101
|
Baldwin J, Antille M, Bonda U, De-Juan-Pardo EM, Khosrotehrani K, Ivanovski S, Petcu EB, Hutmacher DW. In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vasc Cell 2014; 6:13. [PMID: 25071932 PMCID: PMC4112973 DOI: 10.1186/2045-824x-6-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022] Open
Abstract
In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mélanie Antille
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ulrich Bonda
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Leibniz Institute of Polymer Research Dresden (IPF) & Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069, Dresden, Germany
| | - Elena M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kiarash Khosrotehrani
- University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Building 71/918, Herston, QLD 4029, Australian
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Saso Ivanovski
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Eugen Bogdan Petcu
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
102
|
Raz O, Lev DL, Battler A, Lev EI. Pathways mediating the interaction between endothelial progenitor cells (EPCs) and platelets. PLoS One 2014; 9:e95156. [PMID: 24901498 PMCID: PMC4046960 DOI: 10.1371/journal.pone.0095156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Endothelial progenitor cells (EPCs) have an important role in the process of vascular injury repair. Platelets have been shown to mediate EPC recruitment, maturation and differentiation. Yet, the mechanism underlying this interaction is unclear. We, therefore, aimed to examine whether direct contact between platelets and EPCs is essential for the positive platelets-EPC effect, and to investigate the main mediators responsible for the improvement in EPCs function. Methods Human EPCs were isolated from donated buffy coats and cultured in either: 1. EPCs co-incubated with platelets placed in a 1 µm-Boyden chamber. 2. EPCs incubated with or without platelets in the presence or absence of bFGF/PDGF Receptor inhibitor (PDGFRI). After 7 days culture, EPCs ability to form colonies, proliferate and differentiate was examined. Culture supernatants were collected and growth factors levels were evaluated using ELISA. Growth factors mRNA levels in EPCs were evaluated using RT-PCR. Results and Conclusions After 7 days culture, EPCs functional properties were higher following co-incubation with platelets (directly or indirectly), implying that direct contact is not essential for the platelet’s positive effect on EPCs. This effect was reduced by PDGFRI inhibition. Additionally, higher levels of PDGFB in EPCs-platelets supernatant and higher levels of PDGFC mRNA in EPCs co-incubated with platelets were found. In contrast, FGF and other potential mediators that were examined and inhibited did not significantly affect the interaction between platelets and EPCs. Thus, we conclude that PDGF has a central role in the interaction between platelets and EPCs. Further study is required to examine additional aspects of EPC-platelets interaction.
Collapse
Affiliation(s)
- Oshrat Raz
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Dorit L. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
| | | | - Eli I. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
103
|
Brodowski L, Burlakov J, Myerski AC, von Kaisenberg CS, Grundmann M, Hubel CA, von Versen-Höynck F. Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta. PLoS One 2014; 9:e98527. [PMID: 24887145 PMCID: PMC4041729 DOI: 10.1371/journal.pone.0098527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023] Open
Abstract
CONTEXT Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. OBJECTIVE We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors--preeclampsia serum or hypoxic placental conditioned medium--in a fashion reversed by vitamin D. DESIGN, SETTING, PATIENTS ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. OUTCOME MEASURES ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. RESULTS 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. CONCLUSION Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted.
Collapse
Affiliation(s)
- Lars Brodowski
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Jennifer Burlakov
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ashley C. Myerski
- Magee- Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Magdalena Grundmann
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Carl A. Hubel
- Magee- Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | |
Collapse
|
104
|
Mena HA, Lokajczyk A, Dizier B, Strier SE, Voto LS, Boisson-Vidal C, Schattner M, Negrotto S. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis 2014; 17:867-79. [DOI: 10.1007/s10456-014-9434-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023]
|
105
|
Zhang N, Xie X, Chen H, Chen H, Yu H, Wang JA. Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies. Stem Cells Dev 2014; 23:1731-40. [PMID: 24702267 DOI: 10.1089/scd.2014.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a major contributor to life-threatening cardiovascular events, the leading cause of death worldwide. Since the mechanisms of atherosclerosis have not been fully understood, currently, there are no effective approaches to regressing atherosclerosis. Therefore, there is a dire need to explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of atherosclerosis. In recent years, stem cell-based therapies have held promises to various diseases, including atherosclerosis. Unfortunately, the efficacy of stem cell-based therapies for atherosclerosis as reported in the literature has been inconsistent or even conflicting. In this review, we summarize the current literature of stem cell-based therapies for atherosclerosis and discuss possible mechanisms and future directions of these potential therapies.
Collapse
Affiliation(s)
- Na Zhang
- 1 Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
106
|
Wang X, Zachman AL, Haglund NA, Maltais S, Sung HJ. Combined Usage of Stem Cells in End-Stage Heart Failure Therapies. J Cell Biochem 2014; 115:1217-24. [DOI: 10.1002/jcb.24782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | - Angela L. Zachman
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | | | - Simon Maltais
- Division of Cardiovascular Surgery; Vanderbilt University; Nashville Tennessee
| | - Hak-Joon Sung
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
107
|
Chan KH, Simpson PJL, Yong AS, Dunn LL, Chawantanpipat C, Hsu C, Yu Y, Keech AC, Celermajer DS, Ng MKC. The relationship between endothelial progenitor cell populations and epicardial and microvascular coronary disease-a cellular, angiographic and physiologic study. PLoS One 2014; 9:e93980. [PMID: 24736282 PMCID: PMC3988011 DOI: 10.1371/journal.pone.0093980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/10/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are implicated in protection against vascular disease. However, studies using angiography alone have reported conflicting results when relating EPCs to epicardial coronary artery disease (CAD) severity. Moreover, the relationship between different EPC types and the coronary microcirculation is unknown. We therefore investigated the relationship between EPC populations and coronary epicardial and microvascular disease. METHODS Thirty-three patients with a spectrum of isolated left anterior descending artery disease were studied. The coronary epicardial and microcirculation were physiologically interrogated by measurement of fractional flow reserve (FFR), index of microvascular resistance (IMR) and coronary flow reserve (CFR). Two distinct EPC populations (early EPC and late outgrowth endothelial cells [OECs]) were isolated from these patients and studied ex vivo. RESULTS There was a significant inverse relationship between circulating OEC levels and epicardial CAD severity, as assessed by FFR and angiography (r=0.371, p=0.04; r=-0.358, p=0.04; respectively). More severe epicardial CAD was associated with impaired OEC migration and tubulogenesis (r=0.59, p=0.005; r=0.589, p=0.004; respectively). Patients with significant epicardial CAD (FFR<0.75) had lower OEC levels and function compared to those without hemodynamically significant stenoses (p<0.05). In contrast, no such relationship was seen for early EPC number and function, nor was there a relationship between IMR and EPCs. There was a significant relationship between CFR and OEC function. CONCLUSIONS EPC populations differ in regards to their associations with CAD severity. The number and function of OECs, but not early EPCs, correlated significantly with epicardial CAD severity. There was no relationship between EPCs and severity of coronary microvascular disease.
