101
|
Orliaguet L, Dalmas E, Drareni K, Venteclef N, Alzaid F. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol (Lausanne) 2020; 11:62. [PMID: 32140136 PMCID: PMC7042402 DOI: 10.3389/fendo.2020.00062] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) is a disease of two etiologies: metabolic and inflammatory. At the cross-section of these etiologies lays the phenomenon of metabolic inflammation. Whilst metabolic inflammation is characterized as systemic, a common starting point is the tissue-resident macrophage, who's successful physiological or aberrant pathological adaptation to its microenvironment determines disease course and severity. This review will highlight the key mechanisms in macrophage polarization, inflammatory and non-inflammatory signaling that dictates the development and progression of insulin resistance and T2D. We first describe the known homeostatic functions of tissue macrophages in insulin secreting and major insulin sensitive tissues. Importantly we highlight the known mechanisms of aberrant macrophage activation in these tissues and the ways in which this leads to impairment of insulin sensitivity/secretion and the development of T2D. We next describe the cellular mechanisms that are known to dictate macrophage polarization. We review recent progress in macrophage bio-energetics, an emerging field of research that places cellular metabolism at the center of immune-effector function. Importantly, following the advent of the metabolically-activated macrophage, we cover the known transcriptional and epigenetic factors that canonically and non-canonically dictate macrophage differentiation and inflammatory polarization. In closing perspectives, we discuss emerging research themes and highlight novel non-inflammatory or non-immune roles that tissue macrophages have in maintaining microenvironmental and systemic homeostasis.
Collapse
Affiliation(s)
- Lucie Orliaguet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Karima Drareni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fawaz Alzaid
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
102
|
Oliveira BM, Pinto A, Correia A, Ferreira PG, Vilanova M, Teixeira L. Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Sci Rep 2020; 10:1771. [PMID: 32019985 PMCID: PMC7000716 DOI: 10.1038/s41598-020-58678-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells resident in adipose tissue have important functions in local and systemic metabolic homeostasis. Nevertheless, these immune cell populations remain poorly characterized in bovines. Recently, we described diverse lymphocyte subpopulations in adipose tissue of Holstein-Friesian cows. Here, we aimed at characterising myeloid cell populations present in bovine adipose tissue using multicolour flow cytometry, cell sorting and histochemistry/immunohistochemistry. Macrophages, CD14+CD11b+MHC-II+CD45+ cells, were identified in mesenteric and subcutaneous adipose tissue, though at higher proportions in the latter. Mast cells, identified as SSC-AhighCD11b−/+CD14−MHC-II−CH138A−CD45+ cells, were also observed in adipose tissue and found at higher proportions than macrophages in mesenteric adipose tissue. Neutrophils, presenting a CH138A+CD11b+ phenotype, were also detected in mesenteric and subcutaneous adipose tissue, however, at much lower frequencies than in the blood. Our gating strategy allowed identification of eosinophils in blood but not in adipose tissue although being detected by morphological analysis at low frequencies in some animals. A population not expressing CD45 and with the CH138A+ CD11b−MHC-II− phenotype, was found abundant and present at higher proportions in mesenteric than subcutaneous adipose tissue. The work reported here may be useful for further studies addressing the function of the described cells.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Pinto
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Correia
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Manuel Vilanova
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
103
|
Estève D, Roumiguié M, Manceau C, Milhas D, Muller C. Periprostatic adipose tissue: A heavy player in prostate cancer progression. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2020; 10:1607. [PMID: 32063863 PMCID: PMC7000657 DOI: 10.3389/fphys.2019.01607] [Citation(s) in RCA: 515] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is one of the major health burdens of the 21st century as it contributes to the growing prevalence of its related comorbidities, including insulin resistance and type 2 diabetes. Growing evidence suggests a critical role for overnutrition in the development of low-grade inflammation. Specifically, chronic inflammation in adipose tissue is considered a crucial risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. The triggers for adipose tissue inflammation are still poorly defined. However, obesity-induced adipose tissue expansion provides a plethora of intrinsic signals (e.g., adipocyte death, hypoxia, and mechanical stress) capable of initiating the inflammatory response. Immune dysregulation in adipose tissue of obese subjects results in a chronic low-grade inflammation characterized by increased infiltration and activation of innate and adaptive immune cells. Macrophages are the most abundant innate immune cells infiltrating and accumulating into adipose tissue of obese individuals; they constitute up to 40% of all adipose tissue cells in obesity. In obesity, adipose tissue macrophages are polarized into pro-inflammatory M1 macrophages and secrete many pro-inflammatory cytokines capable of impairing insulin signaling, therefore promoting the progression of insulin resistance. Besides macrophages, many other immune cells (e.g., dendritic cells, mast cells, neutrophils, B cells, and T cells) reside in adipose tissue during obesity, playing a key role in the development of adipose tissue inflammation and insulin resistance. The association of obesity, adipose tissue inflammation, and metabolic diseases makes inflammatory pathways an appealing target for the treatment of obesity-related metabolic complications. In this review, we summarize the molecular mechanisms responsible for the obesity-induced adipose tissue inflammation and progression toward obesity-associated comorbidities and highlight the current therapeutic strategies.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Jamal Naderi
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gregory Alexander Raciti
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
105
|
Leocádio PCL, Oriá RB, Crespo-Lopez ME, Alvarez-Leite JI. Obesity: More Than an Inflammatory, an Infectious Disease? Front Immunol 2020; 10:3092. [PMID: 31993062 PMCID: PMC6971046 DOI: 10.3389/fimmu.2019.03092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Paola C L Leocádio
- Laboratório de Aterosclerose e Bioquímica Nutricional, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Reinaldo B Oriá
- Laboratório de Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Faculdade de Medicina, Universidade Federal Do Ceará, Fortaleza, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Jacqueline I Alvarez-Leite
- Laboratório de Aterosclerose e Bioquímica Nutricional, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
106
|
de Frel DL, Atsma DE, Pijl H, Seidell JC, Leenen PJM, Dik WA, van Rossum EFC. The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Front Nutr 2020; 7:597600. [PMID: 33330597 PMCID: PMC7711810 DOI: 10.3389/fnut.2020.597600] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: COVID-19 is a global challenge to healthcare. Obesity is common in patients with COVID-19 and seems to aggravate disease prognosis. In this review we explore the link between obesity, chronic disease, lifestyle factors and the immune system, and propose societal interventions to enhance global immunity. Search Strategy and Selection Criteria: We performed three literature searches using the keywords (1) coronavirus AND comorbidities, (2) comorbidities AND immune system, and (3) lifestyle factors AND immune system. Results were screened for relevance by the main author and a total of 215 articles were thoroughly analyzed. Results: The relationship between obesity and unfavorable COVID-19 prognosis is discussed in light of the impact of chronic disease and lifestyle on the immune system. Several modifiable lifestyle factors render us susceptible to viral infections. In this context, we make a case for fostering a healthy lifestyle on a global scale. Conclusions: Obesity, additional chronic disease and an unhealthy lifestyle interactively impair immune function and increase the risk of severe infectious disease. In adverse metabolic and endocrine conditions, the immune system is geared toward inflammation. Collective effort is needed to ameliorate modifiable risk factors for obesity and chronic disease on a global scale and increase resistance to viruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Daan L. de Frel
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E. Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Douwe E. Atsma
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob C. Seidell
- Department of Health Sciences, VU Medical Center, Amsterdam, Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F. C. van Rossum
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|