101
|
Murudkar S, Mora AK, Jakka S, Singh PK, Nath S. Ultrafast molecular rotor based DNA sensor: An insight into the mode of interaction. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
102
|
Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P. Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta Gen Subj 2014; 1840:1712-24. [PMID: 24380878 DOI: 10.1016/j.bbagen.2013.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
|
103
|
|
104
|
A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta 2014; 122:85-90. [PMID: 24720966 DOI: 10.1016/j.talanta.2014.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/20/2022]
Abstract
DNA sequences with guanine repeats can be induced to form G-quartets that adopt G-quadruplex structures in the presence of thioflavin T (ThT). ThT plays a dual role of inducing DNA sequences to fold into quadruplex structures and of sensing the change by its remarkable fluorescence enhancement. ThT binding to the DNA sequences with guanine repeats showed highly specific fluorescence enhancement compared with single/double-stranded DNA. In this work, we have utilized the conformational switch from G-quadruplex complex induced by fluorogenic dye ThT to Hg(2+) mediated T-Hg-T double-stranded DNA formation, thereby pioneering a facile approach to detect Hg(2+) with fluorescence spectrometry. Through this approach, Hg(2+) in aqueous solutions can be detected at 5 nM with fluorescence spectrometry in a facile way, with high selectivity against other metal ions. These results indicate the introduced label-free method for fluorescence spectrometric Hg(2+) detection is simple, quantitative, sensitive, and highly selective.
Collapse
|
105
|
Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 2013; 24:493-504. [DOI: 10.1007/s10895-013-1318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
106
|
Bramanti E, Fulgentini L, Bizzarri R, Lenci F, Sgarbossa A. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid. J Phys Chem B 2013; 117:13816-21. [PMID: 24168390 DOI: 10.1021/jp4079986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD.
Collapse
Affiliation(s)
- Emilia Bramanti
- Istituto dei Composti Organo-Metallici, ‡Istituto di Biofisica, and §Istituto Nazionale di Ottica, CNR , U.O. Pisa, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | | | |
Collapse
|
107
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
108
|
Skeby KK, Sørensen J, Schiøtt B. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations. J Am Chem Soc 2013; 135:15114-28. [DOI: 10.1021/ja405530p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katrine Kirkeby Skeby
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| | - Jesper Sørensen
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| | - Birgit Schiøtt
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| |
Collapse
|
109
|
Holt C, Carver JA, Ecroyd H, Thorn DC. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 2013; 96:6127-46. [PMID: 23958008 DOI: 10.3168/jds.2013-6831] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
Collapse
Affiliation(s)
- C Holt
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
110
|
Nguyen TX, Jaru-Ampornpan P, Lam VQ, Cao P, Piszkiewicz S, Hess S, Shan SO. Mechanism of an ATP-independent protein disaggregase: I. structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone. J Biol Chem 2013; 288:13420-30. [PMID: 23525109 DOI: 10.1074/jbc.m113.462812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A novel chaperone, cpSRP43, recognizes and disassembles the aggregates formed by its client proteins. RESULTS The client proteins of cpSRP43 form stable disc-shaped aggregates with the chaperone recognition motif displayed onthe surface. CONCLUSION The surface-exposed motif on the aggregate allows it to be recognized by its chaperone. SIGNIFICANCE Understanding the structure and energetics of protein aggregates provides insights into the mechanism of theirDISASSEMBLY.Protein aggregation is detrimental to the maintenance of proper protein homeostasis in all cells. To overcome this problem, cells have evolved a network of molecular chaperones to prevent protein aggregation and even reverse existing protein aggregates. The most extensively studied disaggregase systems are ATP-driven macromolecular machines. Recently, we reported an alternative disaggregase system in which the 38-kDa subunit of chloroplast signal recognition particle (cpSRP43) efficiently reverses the aggregation of its substrates, the light-harvesting chlorophyll a/b-binding (LHC) proteins, in the absence of external energy input. To understand the molecular mechanism of this novel activity, here we used biophysical and biochemical methods to characterize the structure and nature of LHC protein aggregates. We show that LHC proteins form micellar, disc-shaped aggregates that are kinetically stable and detergent-resistant. Despite the nonamyloidal nature, the LHC aggregates have a defined global organization, displaying the chaperone recognition motif on its solvent-accessible surface. These findings suggest an attractive mechanism for recognition of the LHC aggregate by cpSRP43 and provide important constraints to define the capability of this chaperone.