Collapse
Affiliation(s)
- Kim H. Chan
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Andy S. Yong
- Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia
| | - Louise L. Dunn
- The Heart Research Institute, Sydney, New South Wales, Australia
| | | | - Chijen Hsu
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Young Yu
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony C. Keech
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- National Health and Medical Research Council Clinical Trials Centre, Sydney, New South Wales, Australia
| | - David S. Celermajer
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin K. C. Ng
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
108
|
Jarajapu YPR, Hazra S, Segal M, LiCalzi S, Jhadao C, Qian K, Mitter SK, Raizada MK, Boulton ME, Grant MB. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One 2014; 9:e93965. [PMID: 24713821 PMCID: PMC3979711 DOI: 10.1371/journal.pone.0093965] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/11/2014] [Indexed: 01/26/2023] Open
Abstract
We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.
Collapse
Affiliation(s)
- Yagna P. R. Jarajapu
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sugata Hazra
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mark Segal
- Department of Nephrology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sergio LiCalzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chandra Jhadao
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kevin Qian
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sayak K. Mitter
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Maria B. Grant
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
109
|
Sadat K, Ather S, Aljaroudi W, Heo J, Iskandrian AE, Hage FG. The effect of bone marrow mononuclear stem cell therapy on left ventricular function and myocardial perfusion. J Nucl Cardiol 2014; 21:351-67. [PMID: 24379128 DOI: 10.1007/s12350-013-9846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/08/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bone marrow stem cell (BMC) transfer is an emerging therapy with potential to salvage cardiomyocytes during acute myocardial infarction and promote regeneration and endogenous repair of damaged myocardium in patients with left ventricular (LV) dysfunction. We performed a meta-analysis to examine the association between administration of BMC and LV functional recovery as assessed by imaging. METHODS AND RESULTS Our meta-analysis included data from 32 trials comprising information on 1,300 patients in the treatment arm and 1,006 patients in the control arm. Overall, BMC therapy was associated with a significant increase in LV ejection fraction by 4.6% ± 0.7% (P < .001) (control-adjusted increase of 2.8% ± 0.9%, P = .001), and a significant decrease in perfusion defect size by 9.5% ± 1.4% (P < .001) (control-adjusted decrease of 3.8% ± 1.2%, P = .002). The effect of BMC therapy was similar whether the cells were administered via intra-coronary or intra-myocardial routes and was not influenced by baseline ejection fraction or perfusion defect size. CONCLUSIONS BMC transfer appears to have a positive impact on LV recovery in patients with acute coronary syndrome and those with stable coronary disease with or without heart failure. Most studies were small and a minority used a core laboratory for image analysis.
Collapse
Affiliation(s)
- Kamel Sadat
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Lyons-Harrison Research Building 314, 1900 University Blvd, Birmingham, AL, 35294, USA,
| | | | | | | | | | | |
Collapse
|
110
|
Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies. Stem Cell Res 2014; 12:703-15. [PMID: 24681520 DOI: 10.1016/j.scr.2014.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/12/2022] Open
Abstract
Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.
Collapse
|
111
|
Krüger K, Klocke R, Kloster J, Nikol S, Waltenberger J, Mooren FC. Activity of daily living is associated with circulating CD34+/KDR+ cells and granulocyte colony-stimulating factor levels in patients after myocardial infarction. J Appl Physiol (1985) 2014; 116:532-7. [DOI: 10.1152/japplphysiol.01254.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The study aimed to investigate whether the extent of activities of daily living (ADL) of patients after myocardial infarction affect numbers of circulating CD34+/KDR+ and CD45+/CD34+ cells, which are supposed to protect structural and functional endothelial integrity. In a cross-sectional study, 34 male coronary artery disease patients with a history of myocardial infarction were assessed for times spent per week for specific physical ADL, including basic activities (instrumental ADL), leisure time activities, and sport activities, using a validated questionnaire. Individual specific activity times were multiplied with respective specific metabolic equivalent scores to obtain levels of specific activities. Numbers of circulating CD34+/KDR+ and CD45+/CD34+ cells were analyzed by flow cytometry. Furthermore, the colony-forming capacity of CD34+ cells and the level of granulocyte colony-stimulating factor (G-CSF) in serum were measured. Analysis revealed that the extent of total activities and basic activities, as well as total activity time, were positively correlated with numbers of circulating CD34+/KDR+ cells ( r = 0.60, 0.56, and 0.55, P < 0.05). Higher levels of total activity were also associated with increased colony-forming capacity of CD34+ cells ( r = 0.54, P < 0.05) and with higher systemic levels of G-CSF ( r = 0.44, P < 0.05). These findings indicate that even ADL-related activities of coronary artery disease patients after myocardial infarction exert stimulating effects on CD34+/KDR+ cell mobilization, potentially mediated by increased G-CSF levels. This, in turn, potentially contributes to the beneficial effects of exercise on the diseased cardiovascular system.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany; and
| | - Rainer Klocke
- Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Julia Kloster
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany; and
| | - Sigrid Nikol
- Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | | | - Frank C. Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany; and
| |
Collapse
|
112
|
Woudstra P, de Winter RJ, Beijk MA. Next-generation DES: the COMBO dual therapy stent with Genous endothelial progenitor capturing technology and an abluminal sirolimus matrix. Expert Rev Med Devices 2014; 11:121-35. [DOI: 10.1586/17434440.2014.882046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
113
|
Dunn LL, Simpson PJ, Prosser HC, Lecce L, Yuen GS, Buckle A, Sieveking DP, Vanags LZ, Lim PR, Chow RW, Lam YT, Clayton Z, Bao S, Davies MJ, Stadler N, Celermajer DS, Stocker R, Bursill CA, Cooke JP, Ng MK. A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes 2014; 63:675-87. [PMID: 24198286 PMCID: PMC3900553 DOI: 10.2337/db13-0417] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Impaired angiogenesis in ischemic tissue is a hallmark of diabetes. Thioredoxin-interacting protein (TXNIP) is an exquisitely glucose-sensitive gene that is overexpressed in diabetes. As TXNIP modulates the activity of the key angiogenic cytokine vascular endothelial growth factor (VEGF), we hypothesized that hyperglycemia-induced dysregulation of TXNIP may play a role in the pathogenesis of impaired angiogenesis in diabetes. In the current study, we report that high glucose-mediated overexpression of TXNIP induces a widespread impairment in endothelial cell (EC) function and survival by reducing VEGF production and sensitivity to VEGF action, findings that are rescued by silencing TXNIP with small interfering RNA. High glucose-induced EC dysfunction was recapitulated in normal glucose conditions by overexpressing either TXNIP or a TXNIP C247S mutant unable to bind thioredoxin, suggesting that TXNIP effects are largely independent of thioredoxin activity. In streptozotocin-induced diabetic mice, TXNIP knockdown to nondiabetic levels rescued diabetes-related impairment of angiogenesis, arteriogenesis, blood flow, and functional recovery in an ischemic hindlimb. These findings were associated with in vivo restoration of VEGF production to nondiabetic levels. These data implicate a critical role for TXNIP in diabetes-related impairment of ischemia-mediated angiogenesis and identify TXNIP as a potential therapeutic target for the vascular complications of diabetes.
