101
|
Bhattacharya S, Xu L, Thompson D. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein. ACS Chem Neurosci 2019; 10:2830-2842. [PMID: 30917651 DOI: 10.1021/acschemneuro.9b00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of partially structured helices in natively unfolded amyloid-β42 (Aβ42) and α-synuclein (αS) has been shown to accelerate fibrillation in the onset of Alzheimer's and Parkinson's disease, respectively. At the other extreme, folded stable helical conformers have also been reported to resist amyloid formation. Recent studies indicate that amyloidogenic aggregation can be impeded using small molecules that stabilize the α-helical monomers and switch off the neurotoxic pathway. We predict a common intrapeptide route to stabilization based on the plasticity of helical conformations of Aβ42 and αS as assessed through extensive atomistic molecular dynamics (MD) computer simulations (∼36 μs) across ten distinct protein force field and water model combinations. Computed free energies and interaction maps (not obtainable from experiments alone) show that flexible terminal groups (N-terminus of Aβ42 and C-terminus of αS) show a tendency to stabilize folded helical conformations in both peptides via primary hydrophobic interactions with central hydrophobic domains, and secondary salt bridges with other domains. These interactions confer aggregation resistance by decreasing the population of partially structured helices and are absent in control simulations of complete unfolding. Computed helical stability is also significantly reduced in terminal-deleted variants. The models suggest new strategies to tackle neurodegeneration by rationally re-engineering terminal groups to optimize their predicted ability to deactivate helical monomers.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
102
|
Arya S, Singh AK, Bhasne K, Dogra P, Datta A, Das P, Mukhopadhyay S. Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein. Biophys J 2019; 114:2540-2551. [PMID: 29874605 DOI: 10.1016/j.bpj.2018.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/14/2022] Open
Abstract
Protein hydration water plays a fundamentally important role in protein folding, binding, assembly, and function. Little is known about the hydration water in intrinsically disordered proteins that challenge the conventional sequence-structure-function paradigm. Here, by combining experiments and simulations, we show the existence of dynamical heterogeneity of hydration water in an intrinsically disordered presynaptic protein, namely α-synuclein, implicated in Parkinson's disease. We took advantage of nonoccurrence of cysteine in the sequence and incorporated a number of cysteine residues at the N-terminal segment, the central amyloidogenic nonamyloid-β component (NAC) domain, and the C-terminal end of α-synuclein. We then labeled these cysteine variants using environment-sensitive thiol-active fluorophore and monitored the solvation dynamics using femtosecond time-resolved fluorescence. The site-specific femtosecond time-resolved experiments allowed us to construct the hydration map of α-synuclein. Our results show the presence of three dynamically distinct types of water: bulk, hydration, and confined water. The amyloidogenic NAC domain contains dynamically restrained water molecules that are strikingly different from the water molecules present in the other two domains. Atomistic molecular dynamics simulations revealed longer residence times for water molecules near the NAC domain and supported our experimental observations. Additionally, our simulations allowed us to decipher the molecular origin of the dynamical heterogeneity of water in α-synuclein. These simulations captured the quasi-bound water molecules within the NAC domain originating from a complex interplay between the local chain compaction and the sequence composition. Our findings from this synergistic experimental simulation approach suggest longer trapping of interfacial water molecules near the amyloidogenic hotspot that triggers the pathological conversion into amyloids via chain sequestration, chain desolvation, and entropic liberation of ordered water molecules.
Collapse
Affiliation(s)
- Shruti Arya
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Avinash K Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Priyanka Dogra
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Payel Das
- Data Science Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India.
| |
Collapse
|
103
|
Nahalka J. The role of the protein-RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76:2043-2058. [PMID: 30980111 PMCID: PMC11105320 DOI: 10.1007/s00018-019-03096-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous RNAs that pair and bind to sites on mRNAs to direct post-transcriptional repression. However, there is a possibility that microRNAs directly influence protein structure and activity, and this influence can be termed post-translational riboregulation. This conceptual review explores the literature on neurodegenerative disorders. Research on the association between neurodegeneration and RNA-repeat toxicity provides data that support a protein-RNA recognition code. For example, this code explains why hnRNP H and SFPQ proteins, which are involved in amyotrophic lateral sclerosis, are sequestered by the (GGGGCC)n repeat sequence. Similarly, it explains why MNBL proteins and (CTG)n repeats in RNA, which are involved in myotonic dystrophy, are sequestered into RNA foci. Using this code, proteins involved in diseases can be identified. A simple protein BLAST search of the human genome for amino acid repeats that correspond to the nucleotide repeats reveals new proteins among already known proteins that are involved in diseases. For example, the (CAG)n repeat sequence, when transcribed into possible peptide sequences, leads to the identification of PTCD3, Rem2, MESP2, SYPL2, WDR33, COL23A1, and others. After confirming this approach on RNA repeats, in the next step, the code was used in the opposite manner. Proteins that are involved in diseases were compared with microRNAs involved in those diseases. For example, a reasonable correspondence of microRNA 9 and 107 with amyloid-β-peptide (Aβ42) was identified. In the last step, a miRBase search for micro-nucleotides, obtained by transcription of a prion amino acid sequence, revealed new microRNAs and microRNAs that have previously been identified as involved in prion diseases. This concept provides a useful key for designing RNA or peptide probes.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovak Republic.
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, 94976, Nitra, Slovak Republic.
| |
Collapse
|
104
|
Yuksel M, Tacal O. Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review. Eur J Pharmacol 2019; 856:172415. [PMID: 31132354 DOI: 10.1016/j.ejphar.2019.172415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), which is predicted to affect 1 in 85 persons worldwide by 2050, results in progressive loss of neuronal functions, leading to impairments in memory and cognitive abilities. As being one of the major neuropathological hallmarks of AD, senile plaques mainly consist of amyloid-β (Aβ) peptides, which are derived from amyloid precursor protein (APP) via the sequential cleavage by β- and γ-secretases. Although the overproduction and accumulation of Aβ peptides are at the center of AD research, the new discoveries point out to the complexity of the disease development. In this respect, it is crucial to understand the processing and the trafficking of APP, the enzymes involved in its processing, the cleavage products and their therapeutic potentials. This review summarizes the salient features of APP processing focusing on APP, the canonical secretases as well as the novel secretases and the cleavage products with an update of the recent developments. We also discussed the intracellular trafficking of APP and secretases in addition to their potential in AD therapy.
