies do not allow corresponding screens at high throughput. We present here a single-virus droplet-based microfluidics platform enabling sorting of millions of HIV-1 particles with >99% efficiency, based on the expression of epitopes recognized by broadly neutralizing antibodies. We show that virus particles displaying these epitopes can be identified, sorted, and analyzed by next-generation sequencing: an approximately 1,900-fold enrichment of viral particles displaying neutralizing epitopes could be obtained in a single sort, thus opening the way for screening diverse virus libraries with optimal antigenic features for HIV vaccine candidates.
Collapse
Affiliation(s)
- Chawaree Chaipan
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anna Pryszlak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Hansi Dean
- International AIDS Vaccine Initiative, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- International AIDS Vaccine Initiative, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Andrew D Griffiths
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), CNRS UMR 8231, 75231 Paris, France
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|