Collapse
Affiliation(s)
- Louise L. Dunn
- Translational Research Group, The Heart Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Hamish C. Prosser
- Immunobiology Group, The Heart Research Institute, Sydney, Australia
| | - Laura Lecce
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Gloria S.C. Yuen
- Translational Research Group, The Heart Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Andrew Buckle
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Daniel P. Sieveking
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Laura Z. Vanags
- Immunobiology Group, The Heart Research Institute, Sydney, Australia
| | - Patrick R. Lim
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Renee W.Y. Chow
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Yuen Ting Lam
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Zoe Clayton
- Translational Research Group, The Heart Research Institute, Sydney, Australia
| | - Shisan Bao
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michael J. Davies
- Sydney Medical School, University of Sydney, Sydney, Australia
- Free Radical Group, The Heart Research Institute, Sydney, Australia
| | - Nadina Stadler
- Free Radical Group, The Heart Research Institute, Sydney, Australia
| | - David S. Celermajer
- Sydney Medical School, University of Sydney, Sydney, Australia
- Clinical Research Group, The Heart Research Institute, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - John P. Cooke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Martin K.C. Ng
- Translational Research Group, The Heart Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Corresponding author: Martin K.C. Ng,
| |
Collapse
|
114
|
Kränkel N, Madeddu P. Helping the circulatory system heal itself: manipulating kinin signaling to promote neovascularization. Expert Rev Cardiovasc Ther 2014; 7:215-9. [DOI: 10.1586/14779072.7.3.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
115
|
Marsboom G, Janssens S. Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther 2014; 6:687-701. [DOI: 10.1586/14779072.6.5.687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
116
|
Geft D, Schwartzenberg S, George J. Circulating endothelial progenitor cells in cardiovascular disorders. Expert Rev Cardiovasc Ther 2014; 6:1115-21. [DOI: 10.1586/14779072.6.8.1115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
117
|
Reynolds JA, Robertson AC, Bruce IN, Alexander MY. Improving cardiovascular outcomes in rheumatic diseases: therapeutic potential of circulating endothelial progenitor cells. Pharmacol Ther 2013; 142:231-43. [PMID: 24333265 DOI: 10.1016/j.pharmthera.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023]
Abstract
Patients with Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) have a significantly increased risk of cardiovascular disease (CVD). The reason for this is unclear but may be due, at least in part, to the failure of endothelial repair mechanisms. Over the last 15 years there has been much interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD. In the circulation there are two distinct populations of cells; myeloid angiogenic cells (MACs) which augment repair by the paracrine secretion of angiogenic factors, and outgrowth endothelial cells (OECs) which are true endothelial progenitor cells (EPCs) and promote vasculogenesis by differentiating into mature endothelium. There are marked abnormalities in the number and function of these cells in patients with RA and SLE. Inflammatory cytokines including interferon-alpha (IFNα) and tumour-necrosis factor alpha (TNFα) both impair MAC and OEC function ex vivo and may therefore contribute to the CVD risk in these patients. Whilst administration of mononuclear cells, MACs and other progenitors has improved cardiovascular outcomes in the acute setting, this is not a viable option in chronic disease. The pharmacological manipulation of MAC/OEC function in vivo however has the potential to significantly improve endothelial repair and thus reduce CVD in this high risk population.
Collapse
Affiliation(s)
- John A Reynolds
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK.
| | - Abigail C Robertson
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK
| | - Ian N Bruce
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; NIHR Manchester Musculoskeletal Biomedical Research Unit, and Kellgren Centre for Rheumatology, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M Yvonne Alexander
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK; Healthcare Science Research Institute, Manchester Metropolitan University, UK Healthcare Science Research Institute, Manchester Metropolitan University, UK
| |
Collapse
|
118
|
CD14(bright)CD16(low) intermediate monocytes expressing Tie2 are increased in the peripheral blood of patients with primary myelofibrosis. Exp Hematol 2013; 42:244-6. [PMID: 24333662 DOI: 10.1016/j.exphem.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
|
119
|
Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1 β Expression in THP-1 Monocytic Cells in a Paracrine Manner. Stem Cells Int 2013; 2013:859643. [PMID: 24385987 PMCID: PMC3872420 DOI: 10.1155/2013/859643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/07/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been used in clinical trials to treat ischemic heart disease. Monocyte infiltration plays an important role in inflammation, angiogenesis, and tissue repair during tissue ischemia. It is important to understand the interactions between EPCs and monocytes. In this study, a human EPC/THP-1 monocytic cell coculture system was used to examine EPC effect on IL-1α, IL-1β, and TNF-α expression in THP-1 cells. Late, but not early, EPCs upregulated IL-1β expression at both mRNA and protein levels. In contrast, neither early nor late EPCs affected IL-1α or TNF-α expression. Coculture with human umbilical vein endothelial cells did not alter IL-1β expression. It has been shown that activation of integrin β2 in human neutrophils augments IL-1β synthesis; however integrin β2 was not involved in IL-1β expression in THP-1 cells. Addition of late EPC conditioned medium to THP-1 cell culture led to a modest increase of IL-1β mRNA levels, indicating that late EPCs upregulate IL-1β expression partly through a paracrine pathway. IL-1β, an important inflammation mediator, has been shown to promote EPC function. Our data therefore suggest that late EPCs can exert self-enhancement effects by interacting with monocytes and that EPCs might modulate inflammatory reactions by regulating IL-1β expression in monocytes.
Collapse
|
120
|
Abraham R, Verfaillie CM. Neural differentiation and support of neuroregeneration of non-neural adult stem cells. PROGRESS IN BRAIN RESEARCH 2013. [PMID: 23186708 DOI: 10.1016/b978-0-444-59544-7.00002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although it is well established that neural stem cells (NSCs) or neural stem/progenitor cells differentiated from pluripotent stem cells can generate neurons, astrocytes, and oligodendrocytes, a number of other cell populations are also being considered for therapy of central nervous system disorders. Here, we describe the potential of (stem) cells from other postnatal tissues, including bone marrow, (umbilical cord) blood, fat tissue, or dental pulp, which themselves do not (robustly) generate neural progeny. However, these non-neuroectoderm derived cell populations appear to capable of inducing endogenous neurogenesis and angiogenesis. As these "trophic" effects are also, at least partly, responsible for some of the beneficial effects seen when NSC are grafted in the brain, these non-neuroectodermal cells may exert beneficial effects when used to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Rojin Abraham
- Stem Cell Institute, KU Leuven, Onderwijs & Navorsing V, Leuven, Belgium
| | | |
Collapse
|
121
|
Abstract
BACKGROUND Obstructive sleep apnea (OSA) occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow-derived endothelial progenitor cells (EPCs) within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. METHODS We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. CONCLUSION Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has emerged. The possible mechanisms underlying the decrease in the number or function of EPCs include prolonged inflammation response, oxidative stress, increased sympathetic activation, physiological adaptive responses of tissue to hypoxia, reduced EPC mobilization, EPC apoptosis, and functional impairment in untreated OSA. Continuous positive airway pressure (CPAP) therapy for OSA affects the mobilization, apoptosis, and function of EPCs through preventing intermittent hypoxia episodes, improving sleep quality, and reducing systemic inflammation, oxidative stress levels, and sympathetic overactivation. To improve CPAP adherence, the medical staff should pay attention to making the titration trial a comfortable first CPAP experience for the patients; for example, using the most appropriate ventilators or proper humidification. It is also important to give the patients education and support about CPAP use in the follow-up, especially in the early stage of the treatment.