Collapse
Affiliation(s)
- Melike Yuksel
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
105
|
Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S. O-GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2209-2221. [PMID: 30985105 DOI: 10.1021/acschemneuro.9b00143] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins are becoming the focus of intense research due to their implications in a broad spectrum of neurodegenerative diseases. Various PTMs have been identified to alter the toxic profiles of proteins which play critical roles in disease etiology. In Alzheimer's disease (AD), dysregulated phosphorylation is reported to promote pathogenic processing of the microtubule-associated tau protein. Among the PTMs, the enzymatic addition of N-acetyl-d-glucosamine (GlcNAc) residues to Ser/Thr residues is reported to deliver protective effects against the pathogenic processing of both amyloid precursor protein (APP) and tau. Modification of tau with as few as one single O-GlcNAc residue inhibits its toxic self-assembly. This modification also has the same effect on the assembly of the Parkinson's disease (PD) associated α-synuclein (ASyn) protein. In fact, O-GlcNAcylation ( O-linked GlcNAc modification) affects the processing of numerous proteins implicated in AD, PD, amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) in a similar manner. As such, manipulation of a protein's O-GlcNAcylation status has been proposed to offer therapeutic routes toward addressing multiple neurodegenerative pathologies. Here we review the various effects that O-GlcNAc modification, and its modulated expression, have on pathogenically significant proteins involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Andrew K. Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | | | - George D. Mellick
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
106
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
107
|
Lincoff J, Sasmal S, Head-Gordon T. The combined force field-sampling problem in simulations of disordered amyloid-β peptides. J Chem Phys 2019; 150:104108. [PMID: 30876367 DOI: 10.1063/1.5078615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations of intrinsically disordered proteins (IDPs) can provide high resolution structural ensembles if the force field is accurate enough and if the simulation sufficiently samples the conformational space of the IDP with the correct weighting of sub-populations. Here, we investigate the combined force field-sampling problem by testing a standard force field as well as newer fixed charge force fields, the latter specifically motivated for better description of unfolded states and IDPs, and comparing them with a standard temperature replica exchange (TREx) protocol and a non-equilibrium Temperature Cool Walking (TCW) sampling algorithm. The force field and sampling combinations are used to characterize the structural ensembles of the amyloid-beta peptides Aβ42 and Aβ43, which both should be random coils as shown recently by experimental nuclear magnetic resonance (NMR) and 2D Förster resonance energy transfer (FRET) experiments. The results illustrate the key importance of the sampling algorithm: while the standard force field using TREx is in poor agreement with the NMR J-coupling and nuclear Overhauser effect and 2D FRET data, when using the TCW method, the standard and optimized protein-water force field combinations are in very good agreement with the same experimental data since the TCW sampling method produces qualitatively different ensembles than TREx. We also discuss the relative merit of the 2D FRET data when validating structural ensembles using the different force fields and sampling protocols investigated in this work for small IDPs such as the Aβ42 and Aβ43 peptides.
Collapse
Affiliation(s)
- James Lincoff
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Sukanya Sasmal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
108
|
Shuaib S, Saini RK, Goyal D, Goyal B. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:708-721. [DOI: 10.1080/07391102.2019.1586587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
109
|
Nagy G, Kedia K, Attah IK, Garimella SVB, Ibrahim YM, Petyuk VA, Smith RD. Separation of β-Amyloid Tryptic Peptide Species with Isomerized and Racemized l-Aspartic Residues with Ion Mobility in Structures for Lossless Ion Manipulations. Anal Chem 2019; 91:4374-4380. [PMID: 30816701 PMCID: PMC6596305 DOI: 10.1021/acs.analchem.8b04696] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulation of β-amyloid (Aβ) is one of the hallmarks of Alzheimer's disease. The deposition of β-amyloid plaques is likely to start years in advance of manifestation of clinical symptoms, although the exact timing is unknown. Over the years, Aβ peptides undergo both post-translational modification and stereoisomerization. Analysis of the resulting stereoisomers is particularly challenging because of their identical elemental composition and similar physicochemical properties. Herein, we have utilized our recently developed structures for lossless ion manipulations ion mobility-mass spectrometry platform (SLIM IM-MS), in conjunction with serpentine ultralong path with extended routing (SUPER), to baseline resolve four distinct sets of Aβ17-28 tryptic peptide epimers on a rapid (∼1 s) time scale. We discovered that sodium adduct ions, [M + H + Na]2+, allowed baseline SLIM SUPER IM resolution for all Aβ epimer sets assessed, while such baseline separations were unachievable for their [M + 2H]2+ doubly protonated ions.
Collapse
Affiliation(s)
- Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Komal Kedia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
110
|
Shabane PS, Izadi S, Onufriev AV. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins. J Chem Theory Comput 2019; 15:2620-2634. [PMID: 30865832 DOI: 10.1021/acs.jctc.8b01123] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unconstrained atomistic simulations of intrinsically disordered proteins and peptides (IDP) remain a challenge: widely used, "general purpose" water models tend to favor overly compact structures relative to experiment. Here we have performed a total of 93 μs of unrestrained MD simulations to explore, in the context of IDPs, a recently developed "general-purpose" 4-point rigid water model OPC, which describes liquid state of water close to experiment. We demonstrate that OPC, together with a popular AMBER force field ff99SB, offers a noticeable improvement over TIP3P in producing more realistic structural ensembles of three common IDPs benchmarks: 55-residue apo N-terminal zinc-binding domain of HIV-1 integrase ("protein IN"), amyloid β-peptide (Aβ42) (residues 1-42), and 26-reside H4 histone tail. As a negative control, computed folding profile of a regular globular miniprotein (CLN025) in OPC water is in appreciably better agreement with experiment than that obtained in TIP3P, which tends to overstabilize the compact native state relative to the extended conformations. We employed Aβ42 peptide to investigate the possible influence of the solvent box size on simulation outcomes. We advocate a cautious approach for simulations of IDPs: we suggest that the solvent box size should be at least four times the radius of gyration of the random coil corresponding to the IDP. The computed free energy landscape of protein IN in OPC resembles a shallow "tub" - conformations with substantially different degrees of compactness that are within 2 kB T of each other. Conformations with very different secondary structure content coexist within 1 kB T of the global free energy minimum. States with higher free energy tend to have less secondary structure. Computed low helical content of the protein has virtually no correlation with its degree of compactness, which calls into question the possibility of using the helicity as a metric for assessing performance of water models for IDPs, when the helicity is low. Predicted radius of gyration ( R g) of H4 histone tail in OPC water falls in-between that of a typical globular protein and a fully denatured protein of the same size; the predicted R g is consistent with two independent predictions. In contrast, H4 tail in TIP3P water is as compact as the corresponding globular protein. The computed free energy landscape of H4 tail in OPC is relatively flat over a significant range of compactness, which, we argue, is consistent with its biological function as facilitator of internucleosome interactions.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Early Stage Pharmaceutical Development , Genentech Inc. , South San Francisco , California 94080 , United States
| | - Alexey V Onufriev
- Department of Computer Science , Virginia Tech , Blacksburg , Virginia 24060 , United States.,Center for Soft Matter and Biological Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
111
|
Chan-Yao-Chong M, Durand D, Ha-Duong T. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles. J Chem Inf Model 2019; 59:1743-1758. [PMID: 30840442 DOI: 10.1021/acs.jcim.8b00928] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concept of intrinsically disordered proteins (IDPs) has emerged relatively slowly, but over the past 20 years, it has become an intense research area in structural biology. Indeed, because of their considerable flexibility and structural heterogeneity, the determination of IDP conformational ensemble is particularly challenging and often requires a combination of experimental measurements and computational approaches. With the improved accuracy of all-atom force fields and the increasing computing performances, molecular dynamics (MD) simulations have become more and more reliable to generate realistic conformational ensembles. And the combination of MD simulations with experimental approaches, such as nuclear magnetic resonance (NMR) and/or small-angle X-ray scattering (SAXS) allows one to converge toward a more accurate and exhaustive description of IDP structures. In this Review, we discuss the state of the art of MD simulations of IDP conformational ensembles, with a special focus on studies that back-calculated and directly compared theoretical and experimental NMR or SAXS observables, such as chemical shifts (CS), 3J-couplings (3Jc), residual dipolar couplings (RDC), or SAXS intensities. We organize the review in three parts. In the first section, we discuss the studies which used NMR and/or SAXS data to test and validate the development of force fields or enhanced sampling techniques. In the second part, we explore different methods for the refinement of MD-derived structural ensembles, such as NMR or SAXS data-restrained MD simulations or ensemble reweighting to better fit experiments. Finally, we survey some recent studies combining MD simulations with NMR and/or SAXS measurements to investigate the relationship between IDP conformational ensemble and biological activity, as well as their implication in human diseases. From this review, we noticed that quite a few studies compared MD-generated conformational ensembles with both NMR and SAXS measurements to validate IDP structures at both local and global levels. Yet, beside the IDP propensity to form local secondary structures, their dynamic extension or compactness also appears important for their activity. Thus, we believe that a close synergy between MD simulations, NMR, and SAXS experiments would be greatly appropriate to address the challenges of characterizing the disordered structures of proteins and their complexes, relative to their biological functions.