Collapse
Affiliation(s)
- Thang X Nguyen
- Division of Chemistry and Chemical Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Hsu JCC, Chen EHL, Snoeberger RC, Luh FY, Lim TS, Hsu CP, Chen RPY. Thioflavin T and its photoirradiative derivatives: exploring their spectroscopic properties in the absence and presence of amyloid fibrils. J Phys Chem B 2013; 117:3459-68. [PMID: 23458420 DOI: 10.1021/jp309331u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, we found that, during storage or after UV irradiation, ThT is demethylated or oxidized, forming three derivatives. These three derivatives were purified by high performance liquid chromatography and characterized by mass and nuclear magnetic resonance spectroscopy and the spectroscopic properties of pure ThT and the derivatives carefully compared. Our results show that the emission peak at 450 nm results from oxidized ThT and not from the monomeric form of ThT, as previously proposed. The partial conversion of ThT into oxidized and demethylated derivatives has an effect on amyloid detection using ThT assay. Irradiated ThT has the same lag time as pure ThT in the amyloidogenesis of insulin, but the intensity of the emitted fluorescence is significantly decreased.
Collapse
Affiliation(s)
- Jack C-C Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
112
|
Anand U, Mukherjee M. Exploring the self-assembly of a short aromatic Aβ(16-24) peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2713-2721. [PMID: 23379750 DOI: 10.1021/la304585a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of self-assembling peptides as scaffolds for creating biomaterials has prompted the scientific community to carry out studies on short peptides as model systems. Short peptides help in dissecting contributions from different interactions, unlike large peptides, where multiple interactions make it difficult to dissect the contributions of individual interactions. This opens avenues for fine tuning peptides to carry out a wide range of physical or chemical properties. In this line of study Aβ(16-24) is a versatile building block not only as a scaffold for creating biomaterials but also because it forms the active core in the protein that forms amyloid plaques. In this study, we probe the self-assembly of peptide Aβ(16-24) using fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry, transmission electron microscopy, and atomic force microscopy. The process of self-assembly is dictated by the burial of phenyl alanines in the hydrophobic core and guided by nonbonding interactions and H-bonding. The process of fibril formation is enthalpically driven, and the fibrils showed blue and green luminescence without the addition of any external agent or sensitizer. Because these short peptides are known to bind with fully formed amyloid fibrils, this opens a route to the study of amyloid systems in vitro or isolated from patients suffering from Alzheimer's disease.
Collapse
Affiliation(s)
- Uttam Anand
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore By-pass Road, Bhauri, Bhopal 462 030, Madhya Pradesh, India
| | | |
Collapse
|
113
|
Gong H, Zhang X, Cheng B, Sun Y, Li C, Li T, Zheng L, Huang K. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes. PLoS One 2013; 8:e54198. [PMID: 23372685 PMCID: PMC3553173 DOI: 10.1371/journal.pone.0054198] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Bisphenol A (BPA) is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM), however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP) is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.
Collapse
Affiliation(s)
- Hao Gong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xin Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Biao Cheng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue Sun
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Chuanzhou Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ting Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
114
|
Sabaté R, Ventura S. Cross-β-sheet supersecondary structure in amyloid folds: techniques for detection and characterization. Methods Mol Biol 2013; 932:237-257. [PMID: 22987357 DOI: 10.1007/978-1-62703-065-6_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The formation of protein aggregates is linked to the onset of several human disorders of increasing prevalence, ranging from dementia to diabetes. In most of these diseases, the toxic effect is exerted by the self-assembly of initially soluble proteins into insoluble amyloid-like fibrils. Independently of the protein origin, all these macromolecular assemblies share a common supersecondary structure: the cross-β-sheet conformation, in which a core of β-strands is aligned perpendicularly to the fibril axis forming extended regular β-sheets. Due to this ubiquity, the presence of cross-β-sheet conformational signatures is usually exploited to detect, characterize, and screen for amyloid fibrils in protein samples. Here we describe in detail some of the most commonly used methods to analyze such supersecondary structure.
Collapse
Affiliation(s)
- Raimon Sabaté
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
115
|
Sabate R, Rodriguez-Santiago L, Sodupe M, Saupe SJ, Ventura S. Thioflavin-T excimer formation upon interaction with amyloid fibers. Chem Commun (Camb) 2013; 49:5745-7. [DOI: 10.1039/c3cc42040j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
116
|
Morris RJ, Eden K, Yarwood R, Jourdain L, Allen RJ, Macphee CE. Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers. Nat Commun 2013; 4:1891. [PMID: 23695685 PMCID: PMC3796876 DOI: 10.1038/ncomms2909] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/18/2013] [Indexed: 11/22/2022] Open
Abstract
Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC.