Collapse
Affiliation(s)
- Qing Wang
- The Second Respiratory Department of the First People’s Hospital of Kunming, Yunnan, People’s Republic of China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, People’s Republic of China
| | - Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
- Correspondence: Jing Feng, Respiratory Department of Tianjin Medical University General Hospital, Tianjin 300052, People’s Republic of China, Email
| | - Xin Sun
- Respiratory Department of Tianjin Haihe Hospital, Tianjin, People’s Republic of China
- Xin Sun, Respiratory Department of Tianjin Haihe Hospital, Tianjin 300350, People’s Republic of China, Email
| |
Collapse
|
122
|
Donahue M, Quintavalle C, Chiariello GA, Condorelli G, Briguori C. Endothelial progenitor cells in coronary artery disease. Biol Chem 2013; 394:1241-52. [DOI: 10.1515/hsz-2013-0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 06/20/2013] [Indexed: 02/02/2023]
Abstract
Abstract
In the last two decades a great deal of evidence has been collected on the key role of endothelial progenitor cells (EPC) in the mechanisms of vascular healing. The role of EPC as a marker of vascular health and prognosis of cardiovascular disease is already consolidated. This review aims to examine and evaluate recent data regarding EPC, as biomarkers, prognostic factor and potential therapy in cardiovascular disease.
Collapse
|
123
|
Sommese L, Vasco M, Costa D, Napoli C. Endothelial progenitor cells and human diseases. Ann Hematol 2013; 93:533-4. [PMID: 23832236 DOI: 10.1007/s00277-013-1840-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Second University of Naples, Naples, Italy,
| | | | | | | |
Collapse
|
124
|
Ichim TE, Warbington T, Cristea O, Chin JL, Patel AN. Intracavernous administration of bone marrow mononuclear cells: a new method of treating erectile dysfunction? J Transl Med 2013; 11:139. [PMID: 23758954 PMCID: PMC3718667 DOI: 10.1186/1479-5876-11-139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023] Open
Abstract
While PDE5 inhibitors have revolutionized treatment of ED, approximately 30% of patients are non-responsive. A significant cause of this is vascular and smooth muscle dysfunction, as well as nerve atrophy. Autologous administration of bone marrow mononuclear cells (BMMC) has been performed in over 2000 cardiac patients without adverse effects, for stimulation of angiogenesis/regeneration. Despite its ease of access, and dependence on effective vasculature for function, comparatively little has been perform in terms of BMMC therapy for ED. Here we outline the rationale for use of autologous BMMC in patients with ED, as well as provide early safety data on the first use of this procedure clinically.
Collapse
Affiliation(s)
- Thomas E Ichim
- Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | | | | | | | | |
Collapse
|
125
|
Affiliation(s)
- Hiroshi Iwata
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ichiro Manabe
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ryozo Nagai
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| |
Collapse
|
126
|
de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res 2013; 19:3360-8. [PMID: 23665736 DOI: 10.1158/1078-0432.ccr-13-0462] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
127
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
128
|
Werling NJ, Thorpe R, Zhao Y. A systematic approach to the establishment and characterization of endothelial progenitor cells for gene therapy. Hum Gene Ther Methods 2013; 24:171-84. [PMID: 23570242 DOI: 10.1089/hgtb.2012.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been recently demonstrated that endothelial progenitor cells (EPCs) have increasing potential for gene therapy or regenerative cell therapy for cardiovascular diseases and cancer. However, current therapies involving EPCs are inefficient because of the very low level of EPCs in the available sources, for example, in blood. One solution is to derive in vitro an expanded population of EPCs from circulation. In addition, EPCs like other progenitor cells have an intrinsic predisposition of differentiating into mature cell types, for example, mature endothelial cells; therefore, establishing a sufficient amount of EPCs alongside maintaining the EPC characteristic phenotype during genetic modification and long-term culture presents a significant challenge to the field of gene and cell therapies. In this study, we have systematically investigated EPCs from different sources and used multiple parameters, including cell surface markers and a tubule formation assay to identify factors that influence the establishment, characteristics, and vector transduction capability of EPCs. Our results show the considerable promise, as well as certain limitations in the establishment and manipulation of genetically modified EPCs for gene therapy. While obtaining high transduction efficiency and robust in vitro tubule formation of EPCs using lentiviral vectors, we also observed that lentiviral vector transduction significantly altered EPC phenotype as demonstrated by an increased percentage of CD34(+) progenitor cells and increased expression of adhesion molecule CD144 (VE-cadherin). Taking account of the increased expression of CD144 reported in cancer patients, the altered expression of EPC-related markers, for example, VE-cadherin and the enrichment of CD34(+) cells, after vector transduction indicates the importance of extensive characterization and vigorous safety control of genetically modified EPCs before they are accepted for clinical use.
Collapse
Affiliation(s)
- Natalie Jayne Werling
- Biotherapeutics Group, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, United Kingdom
| | | | | |
Collapse
|
129
|
Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 2013; 34:1790-9. [PMID: 23569199 DOI: 10.1093/eurheartj/eht111] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
On an empirical basis, exercise has been regarded as a fundamental pre-requisite for human well-being and physical integrity since classical times. Only in the last decades, however, scientific evidence has accumulated proving its role in the prevention and treatment of multiple chronic diseases beyond any reasonable doubt. Few treatment strategies in medicine have been tested so rigorously in large cohorts of patients as regular physical exercise. With the advent of molecular biology, the underlying mechanisms, such as NO bioavailability and mobilization of progenitor cells, could be identified. This enhances our understanding of this therapeutic tool. Unfortunately, the low compliance rate of the patients is the major drawback of the intervention exercise training (ET). The objective of this manuscript is to summarize the current knowledge with respect to ET on cardiovascular disease (CVD) and the molecular changes elicited by ET. Finally, we will critically assess reasons why ET as therapeutic option is not as effective at the population level in preventing CVD and what we may change in the future to make ET the most effective intervention to fight the development of CVD.
Collapse
Affiliation(s)
- Gerhard Schuler
- University Leipzig-Heart Center Leipzig, Strümpellstrasse 39, 4289 Leipzig, Germany.
| | | | | |
Collapse
|
130
|
Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM, Tsai TN, Chen JW, Wang HW. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 2013; 14:182. [PMID: 23496821 PMCID: PMC3652793 DOI: 10.1186/1471-2164-14-182] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/07/2013] [Indexed: 12/12/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) play a fundamental role in post-natal vascular repair. Currently EPCs are defined as either early and late EPCs based on their biological properties and their time of appearance during in vitro culture. EPCs are rare and therefore optimizing isolation and culture is required before they can be applied as part of clinical therapies. Results We compared the gene profiles of early/late EPCs to their ancestors CD133+ or CD34+ stem cells and to matured endothelial cells pinpointing novel biomarkers and stemness genes. Late EPCs were enriched with proliferation and angiogenesis genes, participating in endothelial tubulogenesis and hence neovascularization. Early EPCs expressed abundant inflammatory cytokines and paracrine angiogenic factors, thereby promoting angiogenesis in a paracrine manner. Transcription factors involved in EPC stemness were pinpointed in early EPCs (MAF/MAFB) and in late EPCs (GATA6/IRF6). Conclusions The detailed mRNA expression profiles and functional module analysis for different EPCs will help the development of novel therapeutic modalities targeting cardiovascular disease, tumor angiogenesis and various ischemia-related diseases.