Collapse
Affiliation(s)
- Maud Chan-Yao-Chong
- BioCIS, Université Paris-Sud, CNRS , Université Paris-Saclay , 92290 Châtenay-Malabry , France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud , Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud , Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Sud, CNRS , Université Paris-Saclay , 92290 Châtenay-Malabry , France
| |
Collapse
|
112
|
Blinov N, Wishart DS, Kovalenko A. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation. J Phys Chem B 2019; 123:2491-2506. [PMID: 30811210 DOI: 10.1021/acs.jpcb.9b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural characterization of amyloid (A)β peptides implicated in Alzheimer's disease is a challenging problem due to their intrinsically disordered nature and their high propensity for aggregation. Only limited information is currently available from experiments on conformational properties and aggregation pathways of the peptides in cellular environments. In silico modeling complements experimental information, providing atomistic insight into structure and dynamics of different Aβ species. All-atom explicit solvent molecular dynamics (MD) simulations with a properly selected force field can deliver reliable structural and dynamic information. In the case of intrinsically disordered Aβ peptides, enhanced sampling simulations beyond the nanosecond time scale are required to obtain statistically meaningful results even for simple solvent conditions. To overcome the challenges of conformational sampling in crowded cellular environments, alternative approaches have to be used, including postprocessing of MD data. In this study, we employ the statistical-mechanical, three-dimensional reference interaction site model with the Kovalenko-Hirata closure integral equation molecular theory of solvation to describe solvent composition effects on the conformational equilibrium in a structural ensemble of the Aβ42 (covering residues 1-42) monomer based on a statistical reweighting technique. The methodology enables a computationally efficient prediction on how different factors in the cellular environment, such as solvent composition, nonpolar solvation, and macromolecular crowding, affect the structural properties of the monomer. Similarities have been identified between changes in the structural ensemble caused by nonpolar solvation and crowded environments modeled by ionic solution with large negative ions. In particular, both solvent conditions reduce the random coil content and enhance the helical structure content of the monomer. In contrast to the previous studies, which reported increased α-helical content of peptides in crowded environments, this work attributes these structural features to the difference in solvent exposure of hydrophilic residues of the monomer for different secondary structure elements, rather than to (entropic) excluded volume effects.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| | - David S Wishart
- Departments of Computing Science and Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E8 , Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
113
|
Meng F, Bellaiche MMJ, Kim JY, Zerze GH, Best RB, Chung HS. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophys J 2019; 114:870-884. [PMID: 29490247 DOI: 10.1016/j.bpj.2017.12.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mathias M J Bellaiche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
114
|
Valiente-Gabioud AA, Riedel D, Outeiro TF, Menacho-Márquez MA, Griesinger C, Fernández CO. Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation. Biophys J 2019. [PMID: 29539391 DOI: 10.1016/j.bpj.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates.
Collapse
Affiliation(s)
- Ariel A Valiente-Gabioud
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mauricio A Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Christian Griesinger
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
115
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
116
|
Lin Y, Im H, Diem LT, Ham S. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40. Biochem Biophys Res Commun 2019; 510:442-448. [PMID: 30722990 DOI: 10.1016/j.bbrc.2019.01.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/20/2023]
Abstract
The self-assembly of amyloid-beta (Aβ) proteins in aqueous extracellular environments is implicated in Alzheimer's disease. Among several alloforms of Aβ proteins differing in sequence length, the 42- and 40-residue forms (Aβ42 and Aβ40) are the most abundant ones in the human body. Although the only difference is the additional I41A42 residues in the C-terminus, Aβ42 exhibits more aggregation tendency and stronger neurotoxicity than Aβ40. Here, we investigate the molecular factors that confer more aggregation potential to Aβ42 than to Aβ40 based on molecular dynamics simulations combined with solvation thermodynamic analyses. It is observed that the most salient structural feature of Aβ42 relative to Aβ40 is the more enhanced β-sheet forming tendency, in particular in the C-terminal region. While such a structural characteristic of Aβ42 will certainly serve to facilitate the formation of aggregate species rich in β-sheet structure, we also detect its interesting thermodynamic consequence. Indeed, we find from the decomposition analysis that the C-terminal region substantially increases the solvation free energy (i.e., overall "hydrophobicity") of Aβ42, which is caused by the dehydration of the backbone moieties showing the enhanced tendency of forming the β-structure. Together with the two additional hydrophobic residues (I41A42), this leads to the higher solvation free energy of Aβ42, implying the larger water-mediated attraction toward the self-assembly. Thus, our computational results provide structural and thermodynamic grounds on why Aβ42 has more aggregation propensity than Aβ40 in aqueous environments.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Haeri Im
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Le Thi Diem
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea.