Collapse
Affiliation(s)
- Ryan J Morris
- SUPA, The School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK
| | | | | | | | | | | |
Collapse
|
117
|
Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J Am Chem Soc 2012; 135:367-76. [DOI: 10.1021/ja309588h] [Citation(s) in RCA: 459] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - V. Dhamodharan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai
400 076, India
| | - S. Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai
400 076, India
| | - P. I. Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai
400 076, India
| | | |
Collapse
|
118
|
Liu G, Gaines JC, Robbins KJ, Lazo ND. Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance. ACS Med Chem Lett 2012; 3:856-9. [PMID: 24900390 DOI: 10.1021/ml300147m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.
Collapse
Affiliation(s)
- Gai Liu
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Jennifer C. Gaines
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Kevin J. Robbins
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Noel D. Lazo
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| |
Collapse
|
119
|
Monti MC, Margarucci L, Riccio R, Casapullo A. Modulation of tau protein fibrillization by oleocanthal. JOURNAL OF NATURAL PRODUCTS 2012; 75:1584-1588. [PMID: 22988908 DOI: 10.1021/np300384h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the phenolic compounds extracted from extra virgin olive oil, oleocanthal (1) has attracted considerable attention in the modulation of many human diseases, such as inflammation and Alzheimer's disease (AD). Indeed, 1 is capable of altering the fibrillization of tau protein, which is one of the key factors at the basis of neurodegenerative diseases, and of covalently reacting with lysine ε-amino groups of the tau fragment K18 in an unspecific fashion. In the present study, an investigation of the recognition process and the reaction profile between 1 and the wild-type tau protein has been conducted by a circular dichroism, surface plasmon resonance, fluorescence, and mass spectrometry combined approach. As a result, 1 has been found to interact with tau-441, inducing stable conformational modifications of the protein secondary structure and also interfering with tau aggregation. These findings provide experimental support for the potential reduced risk of AD and related neurodegenerative diseases associated with olive oil consumption and may offer a new chemical scaffold for the development of AD-modulating agents.
Collapse
Affiliation(s)
- Maria Chiara Monti
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Italy
| | | | | | | |
Collapse
|
120
|
Altschuler SE, Croy JE, Wuttke DS. A small molecule inhibitor of Pot1 binding to telomeric DNA. Biochemistry 2012; 51:7833-45. [PMID: 22978652 DOI: 10.1021/bi300365k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of the regulation of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres 1), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of Schizosaccharomyces pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ∼20 000 compounds yielded a single inhibitor, which we found interacted tightly with sub-micromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red (CR), was able to competitively inhibit hPOT1 binding to telomeric DNA. Isothermal titration calorimetry and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
121
|
D'Amico M, Di Carlo MG, Groenning M, Militello V, Vetri V, Leone M. Thioflavin T Promotes Aβ(1-40) Amyloid Fibrils Formation. J Phys Chem Lett 2012; 3:1596-601. [PMID: 26285714 DOI: 10.1021/jz300412v] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fibrillogenesis of the small peptide Aβ(1-40) is considered to be the hallmark of Alzheimer's disease. Some evidence indicates small oligomers, rather than mature fibrils, as the key cytotoxic agents. The fluorescent dye Thioflavin T (ThT) is often used to detect amyloid deposits in both in vivo and in vitro experiments, and it is used to study kinetic measurements, under the fundamental hypothesis that this probe does not influence the aggregation processes. We report experimental data showing that ThT may promote the Aβ(1-40) peptide amyloid aggregation changing solvent-peptide interactions and stabilizing more ordered β-like conformation. This finding has a two-fold importance: It is a fundamental warning in all fibrillation experiments where ThT is used as fluorescent probe, and it suggests that ThT, accelerating fibril formation, could be used to reduce the presence of transient small oligomers, thus interfering with the pathogenic impact of Aβ peptide.
Collapse
Affiliation(s)
- Michele D'Amico
- †Dip. di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy
| | - Maria Giovanna Di Carlo
- †Dip. di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy
| | - Minna Groenning
- ‡Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valeria Militello
- †Dip. di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy
| | - Valeria Vetri
- †Dip. di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy
| | - Maurizio Leone
- †Dip. di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy
| |
Collapse
|
122
|
Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 2012; 8:e1002744. [PMID: 22685403 PMCID: PMC3369951 DOI: 10.1371/journal.ppat.1002744] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs' aggregation into amyloid fibers modulates their biological activity and role in biofilms.