Collapse
Affiliation(s)
- Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Vasculogenic cytokines in wound healing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:190486. [PMID: 23555076 PMCID: PMC3600243 DOI: 10.1155/2013/190486] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 01/13/2023]
Abstract
Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells) and angiogenesis (local endothelial cell sprouting from existing vasculature). Researchers have traditionally focused on angiogenesis but defects in vasculogenesis are increasingly recognized to impact diseases including wound healing. A more comprehensive understanding of vasculogenic cytokine networks may facilitate the development of novel strategies to treat recalcitrant wounds. Further, the clinical success of endothelial progenitor cell-based therapies will depend not only on the delivery of the cells themselves but also on the appropriate cytokine milieu to promote tissue regeneration. This paper will highlight major cytokines involved in vasculogenesis within the context of cutaneous wound healing.
Collapse
|
132
|
Simpson PJL, Hoyos CM, Celermajer D, Liu PY, Ng MKC. Effects of continuous positive airway pressure on endothelial function and circulating progenitor cells in obstructive sleep apnoea: a randomised sham-controlled study. Int J Cardiol 2013; 168:2042-8. [PMID: 23453448 DOI: 10.1016/j.ijcard.2013.01.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Obstructive sleep apnoea (OSA) is characterised by reoccurring apnoeas and hypopneas, causing repetitive hypoxia and reoxygenation, and is associated with endothelial dysfunction and reduced levels of circulating progenitor cells (CPCs). The potential to improve endothelial function and CPC levels in people with OSA by preventing hypoxic episodes with Continuous Positive Airway Pressure (CPAP) was investigated in a sham-controlled CPAP study. METHODS Men with moderate-to-severe OSA (mean ± SD: age=49 ± 12 y, apnoea hypopnea index (AHI)=37.6 ± 16.4 events/h, body mass index=31.5 ± 5.7 kg/m(2)) who were CPAP naïve without diabetes mellitus were randomised in a 12-week double-blind sham-controlled parallel group study to receive either active (n=25) or sham (n=21) CPAP. CPCs, isolated from blood, were measured by flow cytometry and by co-staining cultured cells (7 days) with acetylated low-density lipoprotein (acLDL) and lectin. Endothelial function was assessed by peripheral arterial tonometry (PAT). RESULTS Compared to sham, CPAP significantly decreased AHI (mean between-group difference -36.0 events/h; 95%CI, -49.7 to -22.3, p<0.0001) after 12 weeks. Despite this improvement in AHI, CPAP had no effect on change in CPC levels (including CD34(+)/KDR(+) (565 cells/mL; -977 to 2106, p=0.45), CD34(+)/KDR(+)/CD45(-) (37.0 cells/mL; -17.7 to 85.7, p=0.13), acLDL(+)/lectin(+) (-43.1 cells/field, -247 to 161, p=0.67)) or change in endothelial function (0.27; -0.14 to 0.67, p=0.19) compared to sham therapy. CONCLUSIONS Despite the improvement in OSA parameters and ablation of apnoeic events by CPAP, CPC counts and endothelial function in men with moderate-to-severe OSA were not significantly improved after 12 weeks of therapeutic CPAP when compared to sham control.
Collapse
Affiliation(s)
- Philippa J L Simpson
- Translational Research Group, the Heart Research Institute, Sydney 2042, Australia; University of Sydney, Sydney 2006, Australia
| | | | | | | | | |
Collapse
|
133
|
Teraa M, Sprengers RW, Westerweel PE, Gremmels H, Goumans MJTH, Teerlink T, Moll FL, Verhaar MC. Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients. PLoS One 2013; 8:e55592. [PMID: 23383236 PMCID: PMC3561321 DOI: 10.1371/journal.pone.0055592] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is characterized by lower extremity artery obstruction and a largely unexplained impaired ischemic neovascularization response. Bone marrow (BM) derived endothelial progenitor cells (EPC) contribute to neovascularization. We hypothesize that reduced levels and function of circulating progenitor cells and alterations in the BM contribute to impaired neovascularization in CLI. METHODS Levels of primitive (CD34(+) and CD133(+)) progenitors and CD34(+)KDR(+) EPC were analyzed using flow cytometry in blood and BM from 101 CLI patients in the JUVENTAS-trial (NCT00371371) and healthy controls. Blood levels of markers for endothelial injury (sE-selectin, sICAM-1, sVCAM-1, and thrombomodulin), and progenitor cell mobilizing and inflammatory factors were assessed by conventional and multiplex ELISA. BM levels and activity of the EPC mobilizing protease MMP-9 were assessed by ELISA and zymography. Circulating angiogenic cells (CAC) were cultured and their paracrine function was assessed. RESULTS Endothelial injury markers were higher in CLI (P<0.01). CLI patients had higher levels of VEGF, SDF-1α, SCF, G-CSF (P<0.05) and of IL-6, IL-8 and IP-10 (P<0.05). Circulating EPC and BM CD34(+) cells (P<0.05), lymphocytic expression of CXCR4 and CD26 in BM (P<0.05), and BM levels and activity of MMP-9 (P<0.01) were lower in CLI. Multivariate regression analysis showed an inverse association between IL-6 and BM CD34(+) cell levels (P = 0.007). CAC from CLI patients had reduced paracrine function (P<0.0001). CONCLUSION CLI patients have reduced levels of circulating EPC, despite profound endothelial injury and an EPC mobilizing response. Moreover, CLI patients have lower BM CD34(+)-cell levels, which were inversely associated with the inflammatory marker IL-6, and lower BM MMP-9 levels and activity. The results of this study suggest that inflammation-induced BM exhaustion and a disturbed progenitor cell mobilization response due to reduced levels and activity of MMP-9 in the BM and alterations in the SDF-1α/CXCR4 interaction contribute to the attenuated neovascularization in CLI patients.
Collapse
Affiliation(s)
- Martin Teraa
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ralf W. Sprengers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter E. Westerweel
- Department of Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Frans L. Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
134
|
Avouac J, Cagnard N, Distler JH, Schoindre Y, Ruiz B, Couraud PO, Uzan G, Boileau C, Chiocchia G, Allanore Y. Insights into the pathogenesis of systemic sclerosis based on the gene expression profile of progenitor-derived endothelial cells. ACTA ACUST UNITED AC 2013; 63:3552-62. [PMID: 21769840 DOI: 10.1002/art.30536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the gene expression profile of endothelial cells derived from the endothelial progenitor cells (EPCs) of patients with systemic sclerosis (SSc). METHODS Microarray experiments were performed on Affymetrix GeneChip Human Exon 1.0 ST Arrays in unstimulated and hypoxia-stimulated EPC-derived cells from patients with SSc and control subjects. Followup of the raised hypotheses was performed ex vivo by immunohistochemical analysis of skin tissue. RESULTS Signals from 92 probe sets and 188 probe sets were different in unstimulated and hypoxia-stimulated cells, respectively, from patients with SSc compared with controls. Within the largest groups of genes related to cell-cell interaction and vascular remodeling, down-regulation of tumor necrosis factor ligand superfamily member 10 (TNFSF10) and homeobox A9 (HOX-A9) was confirmed by real-time polymerase chain reaction and Western blots in EPC-derived cells and by immunohistochemistry in SSc skin tissue. Signals from 221 and 307 probe sets were different in unstimulated and hypoxia-stimulated cells, respectively, from patients with diffuse cutaneous SSc compared with patients with limited cutaneous SSc. Within the largest group of genes related to the inflammatory response, differential expression of TNFα-induced protein 3 and prostaglandin-endoperoxide synthase 2 was observed in EPC-derived cells and skin tissue from patients with SSc. CONCLUSION Our data revealed important gene expression changes in EPC-derived endothelial cells from patients with SSc, characterized by a proadhesive, proinflammatory, and activated phenotype. Differential expression in lesional SSc skin tissue of new targets, such as TNF family members and HOX-A9, may contribute to the pathogenesis of SSc and deserves more in-depth exploration.