| |
Collapse
|
117
|
Coskuner-Weber O, Uversky VN. Alanine Scanning Effects on the Biochemical and Biophysical Properties of Intrinsically Disordered Proteins: A Case Study of the Histidine to Alanine Mutations in Amyloid-β42. J Chem Inf Model 2019; 59:871-884. [DOI: 10.1021/acs.jcim.8b00926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
118
|
Sahoo A, Xu H, Matysiak S. Pathways of amyloid-beta absorption and aggregation in a membranous environment. Phys Chem Chem Phys 2019; 21:8559-8568. [PMID: 30964132 DOI: 10.1039/c9cp00040b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aggregation of misfolded oligomeric amyloid-beta (Aβ) peptides on lipid membranes has been identified as a primary event in Alzheimer's pathogenesis. However, the structural and dynamical features of this membrane assisted Aβ aggregation have not been well characterized. The microscopic characterization of dynamic molecular-level interactions in peptide aggregation pathways has been challenging both computationally and experimentally. In this work, we explore differential patterns of membrane-induced Aβ 16-22 (K-L-V-F-F-A-E) aggregation from the microscopic perspective of molecular interactions. Physics-based coarse-grained molecular dynamics (CG-MD) simulations were employed to investigate the effect of lipid headgroup charge - zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPC) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine: POPS) - on Aβ 16-22 peptide aggregation. Our analyses present an extensive overview of multiple pathways for peptide absorption and biomechanical forces governing peptide folding and aggregation. In agreement with experimental observations, anionic POPS molecules promote extended configurations in Aβ peptides that contribute towards faster emergence of ordered β-sheet-rich peptide assemblies compared to POPC, suggesting faster fibrillation. In addition, lower cumulative rates of peptide aggregation in POPS due to higher peptide-lipid interactions and slower lipid diffusion result in multiple distinct ordered peptide aggregates that can serve as nucleation seeds for subsequent Aβ aggregation. This study provides an in-silico assessment of experimentally observed aggregation patterns, presents new morphological insights and highlights the importance of lipid headgroup chemistry in modulating the peptide absorption and aggregation process.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.
| | | | | |
Collapse
|
119
|
Liu Z, Jiang F, Wu YD. Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the N-terminal region. Chem Biol Drug Des 2018; 94:1615-1625. [PMID: 30381893 DOI: 10.1111/cbdd.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023]
Abstract
Aβ42 peptide, with two additional residues at C-terminus, aggregates much faster than Aβ40. We performed equilibrium replica-exchange molecular dynamics simulations of their monomers using our residue-specific force field. Simulated 3 JHNH α -coupling constants agree excellently with experimental data. Aβ40 and Aβ42 have very similar local conformational features, with considerable β-strand structures in the segments: A2-H6 (A), L17-A21 (B), A30-V36 (C) of both peptides and V39-I41 (D) of Aβ42. Both peptides have abundant A-B and B-C contacts, but Aβ40 has much more contacts between A and C than Aβ42, which may retard its aggregation. Only Aβ42 has considerable A-B-C-D topology. Decreased probability of A-C contact in Aβ42 relates to the competition from C-D contact. Increased A-C contact probability may also explain the slower aggregation of A2T and A2V mutants of Aβ42.
Collapse
Affiliation(s)
- Ziye Liu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
120
|
Carballo-Pacheco M, Ismail AE, Strodel B. On the Applicability of Force Fields To Study the Aggregation of Amyloidogenic Peptides Using Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6063-6075. [PMID: 30336669 DOI: 10.1021/acs.jctc.8b00579] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations play an essential role in understanding biomolecular processes such as protein aggregation at temporal and spatial resolutions which are not attainable by experimental methods. For a correct modeling of protein aggregation, force fields must accurately represent molecular interactions. Here, we study the effect of five different force fields on the oligomer formation of Alzheimer's Aβ16-22 peptide and two of its mutants: Aβ16-22(F19V,F20V), which does not form fibrils, and Aβ16-22(F19L) which forms fibrils faster than the wild type. We observe that while oligomer formation kinetics depends strongly on the force field, structural properties, such as the most relevant protein-protein contacts, are similar between them. The oligomer formation kinetics obtained with different force fields differ more from each other than the kinetics between aggregating and nonaggregating peptides simulated with a single force field. We discuss the difficulties in comparing atomistic simulations of amyloid oligomer formation with experimental observables.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Ahmed E Ismail
- AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany.,Aachener Verfahrenstechnik, Faculty of Mechanical Engineering , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
121
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
122
|
Saini RK, Shuaib S, Goyal D, Goyal B. Molecular insights into the effect L17A/F19A double mutation on the structure and dynamics of Aβ
40
: A molecular dynamics simulation study. J Cell Biochem 2018; 119:8949-8961. [DOI: 10.1002/jcb.27149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences Sri Guru Granth Sahib World University Fatehgarh Sahib India
| | - Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences Sri Guru Granth Sahib World University Fatehgarh Sahib India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences Sri Guru Granth Sahib World University Fatehgarh Sahib India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala India
| |
Collapse
|
123
|
Gulisano W, Melone M, Li Puma DD, Tropea MR, Palmeri A, Arancio O, Grassi C, Conti F, Puzzo D. The effect of amyloid-β peptide on synaptic plasticity and memory is influenced by different isoforms, concentrations, and aggregation status. Neurobiol Aging 2018; 71:51-60. [PMID: 30092511 DOI: 10.1016/j.neurobiolaging.2018.06.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023]
Abstract
The increase of oligomeric amyloid-beta (oAβ) has been related to synaptic dysfunction, thought to be the earliest event in Alzheimer's disease pathophysiology. Conversely, the suppression of endogenous Aβ impaired synaptic plasticity and memory, suggesting that the peptide is needed in the healthy brain. However, different species, aggregation forms and concentrations of Aβ might differently influence synaptic function/dysfunction. Here, we have tested the contribution of monomeric and oligomeric Aβ42 and Aβ40 at 200 nM and 200 pM concentrations on hippocampal long-term potentiation and spatial memory. We found that, when at 200 nM, oAβ40, oAβ42, and monomeric Aβ42 impaired long-term potentiation and memory, whereas only oAβ42 200 pM enhanced synaptic plasticity and memory and rescued the detrimental effect due to depletion of endogenous Aβ. Interestingly, quantification of monomer-like and oligomer-like species carried out by transmission electron microscopy revealed an increase of the monomer/oligomer ratio in the oAβ42 200 pM preparation, suggesting that the content of monomers and oligomers depends on the final concentration of the solution.
Collapse
Affiliation(s)
- Walter Gulisano
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marcello Melone
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy
| | - Maria Rosaria Tropea
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agostino Palmeri
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Fiorenzo Conti
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Puzzo
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
124
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
125
|
Rosenman DJ, Clemente N, Ali M, García AE, Wang C. High pressure NMR reveals conformational perturbations by disease-causing mutations in amyloid β-peptide. Chem Commun (Camb) 2018; 54:4609-4612. [PMID: 29670961 DOI: 10.1039/c8cc01674g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present the high pressure NMR characterization of Aβ42 and two Aβ40 variants with Alzheimer-causing mutations E22G and D23N. While chemical shifts only identified localized changes at ambient pressure compared with Aβ40, high pressure NMR revealed a common site with heightened pressure sensitivity at Q15, K16 and L17 in all three variants, which correlates to higher β-propensity at central hydrophobic cluster (CHC) and faster aggregation.