Collapse
Affiliation(s)
- Kelly Schwartz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adnan K. Syed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander H. Rickard
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Blaise R. Boles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
123
|
Kuznetsova IM, Sulatskaya AI, Uversky VN, Turoverov KK. A New Trend in the Experimental Methodology for the Analysis of the Thioflavin T Binding to Amyloid Fibrils. Mol Neurobiol 2012; 45:488-98. [DOI: 10.1007/s12035-012-8272-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 11/29/2022]
|
124
|
Wahlström A, Cukalevski R, Danielsson J, Jarvet J, Onagi H, Rebek J, Linse S, Gräslund A. Specific binding of a β-cyclodextrin dimer to the amyloid β peptide modulates the peptide aggregation process. Biochemistry 2012; 51:4280-9. [PMID: 22554145 DOI: 10.1021/bi300341j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease involves progressive neuronal loss. Linked to the disease is the amyloid β (Aβ) peptide, a 38-43-amino acid peptide found in extracellular amyloid plaques in the brain. Cyclodextrins are nontoxic, cone-shaped oligosaccharides with a hydrophilic exterior and a hydrophobic cavity making them suitable hosts for aromatic guest molecules in water. β-Cyclodextrin consists of seven α-d-glucopyranoside units and has been shown to reduce the level of fibrillation and neurotoxicity of Aβ. We have studied the interaction between Aβ and a β-cyclodextrin dimer, consisting of two β-cyclodextrin monomers connected by a flexible linker. The β-cyclodextrin monomer has been found to interact with Aβ(1-40) at sites Y10, F19, and/or F20 with a dissociation constant (K(D)) of 3.9 ± 2.0 mM. Here (1)H-(15)N and (1)H-(13)C heteronuclear single-quantum correlation nuclear magnetic resonance (NMR) spectra show that in addition, the β-cyclodextrin monomer and dimer bind to the histidines. NMR translational diffusion experiments reveal the increased affinity of the β-cyclodextrin dimer (apparent K(D) of 1.1 ± 0.5 mM) for Aβ(1-40) compared to that of the β-cyclodextrin monomer. Kinetic aggregation experiments based on thioflavin T fluorescence indicate that the dimer at 0.05-5 mM decreases the lag time of Aβ aggregation, while a concentration of 10 mM increases the lag time. The β-cyclodextrin monomer at a high concentration decreases the lag time of the aggregation. We conclude that cyclodextrin monomers and dimers have specific, modulating effects on the Aβ(1-40) aggregation process. Transmission electron microscopy shows that the regular fibrillar aggregates formed by Aβ(1-40) alone are replaced by a major fraction of amorphous aggregates in the presence of the β-cyclodextrin dimer.
Collapse
Affiliation(s)
- Anna Wahlström
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides. Biotechniques 2012; 52:000113873. [DOI: 10.2144/000113873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/04/2012] [Indexed: 11/23/2022] Open
Abstract
Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt—Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500–750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.
Collapse
|
126
|
Wang C, Yang A, Li X, Li D, Zhang M, Du H, Li C, Guo Y, Mao X, Dong M, Besenbacher F, Yang Y, Wang C. Observation of molecular inhibition and binding structures of amyloid peptides. NANOSCALE 2012; 4:1895-909. [PMID: 22334382 DOI: 10.1039/c2nr11508e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unveiling interactions between labeling molecules and amyloid fibrils is essential to develop new detection methods for studying amyloid structures under various conditions. This review endeavours to reflect the progress in studying interactions between molecular inhibitors and amyloid peptides using a series of experimental approaches, such as X-ray diffraction, nuclear magnetic resonance, scanning probe microscopy, and electron microscopy. The revealed binding mechanisms of anti-amyloid drugs and target proteins could benefit the rational design of drugs for prevention or treatment of amyloidal diseases.
Collapse
Affiliation(s)
- Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
de la Fuente E, Adura C, Kogan MJ, Bollo S. Carbon Nanotubes Electrochemistry Allows the In Situ Evaluation of the Effect of β-Sheet Breakers on the Aggregation Process of β-Amyloid. ELECTROANAL 2012. [DOI: 10.1002/elan.201100607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
128
|
Capule CC, Yang J. Enzyme-linked immunosorbent assay-based method to quantify the association of small molecules with aggregated amyloid peptides. Anal Chem 2012; 84:1786-91. [PMID: 22243436 DOI: 10.1021/ac2030859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes a simple enzyme linked immunosorbent assay (ELISA) protocol for quantifying the binding of small molecules to aggregated β-amyloid (Aβ) peptides. Amyloid-targeting small molecules have attracted wide interest as potential agents for the treatment or diagnosis of neurodegenerative disorders such as Alzheimer's disease. The lack of general methods to evaluate small molecule-amyloid binding interactions, however, has significantly limited the number of amyloid-targeting molecules that have been studied to date. Here, we demonstrate a general method to quantify small molecule-amyloid binding interactions via a modified quantitative ELISA protocol. A key feature of this protocol is the treatment of commercial ELISA plates with an air plasma to help maintain the desired β-sheet content of the aggregated Aβ upon immobilization of these peptides on to the polystyrene surface. We developed an ELISA-based competition assay on these air plasma-treated plates and evaluated the binding of five previously known amyloid-binding small molecules to aggregated Aβ. We show that this general ELISA-based competition assay can be used to quantify small molecule-amyloid binding interactions in the low nanomolar to low micromolar range, which is the typical range of affinities for many amyloid-targeting diagnostic agents under current development. This simple protocol for quantifying the interaction of small molecules with aggregated Aβ peptides overcomes many limitations of previously reported spectroscopic or radioactivity assays and may, therefore, facilitate the screening and evaluation of a more structurally diverse set of amyloid-targeting agents than had previously been possible.