Collapse
Affiliation(s)
- Jérôme Avouac
- Université Paris Descartes and Hôpital Cochin, AP-HP, and INSERM U1016, Cochin Institut, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Webster KE, Kennedy SH, Becker CM. Levels of circulating angiogenic cells are not altered in women with endometriosis. Hum Reprod 2013; 28:651-7. [PMID: 23321214 DOI: 10.1093/humrep/des454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are levels of circulating angiogenic cells (CACs) affected by the presence of endometriosis? SUMMARY ANSWER Levels of CACs are equivalent in women with and without endometriosis. WHAT IS KNOWN ALREADY Murine models have suggested a role for CACs in the development of endometriosis, but their levels in humans have not yet been studied. STUDY DESIGN, SIZE, DURATION Eighty-seven women participated in this study. Recruitment took place from July 2010 to May 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS All women underwent laparoscopy for investigation of symptoms suggestive of endometriosis. Thirty women had no evidence of endometriosis, and 47 women were found to have endometriosis at laparoscopy. CAC levels were determined in peripheral blood by flow cytometry in 64 women. Colony forming unit (CFU) analysis was conducted in 30 women. A separate group of 10 healthy, asymptomatic women donated blood at four time points to assess the effect of the menstrual cycle on CAC levels. MAIN RESULTS AND THE ROLE OF CHANCE For the whole sample, CAC levels (0.0797 ± 0.0052%) and CFU number (10.68 ± 1.98) were equivalent in women with and without endometriosis. CAC levels and CFU number were also unaffected by the stage of disease. No changes in CACs were detected during the menstrual cycle. LIMITATIONS, REASONS FOR CAUTION A difference of at least one standard deviation between the groups would be required to detect a difference with this sample size. Therefore, while CAC levels are not a useful biomarker of disease it is still possible that they are modestly altered by the presence of endometriosis. We did not describe specific types of lesion and it is possible that CAC elevation only occurs when vessel development is at its most prolific. Furthermore, although signals from endometriotic lesions may recruit CACs from blood, this may be insufficient to alter peripheral levels. WIDER IMPLICATIONS OF THE FINDINGS These data show that CACs are not a useful biomarker of endometriosis and indicate that they may be unaffected by the presence of this disease. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the MRC (New Investigator Award, G0601458 to C.M.B.), the Oxford Partnership Comprehensive Biomedical Research Centre with funding from the Department of Health's NIHR Biomedical Research Centres Scheme and the Oxfordshire Health Services Research Committee (OHSRC). There are no conflicts of interest to be declared.
Collapse
Affiliation(s)
- K E Webster
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
136
|
Yang JX, Pan YY, Zhao YY, Wang XX. Endothelial progenitor cell-based therapy for pulmonary arterial hypertension. Cell Transplant 2013; 22:1325-36. [PMID: 23295102 DOI: 10.3727/096368912x659899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A growing body of evidence in animal models and clinical studies supports the concept that endothelial progenitor cell (EPC)-mediated therapy ameliorates pulmonary arterial hypertension (PAH) and thus may represent a novel approach to treat it. Conversely, several experimental findings suggest that EPCs may be involved in PAH pathogenesis and disease progression. These discrepant results confuse the application of EPC transplantation as an effective treatment strategy for PAH. To improve the study of EPC transplantation in PAH therapy, it is high time that we resolve this dilemma. In this review, we examine the pathobiological changes of PAH, the characteristics of EPCs, and the underlying mechanisms of EPC effects on PAH.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
137
|
Su CH, Wu YJ, Chang CY, Tien TY, Tseng SW, Tsai CH, Bettinger T, Tsai CH, Yeh HI. The increase of VEGF secretion from endothelial progenitor cells post ultrasonic VEGF gene delivery enhances the proliferation and migration of endothelial cells. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:134-145. [PMID: 23141902 DOI: 10.1016/j.ultrasmedbio.2012.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
We investigated the feasibility of exogenous gene expression in endothelial progenitor cells (EPCs) through the use of ultrasonic microbubble transfection (UMT). EPCs originating from porcine peripheral blood were cultured in a medium containing constructed vascular endothelial growth factor (VEGF) pDNA followed by UMT. Simultaneously, comprehensive functional evaluations were conducted to investigate the effects of UMT of the VEGF gene on the EPCs. The results showed that UMT yielded significant VEGF protein expression. VEGF-containing supernatant originating from EPCs post UMT led to significantly enhanced activities of proliferation by more than 20% and migration by approximately 30% in human aortic endothelial cells. The duration of additional secretion of VEGF protein attributable to the exogenous VEGF gene in the EPCs post UMT lasted more than 96 hours. In conclusion, UMT successfully delivers the VEGF gene into porcine EPCs, and VEGF-containing supernatant derived from EPCs post UMT enhances the proliferation and migration of human aortic endothelial cells.
Collapse
Affiliation(s)
- Cheng-Huang Su
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Costa M, Sourris K, Lim SM, Yu QC, Hirst CE, Parkington HC, Jokubaitis VJ, Dear AE, Liu HB, Micallef SJ, Koutsis K, Elefanty AG, Stanley EG. Derivation of endothelial cells from human embryonic stem cells in fully defined medium enables identification of lysophosphatidic acid and platelet activating factor as regulators of eNOS localization. Stem Cell Res 2013; 10:103-17. [DOI: 10.1016/j.scr.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/16/2022] Open
|
139
|
Cheng SM, Chang SJ, Tsai TN, Wu CH, Lin WS, Lin WY, Cheng CC. Differential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophages. Gene Expr 2013; 16:15-24. [PMID: 24397208 PMCID: PMC8750263 DOI: 10.3727/105221613x13776146743307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) play a fundamental role in postnatal angiogenesis. Currently, EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Reports have shown that early EPCs share common properties and surface markers with adherent blood cells, especially CD14+ monocytes. Distinguishing early EPCs from circulating monocytes or monocyte-derived macrophages (MDMs) is therefore crucial to obtaining pure endothelial populations before they can be applied as part of clinical therapies. We compared the gene expression profiles of early EPCs, blood cells (including peripheral blood mononuclear cells, monocytes, and MDMs), and various endothelial lineage cells (including mature endothelial cells, late EPCs, and CD133+ stem cells). We found that early EPCs expressed an mRNA profile that showed the greatest similarity to MDMs than any other cell type tested. The functional significance of this molecular profiling data was explored by Gene Ontology database search. Novel plasma membrane genes that might potentially be novel isolation biomarkers were also pinpointed. Specifically, expression of CLEC5A was high in MDMs, whereas early EPCs expressed abundant SIGLEC8 and KCNE1. These detailed mRNA expression profiles and the identified functional modules will help to develop novel cell isolation approaches that will allow EPCs to be purified; these can then be used to target cardiovascular disease, tumor angiogenesis, and various ischemia-related diseases.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Jyh Chang
- †Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Tsung-Neng Tsai
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsien Wu
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shing Lin
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
140
|
Appleby SL, Cockshell MP, Pippal JB, Thompson EJ, Barrett JM, Tooley K, Sen S, Sun WY, Grose R, Nicholson I, Levina V, Cooke I, Talbo G, Lopez AF, Bonder CS. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3. PLoS One 2012; 7:e46996. [PMID: 23144795 PMCID: PMC3492591 DOI: 10.1371/journal.pone.0046996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 09/11/2012] [Indexed: 01/12/2023] Open
Abstract
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.