Collapse
Affiliation(s)
- David J Rosenman
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA.
| | | | | | | | | |
Collapse
|
126
|
Sharma B, Ranganathan SV, Belfort G. Weaker N-Terminal Interactions for the Protective over the Causative Aβ Peptide Dimer Mutants. ACS Chem Neurosci 2018; 9:1247-1253. [PMID: 29465978 DOI: 10.1021/acschemneuro.7b00412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Knowing that abeta amyloid peptide (Aβ42) dimers are the smallest and most abundant neurotoxic oligomers for Alzheimer's disease (AD), we used molecular simulations with advanced sampling methods (replica-exchange) to characterize and compare interactions between the N-termini (residues 1-16) of wild type (WT-WT) and five mutant dimers under constrained and unconstrained conditions. The number of contacts and distances between the N-termini, and contact maps of their conformational landscape illustrate substantial differences for a single residue change. The N-terminal contacts are significantly diminished for the dimers containing the monomers that protect against (WT-A2T) as compared with those that predispose toward (A2V-A2V) AD and for the control WT-WT dimers. The reduced number of N-terminal contacts not only occurs at or near the second residue mutations but also is distributed through to the 10th residue. These findings provide added support to the accumulating evidence for the "N-terminal hypothesis of AD" and offer an alternate mechanism for the cause of protection from the A2T mutant.
Collapse
Affiliation(s)
- Bhanushee Sharma
- Howard P Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| | - Srivathsan V. Ranganathan
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Georges Belfort
- Howard P Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| |
Collapse
|
127
|
Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 2018; 115:E4758-E4766. [PMID: 29735687 PMCID: PMC6003505 DOI: 10.1073/pnas.1800690115] [Citation(s) in RCA: 688] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many proteins that perform important biological functions are completely or partially disordered under physiological conditions. Molecular dynamics simulations could be a powerful tool for the structural characterization of such proteins, but it has been unclear whether the physical models (force fields) used in simulations are sufficiently accurate. Here, we systematically compare the accuracy of a number of different force fields in simulations of both ordered and disordered proteins, finding that each force field has strengths and limitations. We then describe a force field that substantially improves on the state-of-the-art accuracy for simulations of disordered proteins without sacrificing accuracy for folded proteins, thus broadening the range of biological systems amenable to molecular dynamics simulations. Molecular dynamics (MD) simulation is a valuable tool for characterizing the structural dynamics of folded proteins and should be similarly applicable to disordered proteins and proteins with both folded and disordered regions. It has been unclear, however, whether any physical model (force field) used in MD simulations accurately describes both folded and disordered proteins. Here, we select a benchmark set of 21 systems, including folded and disordered proteins, simulate these systems with six state-of-the-art force fields, and compare the results to over 9,000 available experimental data points. We find that none of the tested force fields simultaneously provided accurate descriptions of folded proteins, of the dimensions of disordered proteins, and of the secondary structure propensities of disordered proteins. Guided by simulation results on a subset of our benchmark, however, we modified parameters of one force field, achieving excellent agreement with experiment for disordered proteins, while maintaining state-of-the-art accuracy for folded proteins. The resulting force field, a99SB-disp, should thus greatly expand the range of biological systems amenable to MD simulation. A similar approach could be taken to improve other force fields.
Collapse
|
128
|
Impact of membrane curvature on amyloid aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1741-1764. [PMID: 29709613 DOI: 10.1016/j.bbamem.2018.04.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.
Collapse
|
129
|
Mittal S, Bravo-Rodriguez K, Sanchez-Garcia E. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. J Phys Chem B 2018; 122:4196-4205. [DOI: 10.1021/acs.jpcb.7b10530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sumit Mittal
- University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | | | | |
Collapse
|
130
|
Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N. Time- and dose-related effects of amyloid beta1-40 on retina and optic nerve morphology in rats. Int J Neurosci 2018; 128:952-965. [PMID: 29488424 DOI: 10.1080/00207454.2018.1446953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels. MATERIALS AND METHODS Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique. RESULTS AND CONCLUSIONS It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.
Collapse
Affiliation(s)
- Mohd Aizuddin Mohd Lazaldin
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Igor Iezhitsa
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia.,b Research Institute of Pharmacology, Volgograd State Medical University , Volgograd , Russia
| | - Renu Agarwal
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Nor Salmah Bakar
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Puneet Agarwal
- c IMU Clinical School, International Medical University , Seremban , Malaysia
| | - Nafeeza Mohd Ismail
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| |
Collapse
|
131
|
Jana AK, Batkulwar KB, Kulkarni MJ, Sengupta N. Glycation induces conformational changes in the amyloid-β peptide and enhances its aggregation propensity: molecular insights. Phys Chem Chem Phys 2018; 18:31446-31458. [PMID: 27827482 DOI: 10.1039/c6cp05041g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cytotoxicity of the amyloid beta (Aβ) peptide, implicated in the pathogenesis of Alzheimer's disease (AD), can be enhanced by its post-translational glycation, a series of non-enzymatic reactions with reducing sugars and reactive dicarbonyls. However, little is known about the underlying mechanisms that potentially enhance the cytotoxicity of the advanced glycation modified Aβ. In this work, fully atomistic molecular dynamics (MD) simulations are exploited to obtain direct molecular insights into the process of early Aβ self-assembly in the presence and absence of glycated lysine residues. Analyses of data exceeding cumulative timescales of 1 microsecond for each system reveal that glycation results in a stronger enthalpy of association between Aβ monomers and lower conformational entropy, in addition to a sharp overall increase in the beta-sheet content. Further analyses reveal that the enhanced interactions originate, in large part, due to markedly stronger, as well as new, inter-monomer salt bridging propensities in the glycated variety. Interestingly, these conformational and energetic effects are broadly reflected in preformed protofibrillar forms of Aβ small oligomers modified with glycation. Our combined results imply that glycation consolidates Aβ self-assembly regardless of its point of occurrence in the pathway. They provide a basis for further mechanistic studies and therapeutic endeavors that could potentially result in novel ways of combating AGE related AD progression.