Collapse
Affiliation(s)
- Christina C Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | |
Collapse
|
129
|
Banerjee V, Das KP. Modulation of pathway of insulin fibrillation by a small molecule helix inducer 2,2,2-trifluoroethanol. Colloids Surf B Biointerfaces 2011; 92:142-50. [PMID: 22178183 DOI: 10.1016/j.colsurfb.2011.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022]
Abstract
Many proteins form ordered irreversible structural aggregates called amyloid fibrils, which are associated with numerous neurodegenerative diseases. Insulin, a largely α-helical protein associated with type II diabetes, self-assembles to form amyloid fibrils in vitro. Insulin fibrillation goes through a number of intermediate phases that includes a soluble oligomeric phase believed to be the most toxic phase. Small molecules may play a very important role in modulating the fibrillation pathways. It is possible to induce and stabilize helix structures in proteins by a fluorinated alcohol 2,2,2-trifluoro ethanol (TFE). Since fibrillation process of many proteins is associated with conversion of α-helical structures into β-sheet configuration, we thought it would be interesting to study the effect of TFE on the fibrillation of insulin. In absence of TFE, soluble protofibrillar oligomeric intermediates formed directly from the insulin trimer. The protofibrillar aggregates transformed into mature fibrils over time. We demonstrated that although TFE did not prevent the appearance of matured amyloid fibrils, it prevented the appearance of soluble aggregates of insulin. TFE converted the insulin trimer into monomers and fibril formation proceeded from the monomeric state in a cooperative way avoiding the soluble oligomeric phase. At 25% TFE, distinct morphological changes resulting in more discrete fibrils were visible. The effect of the small molecule TFE on the avoidance of the formation soluble oligomeric state during fibrillation may have considerable implications in reducing cellular toxicity.
Collapse
Affiliation(s)
- Victor Banerjee
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, Kolkata, India.
| | | |
Collapse
|
130
|
Dueholm MS, Nielsen SB, Hein KL, Nissen P, Chapman M, Christiansen G, Nielsen PH, Otzen DE. Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 2011; 50:8281-90. [PMID: 21877724 DOI: 10.1021/bi200967c] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid fold is usually considered a result of protein misfolding. However, a number of studies have recently shown that the amyloid structure is also used in nature for functional purposes. CsgA is the major subunit of Escherichia coli curli, one of the most well-characterized functional amyloids. Here we show, using a highly efficient approach to prepare monomeric CsgA, that in vitro fibrillation of CsgA occurs under a wide variety of environmental conditions and that the resulting fibrils exhibit similar structural features. This highlights how fibrillation is "hardwired" into amyloid that has evolved for structural purposes in a fluctuating extracellular environment and represents a clear contrast to disease-related amyloid formation. Furthermore, we show that CsgA polymerization in vitro is preceded by the formation of thin needlelike protofibrils followed by aggregation of the amyloid fibrils.
Collapse
Affiliation(s)
- Morten S Dueholm
- Interdisciplinary Nanoscience Center, Centre for Insoluble Protein Structures, Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Hafner-Bratkovič I, Gaedtke L, Ondracka A, Veranič P, Vorberg I, Jerala R. Effect of hydrophobic mutations in the H2-H3 subdomain of prion protein on stability and conversion in vitro and in vivo. PLoS One 2011; 6:e24238. [PMID: 21909425 PMCID: PMC3164720 DOI: 10.1371/journal.pone.0024238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/03/2011] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative diseases, which can be acquired, sporadic or genetic, the latter being linked to mutations in the gene encoding prion protein. We have recently described the importance of subdomain separation in the conversion of prion protein (PrP). The goal of the present study was to investigate the effect of increasing the hydrophobic interactions within the H2-H3 subdomain on PrP conversion. Three hydrophobic mutations were introduced into PrP. The mutation V209I associated with human prion disease did not alter protein stability or in vitro fibrillization propensity of PrP. The designed mutations V175I and T187I on the other hand increased protein thermal stability. V175I mutant fibrillized faster than wild-type PrP. Conversion delay of T187I was slightly longer, but fluorescence intensity of amyloid specific dye thioflavin T was significantly higher. Surprisingly, cells expressing V209I variant exhibited inefficient proteinase K resistant PrP formation upon infection with 22L strain, which is in contrast to cell lines expressing wild-type, V175I and T187I mPrPs. In agreement with increased ThT fluorescence at the plateau T187I expressing cell lines accumulated an increased amount of the proteinase K-resistant prion protein. We showed that T187I induces formation of thin fibrils, which are absent from other samples. We propose that larger solvent accessibility of I187 in comparison to wild-type and other mutants may interfere with lateral annealing of filaments and may be the underlying reason for increased conversion efficiency.