Collapse
Affiliation(s)
- Sarah L. Appleby
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Michaelia P. Cockshell
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Jyotsna B. Pippal
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Emma J. Thompson
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Jeffrey M. Barrett
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Katie Tooley
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Shaundeep Sen
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Wai Yan Sun
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Randall Grose
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, Adelaide, South Australia, Australia
| | - Ian Nicholson
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, Adelaide, South Australia, Australia
| | - Vitalina Levina
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ira Cooke
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gert Talbo
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, South Australian Pathology, Adelaide, South Australia, Australia
- Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
141
|
Abstract
In recent years, endothelial progenitor cells (EPCs) have been demonstrated to play an important role during tissue vascularization and endothelium homeostasis in adults. In addition, EPCs have been implicated in the pathophysiology of cardiovascular and cerebrovascular disease, such that a decreased number of EPCs may not only be a risk indicator but also a potential therapeutic target. Of the many agents that have been examined to increase EPCs and enhance their function, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or statins are one of the most intriguing. Accumulated evidence has demonstrated that statins promote EPC mobilization, proliferation, migration, adhesion, differentiation and reduce senescence and apoptosis independent of their serum lipid-lowering effect. This review summarizes the understanding of current mechanisms explaining the myriad of beneficial effects of statins on EPCs and discusses future challenges for studies involving statins and subpopulations of EPCs. However, the pharmacologic mechanisms of action of statins on EPCs remain at the cellular level, whereas the putative molecular mechanisms await further studies.
Collapse
|
142
|
Brenes RA, Bear M, Jadlowiec C, Goodwin M, Hashim P, Protack CD, Ziegler KR, Li X, Model LS, Lv W, Collins MJ, Dardik A. Cell-based interventions for therapeutic angiogenesis: review of potential cell sources. Vascular 2012; 20:360-8. [PMID: 23086985 DOI: 10.1258/vasc.2011.201205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alternative therapies are currently being developed to treat patients with chronic limb ischemia who are unable to be revascularized in order to avoid amputation. Cell-based therapy using mononuclear cells is gaining attention as many clinical trials are currently underway. We review cell differentiation along with the different potential cell sources for use in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Robert A Brenes
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520-8089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Burlacu A, Grigorescu G, Rosca AM, Preda MB, Simionescu M. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev 2012; 22:643-53. [PMID: 22947186 DOI: 10.1089/scd.2012.0273] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stem cell-based therapy for myocardial regeneration has reported several functional improvements that are attributed mostly to the paracrine effects stimulating angiogenesis and cell survival. This study was conducted to comparatively evaluate the potential of factors secreted by mesenchymal stem cells (MSCs) in normoxic and hypoxic conditions to promote tissue repair by sustaining endothelial cell (EC) adhesion and proliferation and conferring protection against apoptosis. To this aim, a conditioned medium (CM) was generated from MSCs after 24-h incubation in a serum-free normal or hypoxic environment. MSCs exhibited resistance to hypoxia, which induced increased secretion of vascular endothelial growth factor (VEGF) and decreased levels of other cytokines, including stromal-derived factor-1 (SDF). The CM derived from normal (nMSC-CM) and hypoxic cells (hypMSC-CM) induced similar protective effects on H9c2 cells in hypoxia. Minor differences were noticed in the potential of normal versus hypoxic CM to promote angiogenesis, which were likely connected to SDFα and VEGF levels: the nMSC-CM was more effective in stimulating EC migration, whereas the hypMSC-CM had an enhanced effect on EC adhesion. However, the factors secreted by MSCs in normoxic or hypoxic conditions supported adhesion, but not proliferation, of ECs in vitro, as revealed by impedance-based dynamic assessments. Surprisingly, factors secreted by other stem/progenitor cells, such as endothelial progenitor cells (EPCs), had complementary effects to the MSC-CM. Thus, the EPC-CM, in either a normal or hypoxic environment, supported EC proliferation, but did not sustain EC adhesion. Combined use of the MSC-CM and EPC-CM promoted both EC adhesion and proliferation, suggesting that the local angiogenesis at the site of ischemic injury might be better stimulated by simultaneous releasing of factors secreted by multiple stem/progenitor cell populations.
Collapse
|
144
|
Yuen DA, Gilbert RE, Marsden PA. Bone marrow cell therapies for endothelial repair and their relevance to kidney disease. Semin Nephrol 2012; 32:215-23. [PMID: 22617771 DOI: 10.1016/j.semnephrol.2012.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelial injury is a characteristic finding in chronic kidney disease and is associated with both markedly increased cardiovascular risk and chronic kidney disease progression. The past decade has seen a remarkable surge of interest in the role of bone marrow-derived cells for the protection, repair, and regeneration of injured endothelium. In particular, despite controversies regarding their mechanisms of action, endothelial progenitor cells have garnered considerable attention, with multiple reports suggesting that these cells exhibit remarkable pro-angiogenic effects. Recent advances in our understanding of how the bone marrow responds to endothelial injury now suggest that multiple bone marrow cell populations, including both endothelial progenitor cells and a novel group of cells called early outgrowth cells, promote endothelial repair and regeneration through different, yet complementary, mechanisms. Moreover, certain subsets of bone marrow-derived cells also appear to have novel, potent, angiogenesis-independent tissue-protective properties. The bone marrow should thus now be viewed not only as a hematopoiesis organ, but also as a rich reservoir of cells capable of protecting and even regenerating nonhematopoietic tissues such as the kidney. To harness the prognostic and therapeutic potential of the bone marrow, the renal community must be aware of recent advances in our understanding of the nature and therapeutic potential of these cells.