Collapse
Affiliation(s)
- Asis K Jana
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kedar B Batkulwar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Mahesh J Kulkarni
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Neelanjana Sengupta
- Dept. of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, W. Bengal, India.
| |
Collapse
|
132
|
Novo M, Freire S, Al-Soufi W. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci Rep 2018; 8:1783. [PMID: 29379133 PMCID: PMC5789034 DOI: 10.1038/s41598-018-19961-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
The oligomers formed during the early steps of amyloid aggregation are thought to be responsible for the neurotoxic damage associated with Alzheimer’s disease. It is therefore of great interest to characterize this early aggregation process and the aggregates formed, especially for the most significant peptide in amyloid fibrils, Amyloid-β(1–42) (Aβ42). For this purpose, we directly monitored the changes in size and concentration of initially monomeric Aβ42 samples, using Fluorescence Correlation Spectroscopy. We found that Aβ42 undergoes aggregation only when the amount of amyloid monomers exceeds the critical aggregation concentration (cac) of about 90 nM. This spontaneous, cooperative process resembles surfactants self-assembly and yields stable micelle-like oligomers whose size (≈50 monomers, Rh ≈ 7–11 nm) and elongated shape are independent of incubation time and peptide concentration. These findings reveal essential features of in vitro amyloid aggregation, which may illuminate the complex in vivo process.
Collapse
Affiliation(s)
- Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain.
| | - Sonia Freire
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain
| |
Collapse
|
133
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
134
|
Xiang N, Lyu Y, Zhu X, Narsimhan G. Investigation of the interaction of amyloid β peptide (11–42) oligomers with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane using molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:6817-6829. [PMID: 29299557 DOI: 10.1039/c7cp07148e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of pore formation in model neural cell membranes by β amyloid (Aβ) peptides was investigated using molecular dynamics simulation which indicated that Aβ oligomers of size equal or greater than 3 has a higher tendency for pore formation than monomers and that cholesterol tends to retard Aβ binding and insertion into the membrane.
Collapse
Affiliation(s)
- Ning Xiang
- Department of Agricultural and Biological Engineering
- Purdue University
- West Lafayette
- USA
| | - Yuan Lyu
- Department of Agricultural and Biological Engineering
- Purdue University
- West Lafayette
- USA
| | - Xiao Zhu
- ItaP
- Research Computing
- Rosen Center for Advanced Computing
- Purdue University
- West Lafayette
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
135
|
Sasmal S, Lincoff J, Head-Gordon T. Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Peptide Ensemble of Amyloid-β. Biophys J 2017; 113:1002-1011. [PMID: 28877484 DOI: 10.1016/j.bpj.2017.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 10/18/2022] Open
Abstract
Paramagnetic relaxation enhancement is an NMR technique that has yielded important insight into the structure of folded proteins, although the perturbation introduced by the large spin probe might be thought to diminish its usefulness when applied to characterizing the structural ensembles of intrinsically disordered proteins (IDPs). We compare the computationally generated structural ensembles of the IDP amyloid-β42 (Aβ42) to an alternative sequence in which a nitroxide spin label attached to cysteine has been introduced at its N-terminus. Based on this internally consistent computational comparison, we find that the spin label does not perturb the signature population of the β-hairpin formed by residues 16-21 and 29-36 that is dominant in the Aβ42 reference ensemble. However, the presence of the tag induces a strong population shift in a subset of the original Aβ42 structural sub-populations, including a sevenfold enhancement of the β-hairpin formed by residues 27-31 and 33-38. Through back-calculation of NMR observables from the computational structural ensembles, we show that the structural differences between the labeled and unlabeled peptide would be evident in local residual dipolar couplings, and possibly differences in homonuclear 1H-1H nuclear Overhauser effects (NOEs) and heteronuclear 1H-15N NOEs if the paramagnetic contribution to the longitudinal relaxation does not suppress the NOE intensities in the real experiment. This work shows that molecular simulation provides a complementary approach to resolving the potential structural perturbations introduced by reporter tags that can aid in the interpretation of paramagnetic relaxation enhancement, double electron-electron resonance, and fluorescence resonance energy transfer experiments applied to IDPs.
Collapse
Affiliation(s)
- Sukanya Sasmal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| | - James Lincoff
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California; Department of Chemistry, University of California, Berkeley, Berkeley, California; Department of Bioengineering, University of California, Berkeley, Berkeley, California; Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
136
|
Zheng W, Tsai MY, Wolynes PG. Comparing the Aggregation Free Energy Landscapes of Amyloid Beta(1-42) and Amyloid Beta(1-40). J Am Chem Soc 2017; 139:16666-16676. [PMID: 29057654 PMCID: PMC5805378 DOI: 10.1021/jacs.7b08089] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a predictive coarse-grained protein force field, we compute and compare the free energy landscapes and relative stabilities of amyloid-β protein (1-42) and amyloid-β protein (1-40) in their monomeric and oligomeric forms up to the octamer. At the same concentration, the aggregation free energy profile of Aβ42 is more downhill, with a computed solubility that is about 10 times smaller than that of Aβ40. At a concentration of 40 μM, the clear free energy barrier between the pre-fibrillar tetramer form and the fibrillar pentamer in the Aβ40 aggregation landscape disappears for Aβ42, suggesting that the Aβ42 tetramer has a more diverse structural range. To further compare the landscapes, we develop a cluster analysis based on the structural similarity between configurations and use it to construct an oligomerization map that captures the paths of easy interconversion between different but structurally similar states of oligomers for both species. A taxonomy of the oligomer species based on β-sheet stacking topologies is proposed. The comparison of the two oligomerization maps highlights several key differences in the landscapes that can be attributed to the two additional C-terminal residues that Aβ40 lacks. In general, the two terminal residues strongly stabilize the oligomeric structures for Aβ42 relative to Aβ40, and greatly facilitate the conversion from pre-fibrillar trimers to fibrillar tetramers.
Collapse
Affiliation(s)
- Weihua Zheng
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Min-Yeh Tsai
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Peter G. Wolynes
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
137
|
Salvi N, Abyzov A, Blackledge M. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:43-60. [PMID: 29157493 DOI: 10.1016/j.pnmrs.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for understanding fundamental biological processes, the molecular basis of their activity still remains largely unknown. The functional mechanisms exploited by IDPs in their interactions with other biomolecules are defined by their intrinsic dynamic modes and associated timescales, justifying the considerable interest over recent years in the development of technologies adapted to measure and describe this behaviour. NMR spin relaxation delivers information-rich, site-specific data reporting on conformational fluctuations occurring throughout the molecule. Here we review recent progress in the use of 15N relaxation to identify local backbone dynamics and long-range chain-like motions in unfolded proteins.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Anton Abyzov
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France.