Collapse
Affiliation(s)
- Iva Hafner-Bratkovič
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Lars Gaedtke
- Institute of Virology, Technical University Munich, München, Germany
| | - Andrej Ondracka
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, School of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ina Vorberg
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
132
|
Mao X, Guo Y, Wang C, Zhang M, Ma X, Liu L, Niu L, Zeng Q, Yang Y, Wang C. Binding modes of thioflavin T molecules to prion peptide assemblies identified by using scanning tunneling microscopy. ACS Chem Neurosci 2011; 2:281-7. [PMID: 22778872 DOI: 10.1021/cn200006h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/30/2011] [Indexed: 11/30/2022] Open
Abstract
The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaobo Mao
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yuanyuan Guo
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Chenxuan Wang
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Min Zhang
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xiaojing Ma
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Lei Liu
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Lin Niu
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Qingdao Zeng
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yanlian Yang
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Chen Wang
- Key Laboratory for Biological Effects of Nanomaterials & Nanosafety and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences) National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| |
Collapse
|
133
|
Shewmaker F, McGlinchey RP, Wickner RB. Structural insights into functional and pathological amyloid. J Biol Chem 2011; 286:16533-40. [PMID: 21454545 PMCID: PMC3089495 DOI: 10.1074/jbc.r111.227108] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid is traditionally viewed as a consequence of protein misfolding and aggregation and is most notorious for its association with debilitating and chronic human diseases. However, a growing list of examples of "functional amyloid" challenges this bad reputation and indicates that many organisms can employ the biophysical properties of amyloid for their benefit. Because of developments in the structural studies of amyloid, a clearer picture is emerging about what defines amyloid structure and the properties that unite functional and pathological amyloids. Here, we review various amyloids and place them within the framework of the latest structural models.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | |
Collapse
|
134
|
Bhasikuttan AC, Dutta Choudhury S, Pal H, Mohanty J. Supramolecular Assemblies of Thioflavin T with Cucurbiturils: Prospects of Cooperative and Competitive Metal Ion Binding. Isr J Chem 2011. [DOI: 10.1002/ijch.201100039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
135
|
Vetri V, D’Amico M, Foderà V, Leone M, Ponzoni A, Sberveglieri G, Militello V. Bovine Serum Albumin protofibril-like aggregates formation: Solo but not simple mechanism. Arch Biochem Biophys 2011; 508:13-24. [DOI: 10.1016/j.abb.2011.01.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 11/29/2022]
|
136
|
Mao X, Wang C, Ma X, Zhang M, Liu L, Zhang L, Niu L, Zeng Q, Yang Y, Wang C. Molecular level studies on binding modes of labeling molecules with polyalanine peptides. NANOSCALE 2011; 3:1592-1599. [PMID: 21283870 DOI: 10.1039/c0nr00782j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(II) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO(3)Na)(4))) on pentaalanine, which is a model peptide segment of amyloid peptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalanine peptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO(3)Na)(4) display different adsorption affinity with the pentaalanine peptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.
Collapse
Affiliation(s)
- Xiaobo Mao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Itkin A, Dupres V, Dufrêne YF, Bechinger B, Ruysschaert JM, Raussens V. Calcium ions promote formation of amyloid β-peptide (1-40) oligomers causally implicated in neuronal toxicity of Alzheimer's disease. PLoS One 2011; 6:e18250. [PMID: 21464905 PMCID: PMC3065491 DOI: 10.1371/journal.pone.0018250] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/01/2011] [Indexed: 01/06/2023] Open
Abstract
Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca(2+) homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1-40) and that of Aβ(1-40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca(2+), Aβ(1-40) preferentially formed oligomers similar to those formed by Aβ(1-40)E22G with or without added Ca(2+), whereas in the absence of added Ca(2+) the Aβ(1-40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca(2+), Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1-40), that have been implicated in the pathogenesis of AD.