Collapse
Affiliation(s)
- Darren A Yuen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
145
|
Grundmann M, Haidar M, Placzko S, Niendorf R, Darashchonak N, Hubel CA, von Versen-Höynck F. Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am J Physiol Cell Physiol 2012; 303:C954-62. [PMID: 22932684 DOI: 10.1152/ajpcell.00030.2012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main pathogenic feature of preeclampsia is maternal endothelial dysfunction that results from impaired angiogenesis and reduced endothelial repair capacity. In addition, preeclampsia risk is associated with vitamin D deficiency. We hypothesized that vitamin D(3) stimulates proangiogenic properties of endothelial colony-forming cells (ECFCs). ECFCs were obtained and cultured from cord blood and characterized by immunocytochemistry and flow cytometry. Proliferation, total length of tubule formation on Matrigel, expression of VEGF mRNA, and pro-matrix metalloproteinases (MMP)-2 activity were assessed after treatment of ECFCs with vitamin D(3). Specificity of the observed effects was tested by blocking the vitamin D receptor (VDR) or the VEGF signaling pathway. ECFCs treated with 10 nM vitamin D(3) showed a 1.27 times higher tubule formation compared with vehicle-treated controls (1.27 ± 0.19) as well as a 1.36 times higher proliferation rate (1.36 ± 0.06). Vitamin D(3) induced pro-MMP-2 activity (1.29 ± 0.17) and VEGF mRNA levels (1.74 ± 0.73) in ECFCs. VDR blocking by pyridoxal-5-phosphate (0.73 ± 0.19) or small interfering RNA (0.75 ± 0.17) and VEGF inhibition by Su5416 (0.56 ± 0.16) or soluble fms-like tyrosine kinase-1 (0.7 ± 0.14) reduced tubule formation and pro-MMP-2 activity (pyridoxal-5-phosphate: 0.84 ± 0.09; Su5416: 0.79 ± 0.11; or sFlt: 0.88 ± 0.13). This effect was neutralized by vitamin D(3). Consequently, vitamin D(3) significantly promoted angiogenesis in ECFCs in vitro possibly due to an increase in VEGF expression and pro-MMP-2 activity. Since angiogenesis is a crucial feature in the pathophysiology of preeclampsia these findings could explain the positive influence of vitamin D(3) in reducing preeclampsia risk.
Collapse
Affiliation(s)
- M Grundmann
- Dept. of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
146
|
Mavromatis K, Sutcliffe DJ, Joseph G, Alexander RW, Waller EK, Quyyumi AA, Taylor WR. Proangiogenic cell colonies grown in vitro from human peripheral blood mononuclear cells. ACTA ACUST UNITED AC 2012; 17:1128-35. [PMID: 22904201 DOI: 10.1177/1087057112457043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although multiple culture assays have been designed to identify endothelial progenitor cells (EPCs), the phenotype of cells grown in culture often remains undefined. We sought to define and characterize the proangiogenic cell population within human peripheral blood mononuclear cells. Mononuclear cells were isolated from peripheral blood and grown under angiogenic conditions for 7 days. Formed colonies (CFU-As) were identified and analyzed for proliferation, mRNA and surface antigen expression, tube-forming ability, and chromosomal content. Colonies were composed of a heterogeneous group of cells expressing the leukocyte antigens CD45, CD14, and CD3, as well as the endothelial proteins vascular endothelial (VE) cadherin, von Willebrand's factor (vWF), CD31, and endothelial nitric oxide synthase (eNOS). Colony cells expressed increased levels of proangiogenic growth factors, and they formed tubes in Matrigel. In comparison with colonies from the CFU-Hill assay, our assay resulted in a greater number of colonies (19 ± 9 vs. 13 ± 7; p < 0.0001) with a substantial number of cells expressing an endothelial phenotype (20.2% ± 7.4% vs. 2.2% ± 1.2% expressing eNOS, p = 0.0006). Chromosomal analysis indicated the colony cells were bone marrow derived. We, therefore, describe a colony-forming unit assay that measures bone marrow-derived circulating mononuclear cells with the capacity to proliferate and mature into proangiogenic leukocytic and endothelial-like cells. This assay, therefore, reflects circulating, bone marrow-derived proangiogenic activity.
Collapse
|
147
|
O'Neill CL, O'Doherty MT, Wilson SE, Rana AA, Hirst CE, Stitt AW, Medina RJ. Therapeutic revascularisation of ischaemic tissue: the opportunities and challenges for therapy using vascular stem/progenitor cells. Stem Cell Res Ther 2012; 3:31. [PMID: 22897941 PMCID: PMC3580469 DOI: 10.1186/scrt122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases.
Collapse
|
148
|
Endothelial progenitor cells: current development of their paracrine factors in cardiovascular therapy. J Cardiovasc Pharmacol 2012; 59:387-96. [PMID: 22157259 DOI: 10.1097/fjc.0b013e3182440338] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial progenitor cells were initially considered to radically alter the concepts of adult tissue angiogenesis for their contribution of incorporation into new blood vessels. Nevertheless, controversy arises over their mechanism of action due to rare cell population and decreased number and impaired activity under pathological changes. Recent studies show that endothelial progenitor cells also function in a paracrine manner by secreting multiple cytokines and growth factors, but the beneficial paracrine signals remain partially unidentified. In this review, we provide an overview of varieties and signal pathways of factors secreted by endothelial progenitor cells and further present the prospect of new ways to encourage cardiovascular protection such as neovascularization, reendothelialization of larger vessels, and myocardial remodeling based on the paracrine factors.
Collapse
|
149
|
Mavromatis K, Aznaouridis K, Al Mheid I, Veledar E, Dhawan S, Murrow JR, Forghani Z, Sutcliffe DJ, Ghasemzadeh N, Alexander RW, Taylor WR, Quyyumi AA. Circulating proangiogenic cell activity is associated with cardiovascular disease risk. ACTA ACUST UNITED AC 2012; 17:1163-70. [PMID: 22885731 DOI: 10.1177/1087057112454919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular injury mobilizes bone marrow-derived proangiogenic cells into the circulation, where these cells can facilitate vascular repair and new vessel formation. We sought to determine the relationship between a new biomarker of circulating bone marrow-derived proangiogenic cell activity, the presence of atherosclerotic cardiovascular disease (CVD) and its risk factors, and clinical outcomes. Circulating proangiogenic cell activity was estimated using a reproducible angiogenic colony-forming unit (CFU-A) assay in 532 clinically stable subjects aged 20 to 90 years and ranging in the CVD risk spectrum from those who are healthy without risk factors to those with active CVD. CFU-A counts increased with the burden of CVD risk factors (p < 0.001). CFU-A counts were higher in subjects with symptomatic CVD than in those without (p < 0.001). During follow-up of 232 subjects with CVD, CFU-A counts were higher in those with death, myocardial infarction, or stroke than in those without (110 [70-173] vs 84 [51-136], p = 0.01). Therefore, we conclude that circulating proangiogenic cell activity, as estimated by CFU-A counts, increases with CVD risk factor burden and in the presence of established CVD. Furthermore, higher circulating proangiogenic cell activity is associated with worse clinical outcome in those with CVD.
Collapse
|
150
|
Gu M, Nguyen PK, Lee AS, Xu D, Hu S, Plews JR, Han L, Huber BC, Lee WH, Gong Y, de Almeida PE, Lyons J, Ikeno F, Pacharinsak C, Connolly AJ, Gambhir SS, Robbins RC, Longaker MT, Wu JC. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 2012; 111:882-93. [PMID: 22821929 DOI: 10.1161/circresaha.112.269001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models. OBJECTIVE To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia. METHODS AND RESULTS Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery. CONCLUSIONS In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.
Collapse
Affiliation(s)
- Mingxia Gu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|