| |
Collapse
|
138
|
Weber OC, Uversky VN. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β 42 in water. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1377813. [PMID: 30250773 DOI: 10.1080/21690707.2017.1377813] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Amyloid-β42 (Aβ42) is an intrinsically disordered peptide intimately related to the pathogenesis of several neurodegenerative diseases. Molecular dynamics (MD) simulations are extensively utilized in the characterization of the structures and conformational dynamics of intrinsically disordered proteins (IDPs) including Aβ42, with AMBER and CHARMM parameters being commonly used in these studies. Recently, comparison of the effects of force field parameters on the Aβ42 structures has started to gain significant attention. In this study, the structures of Aβ42 are simulated using AMBER FF99SB and CHARMM22/CMAP parameters via replica exchange MD simulations utilizing a widely used clustering algorithm. These analyses show that the structural properties (extent and positioning of the elements of secondary and tertiary structure), radius of gyration values, number and position of salt bridges are extremely dependent on the chosen force field parameters notably with the usage of clustering algorithms. For example, predicted secondary structure elements, which are of the great importance for better understanding of the molecular mechanisms of neurodegenerative diseases, deviate enormously in models generated using currently available force field parameters for proteins. Based on the derived models, chemical shift values are calculated and compared to the experimentally determined data. This comparison revealed that although both force field parameters yield results in agreement with experiments, the obtained structural properties were rather different using a clustering algorithm. In other words, these results show that the predicted structures depend heavily on the force field parameters. Importantly, since none of the force field parameters currently utilized in MD studies were developed specifically taking into account the disordered nature of IDPs, these findings clearly indicate that new force field parameters have to be developed for IDPs considering their rapid flexibility and dynamics with high amplitude. Furthermore, molecular simulations of IDPs are typically conducted using one water volume. We show that the confined aqueous volume impacts the predicted structural properties of Aβ42 in water. Although up to date, confined aqueous volume effects have been ignored in the MD simulations of IDPs in water, our data indicate that these effects have to be taken into account in predicting the structural and thermodynamic properties of disordered proteins in solution.
Collapse
Affiliation(s)
- Orkid Coskuner Weber
- Department of Chemistry and Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, USA.,Institut für Physikalische Chemie, Universität zu Köln, Köln, Germany.,Molecular Biotechnology Division, Turkisch-Deutsche Universität, Istanbul Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
139
|
Zhang YX, Wang SW, Lu S, Zhang LX, Liu DQ, Ji M, Wang WY, Liu RT. A mimotope of Aβ oligomers may also behave as a β-sheet inhibitor. FEBS Lett 2017; 591:3615-3624. [DOI: 10.1002/1873-3468.12871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/16/2017] [Accepted: 09/23/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Yang-xin Zhang
- School of Life Science; Anhui Agricultural University; Hefei China
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Shao-wei Wang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Ling-xiao Zhang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Dong-qun Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Mei Ji
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - Wei-yun Wang
- School of Life Science; Anhui Agricultural University; Hefei China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
140
|
Bacci M, Vymětal J, Mihajlovic M, Caflisch A, Vitalis A. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip. J Chem Theory Comput 2017; 13:5117-5130. [PMID: 28870064 DOI: 10.1021/acs.jctc.7b00662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growth of amyloid fibrils from Aβ1-42 peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a "dock-lock" procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of Aβ42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of Aβ fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Collapse
Affiliation(s)
- Marco Bacci
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jiří Vymětal
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Maja Mihajlovic
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
141
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1175] [Impact Index Per Article: 146.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
142
|
de Almeida NEC, Do TD, LaPointe NE, Tro M, Feinstein SC, Shea JE, Bowers MT. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose Binds to the N-terminal Metal Binding Region to Inhibit Amyloid β-protein Oligomer and Fibril Formation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2017; 420:24-34. [PMID: 29056865 PMCID: PMC5644501 DOI: 10.1016/j.ijms.2016.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The early oligomerization of amyloid β-protein (Aβ) is a crucial step in the etiology of Alzheimer's disease (AD), in which soluble and highly neurotoxic oligomers are produced and accumulated inside neurons. In search of therapeutic solutions for AD treatment and prevention, potent inhibitors that remodel Aβ assembly and prevent neurotoxic oligomer formation offer a promising approach. In particular, several polyphenolic compounds have shown anti-aggregation properties and good efficacy on inhibiting oligomeric amyloid formation. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a large polyphenol that has been shown to be effective at inhibiting aggregation of full-length Aβ1-40 and Aβ1-42, but has the opposite effect on the C-terminal fragment Aβ25-35. Here, we use a combination of ion mobility coupled to mass spectrometry (IMS-MS), transmission electron microscopy (TEM) and molecular dynamics (MD) simulations to elucidate the inhibitory effect of PGG on aggregation of full-length Aβ1-40 and Aβ1-42. We show that PGG interacts strongly with these two peptides, especially in their N-terminal metal binding regions, and suppresses the formation of Aβ1-40 tetramer and Aβ1-42 dodecamer. By exploring multiple facets of polyphenol-amyloid interactions, we provide a molecular basis for the opposing effects of PGG on full-length Aβ and its C-terminal fragments.
Collapse
Affiliation(s)
- Natália E. C. de Almeida
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Thanh D. Do
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nichole E. LaPointe
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Michael Tro
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Stuart C. Feinstein
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
143
|
Voelker MJ, Barz B, Urbanc B. Fully Atomistic Aβ40 and Aβ42 Oligomers in Water: Observation of Porelike Conformations. J Chem Theory Comput 2017; 13:4567-4583. [DOI: 10.1021/acs.jctc.7b00495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Matthew J. Voelker
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bogdan Barz
- Institute
of Complex Systems, Structural Biochemistry ICS-6: Structural Biochemistry, Forschungzentrum Jülich GmbH, Jülich 52425, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Brigita Urbanc
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Faculty
of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
144
|
Kalhor HR, Jabbari MP. Inhibition Mechanisms of a Pyridazine-Based Amyloid Inhibitor: As a β-Sheet Destabilizer and a Helix Bridge Maker. J Phys Chem B 2017; 121:7633-7645. [DOI: 10.1021/acs.jpcb.7b05189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| | - M. Parsa Jabbari
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| |
Collapse
|
145
|
Dorosh L, Stepanova M. Probing oligomerization of amyloid beta peptide in silico. MOLECULAR BIOSYSTEMS 2017; 13:165-182. [PMID: 27844078 DOI: 10.1039/c6mb00441e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aggregation of amyloid β (Aβ) peptide is implicated in fatal Alzheimer's disease, for which no cure is available. Understanding the mechanisms responsible for this aggregation is required in order for therapies to be developed. In an effort to better understand the molecular mechanisms involved in spontaneous aggregation of Aβ peptide, extensive molecular dynamics simulations are reported, and the results are analyzed through a combination of structural biology tools and a novel essential collective dynamics method. Several model systems composed of ten or twelve Aβ17-42 chains in water are investigated, and the influence of metal ions is probed. The results suggest that Aβ monomers tend to aggregate into stable globular-like oligomers with 13-23% of β-sheet content. Two stages of oligomer formation have been identified: quick collapse within the first 40 ns of the simulation, characterized by a decrease in inter-chain separation and build-up of β-sheets, and the subsequent slow relaxation of the oligomer structure. The resulting oligomers comprise a stable, coherently moving sub-aggregate of 6-9 strongly inter-correlated chains. Cu2+ and Fe2+ ions have been found to develop coordination bonds with carboxylate groups of E22, D23 and A42, which remain stable during 200 ns simulations. The presence of Fe2+, and particularly Cu2+ ions, in negatively charged cavities has been found to cause significant changes in the structure and dynamics of the oligomers. The results indicate, in particular, that formation of non-fibrillar oligomers might be involved in early template-free aggregation of Aβ17-42 monomers, with charged species such as Cu2+ or Fe2+ ions playing an important role.