Collapse
Affiliation(s)
- Anna Itkin
- Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
138
|
Bartolini M, Naldi M, Fiori J, Valle F, Biscarini F, Nicolau DV, Andrisano V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal Biochem 2011; 414:215-25. [PMID: 21435333 DOI: 10.1016/j.ab.2011.03.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/06/2023]
Abstract
Extensive evidence suggests that the self-assembly of amyloid-beta peptide (Aβ) is a nucleation-dependent process that involves the formation of several oligomeric intermediates. Despite neuronal toxicity being recently related to Aβ soluble oligomers, results from aggregation studies are often controversial, mainly because of the low reproducibility of several experimental protocols. Here a multimethodological study that included atomic force microscopy (AFM), transmission electron microscopy (TEM), fluorescence microscopy (FLM), mass spectrometry techniques (matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] and electrospray ionization quadrupole time-of-flight [ESI-QTOF]), and direct thioflavin T (ThT) fluorescence spectroscopy were enabled to set up a reliable and highly reproducible experimental protocol for the characterization of the morphology and dimension of Aβ 1-42 (Aβ42) aggregates along the self-assembly pathway. This multimethodological approach allowed elucidating the diverse assembly species formed during the Aβ aggregation process and was applied to the detailed investigation of the mechanism of Aβ42 inhibition by myricetin. In particular, a very striking result was the molecular weight determination of the initial oligomeric nuclei by MALDI-TOF, composed of up to 10 monomers, and their morphology by AFM.
Collapse
Affiliation(s)
- Manuela Bartolini
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
139
|
The Osaka FAD mutation E22Δ leads to the formation of a previously unknown type of amyloid β fibrils and modulates Aβ neurotoxicity. J Mol Biol 2011; 408:780-91. [PMID: 21402079 DOI: 10.1016/j.jmb.2011.02.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/07/2011] [Accepted: 02/19/2011] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cerebral deposition of amyloid fibrils formed by the amyloid β (Aβ) peptide. Aβ has a length of 39-43 amino acid residues; the predominant Aβ isoforms are Aβ1-40 and Aβ1-42. While the majority of AD cases occur spontaneously, a subset of early-onset familial AD cases is caused by mutations in the genes encoding the Aβ precursor protein or presenilin 1/presenilin 2. Recently, a deletion of glutamic acid at position 22 within the Aβ sequence (E22Δ) was identified in Japanese patients with familial dementia, but the aggregation properties of the deletion variant of Aβ are not well understood. We investigated the aggregation characteristics and neurotoxicity of recombinantly expressed Aβ isoforms 1-40 and 1-42 with and without the E22Δ mutation. We show that the E22Δ mutation strongly accelerates the fibril formation of Aβ1-42 E22Δ compared to Aβ1-42 wild type (wt). In addition, we demonstrate that fibrils of Aβ1-40 E22Δ form a unique quaternary structure characterized by a strong tendency to form fibrillar bundles and a strongly increased thioflavin T binding capacity. Aβ1-40 E22Δ was neurotoxic in rat primary neuron cultures as compared to nontoxic Aβ1-40 wt. Aβ1-42 E22Δ was less toxic than Aβ1-42 wt, but it significantly decreased neurite outgrowth per cell in neuronal primary cultures. Because Aβ1-40 is the major Aβ form in vivo, the gain of toxic function caused by the E22 deletion may explain the development of familial AD in mutation carriers.
Collapse
|
140
|
Carrotta R, Vetri V, Librizzi F, Martorana V, Militello V, Leone M. Amyloid Fibrils Formation of Concanavalin A at Basic pH. J Phys Chem B 2011; 115:2691-8. [DOI: 10.1021/jp1042409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- R. Carrotta
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - V. Vetri
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Dipartimento di Scienze Fisiche e Astronomiche, Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - F. Librizzi
- Dipartimento di Scienze Fisiche e Astronomiche, Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - V. Martorana
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - V. Militello
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Dipartimento di Scienze Fisiche e Astronomiche, Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - M. Leone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Dipartimento di Scienze Fisiche e Astronomiche, Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| |
Collapse
|
141
|
Bhasikuttan AC, Pal H, Mohanty J. Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects. Chem Commun (Camb) 2011; 47:9959-71. [DOI: 10.1039/c1cc12091c] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
142
|
|
143
|
Han SH, Chang YJ, Jung ES, Kim JW, Na DL, Mook-Jung I. Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles. Int J Nanomedicine 2010; 6:1-12. [PMID: 21289976 PMCID: PMC3025587 DOI: 10.2147/ijn.s15278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The abnormal aggregation of amyloid β (Aβ) and its subsequent intra- and extracellular accumulation constitute the disease-causing cascade of Alzheimer's disease (AD). The detection of Aβ aggregates and senile plaque formation, however, is nearly impossible during early pathogenesis, and the absence of a convenient screen to validate the activity of Aβ aggregation regulators impedes the development of promising drug targets and diagnostic biomarkers for AD. Here, we conjugated amyloid β42 (Aβ42) peptide to gold nanoparticles (AuNPs) to visualize Aβ42 aggregation via Aβ42 aggregation-induced AuNP precipitation. AuNP-Aβ42 precipitate was quantified by optical density measurements of supernatants and thioflavin T binding assay. Transmission electron microscopy (TEM) analysis also showed reduced interparticle distance of AuNPs and confirmed the Aβ42 aggregation-induced AuNP precipitation. Transthyretin, a widely known Aβ aggregation inhibitor, limited AuNP-Aβ42 precipitation by preventing Aβ42 aggregation. Finally, according to TEM analysis, Aβ42-conjugated AuNPs treated with blood-driven serum revealed the differentiated aggregation patterns between normal and AD. These findings may open a scientific breakthrough in finding a possible diagnostic and prognostic tool for neurodegenerative diseases involving abnormal protein aggregation as their key pathogenesis processes.