Collapse
Affiliation(s)
- L Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada
| | - M Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada and Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO, USA
| |
Collapse
|
146
|
Schiffer JM, Feher VA, Malmstrom RD, Sida R, Amaro RE. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A. Biophys J 2017; 111:1631-1640. [PMID: 27760351 DOI: 10.1016/j.bpj.2016.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state. Despite the exhaustive study of L99A protein dynamics, the conformational changes that permit transitioning to the experimentally detected excited state (∼3%, ΔG ∼2 kcal/mol) remain unclear. Here, we describe the transitions from the ground state to this sparsely populated excited state of L99A as observed through a single molecular dynamics (MD) trajectory on the Anton supercomputer. Aside from detailing the ground-to-excited-state transition, the trajectory samples multiple metastates and an intermediate state en route to the excited state. Dynamic motions between these states enable cavity surface openings large enough to admit benzene on timescales congruent with known rates for benzene binding. Thus, these fluctuations between rare protein states provide an atomic description of the concerted motions that illuminate potential path(s) for ligand binding. These results reveal, to our knowledge, a new level of complexity in the dynamics of buried cavities and their role in creating mobile defects that affect protein dynamics and ligand binding.
Collapse
Affiliation(s)
- Jamie M Schiffer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Victoria A Feher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; Drug Design Data Resource, University of California, San Diego, La Jolla, California.
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; National Biomedical Computation Resource, University of California, San Diego, La Jolla, California
| | - Roxana Sida
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; Centro de Enseñanza Técnica y Superior (CETYS) Campus Ensenada, Camino a Microondas Trinidad, Ensenada, Baja Califiornia, Mexico
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; National Biomedical Computation Resource, University of California, San Diego, La Jolla, California; Drug Design Data Resource, University of California, San Diego, La Jolla, California.
| |
Collapse
|
147
|
Menon S, Sengupta N. Influence of Hyperglycemic Conditions on Self-Association of the Alzheimer's Amyloid β (Aβ 1-42) Peptide. ACS OMEGA 2017; 2:2134-2147. [PMID: 30023655 PMCID: PMC6044820 DOI: 10.1021/acsomega.7b00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Clinical studies have identified a correlation between type-2 diabetes mellitus and cognitive decrements en route to the onset of Alzheimer's disease (AD). Recent studies have established that post-translational modifications of the amyloid β (Aβ) peptide occur under hyperglycemic conditions; particularly, the process of glycation exacerbates its neurotoxicity and accelerates AD progression. In view of the assertion that macromolecular crowding has an altering effect on protein self-assembly, it is crucial to characterize the effects of hyperglycemic conditions via crowding on Aβ self-assembly. Toward this purpose, fully atomistic molecular dynamics simulations were performed to study the effects of glucose crowding on Aβ dimerization, which is the smallest known neurotoxic species. The dimers formed in the glucose-crowded environment were found to have weaker associations as compared to that of those formed in water. Binding free energy calculations show that the reduced binding strength of the dimers can be mainly attributed to the overall weakening of the dispersion interactions correlated with substantial loss of interpeptide contacts in the hydrophobic patches of the Aβ units. Analysis to discern the differential solvation pattern in the glucose-crowded and pure water systems revealed that glucose molecules cluster around the protein, at a distance of 5-7 Å, which traps the water molecules in close association with the protein surface. This preferential exclusion of glucose molecules and resulting hydration of the Aβ peptides has a screening effect on the hydrophobic interactions, which in turn diminishes the binding strength of the resulting dimers. Our results imply that physical effects attributed to crowded hyperglycemic environments are incapable of solely promoting Aβ self-assembly, indicating that further mechanistic studies are required to provide insights into the self-assembly of post-translationally modified Aβ peptides, known to possess aggravated toxicity, under these conditions.
Collapse
Affiliation(s)
- Sneha Menon
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus,
CSIR Road, Chennai 600113, India
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
148
|
Schneider M, Walta S, Cadek C, Richtering W, Willbold D. Fluorescence correlation spectroscopy reveals a cooperative unfolding of monomeric amyloid-β 42 with a low Gibbs free energy. Sci Rep 2017; 7:2154. [PMID: 28526839 PMCID: PMC5438374 DOI: 10.1038/s41598-017-02410-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
The amyloid-beta peptide (Aβ) plays a major role in the progression of Alzheimer's disease. Due to its high toxicity, the 42 amino acid long isoform Aβ42 has become of considerable interest. The Aβ42 monomer is prone to aggregation down to the nanomolar range which makes conventional structural methods such as NMR or X-ray crystallography infeasible. Conformational information, however, will be helpful to understand the different aggregation pathways reported in the literature and will allow to identify potential conditions that favour aggregation-incompetent conformations. In this study, we applied fluorescence correlation spectroscopy (FCS) to investigate the unfolding of Alexa Fluor 488 labelled monomeric Aβ42 using guanidine hydrochloride as a denaturant. We show that our Aβ42 pre-treatment and the low-nanomolar concentrations, typically used for FCS measurements, strongly favour the presence of monomers. Our results reveal that there is an unfolding/folding behaviour of monomeric Aβ42. The existence of a cooperative unfolding curve suggests the presence of structural elements with a Gibbs free energy of unfolding of about 2.8 kcal/mol.
Collapse
Affiliation(s)
- Mario Schneider
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Stefan Walta
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Chris Cadek
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. .,Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, Jülich, Germany.
| |
Collapse
|
149
|
Coskuner O, Uversky VN. Tyrosine Regulates β-Sheet Structure Formation in Amyloid-β42: A New Clustering Algorithm for Disordered Proteins. J Chem Inf Model 2017; 57:1342-1358. [DOI: 10.1021/acs.jcim.6b00761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Orkid Coskuner
- Department
of Chemistry and Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
- Institut
für Physikalische Chemie, Universität zu Köln, Luxemburger
Strasse 116, 50939 Köln, Germany
- Molecular
Biotechnology Division, Turkisch-Deutsche Universität, Sahinkaya
Caddesi, No. 71, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
150
|
Turner M, Deeth RJ, Platts JA. Prediction of ligand effects in platinum-amyloid-β coordination. J Inorg Biochem 2017; 173:44-51. [PMID: 28494276 DOI: 10.1016/j.jinorgbio.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six PtII-Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|