Collapse
Affiliation(s)
- Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Jongro-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
144
|
Foderà V, Donald AM. Tracking the heterogeneous distribution of amyloid spherulites and their population balance with free fibrils. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:273-282. [PMID: 21052765 DOI: 10.1140/epje/i2010-10665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
The analysis of amyloidogenic systems reveals the appearance of distinct states of aggregation for amyloid fibrils. For different proteins and under specific experimental conditions, amyloid spherulites are recognized as a significant component occurring in several protein model systems used for in vitro fibrillation studies. In this work we have developed an approach to characterize solutions containing a mixture of amyloid spherulites and individual fibrils. Using bovine insulin as the model system, sedimentation kinetics for the amyloid aggregates were followed using a combination of UV-Vis spectroscopy and cross-polarized optical microscopy. Spherulites were identified as the species undergoing sedimentation. A simple mathematical approach allows the description of the kinetics in terms of decay time/rate distribution. Moreover, based on the sedimentation kinetics, a rough estimate of the balance between amyloid spherulites and individual fibrils can be provided. Fitting the experimental data with the proposed physico-chemical approach shows self-consistent results in reasonable agreement with quantitative imaging analysis previously reported. Our results provide new physical insights into the analysis of amyloidogenic systems, providing a method to characterize the heterogeneous distribution of amyloid spherulites and simultaneously distinguish spherulites and free fibril populations. Importantly, the method can be generally applied to the characterization of polydisperse solutions containing optically traceable spherical particles in the micrometric range.
Collapse
Affiliation(s)
- V Foderà
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK.
| | | |
Collapse
|
145
|
Stsiapura VI, Maskevich AA, Tikhomirov SA, Buganov OV. Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents. J Phys Chem A 2010; 114:8345-50. [PMID: 20666477 DOI: 10.1021/jp105186z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we provide first direct experimental results about photoinduced TICT-state formation for Thioflavin T (ThT). In this work, femtosecond transient absorption spectra dynamics for ThT, dissolved in low-viscosity solvents (water, ethanol, 2-propanol, butanol) was investigated. It was found that decay lifetime of fluorescent LE-state for ThT in low-viscous solvents does not exceed 12 ps, and its value correlates well with rising time of the absorption band at 470 nm. It indicates that LE-state of ThT initially formed upon photoexcitation is quite rapidly converted to a transient state characterized by absorption at 470 nm. We associate this emerging intermediate state with nonfluorescent TICT-state of the dye. Rate of LE --> TICT process significantly depends on viscosity and is comparable to the rate of solvent relaxation resulting in time-dependent Stokes shift of ThT stimulated emission band. TICT-state deactivation was found to be also viscosity dependent and its lifetime changed from 3.8 +/- 0.1 ps (in H(2)O) to 360 +/- 60 ps (in butanol). It was proposed that a nonradiative deactivation process proceeds through a conical intersection between TICT(S(1)') and S(0) energy levels. The results obtained confirm the earlier proposed model that twisted internal charge transfer process takes place in the excited state of the dye and that ThT behaves as a molecular rotor (Stsiapura, V. I.; Maskevich, A. A.; Kuzmitsky, V. A.; Uversky, V. N.; Kuznetsova, I. M.; Turoverov, K. K. J. Phys. Chem. B 2008, 112, 15893-15902).
Collapse
Affiliation(s)
- Vitali I Stsiapura
- Department of Physics, Yanka Kupala State University, Grodno 230023, Belarus.
| | | | | | | |
Collapse
|
146
|
Srivastava A, Singh PK, Kumbhakar M, Mukherjee T, Chattopadyay S, Pal H, Nath S. Identifying the bond responsible for the fluorescence modulation in an amyloid fibril sensor. Chemistry 2010; 16:9257-63. [PMID: 20583044 DOI: 10.1002/chem.200902968] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An ultrafast intramolecular bond twisting process is known to be the responsible mechanism for the sensing activity of the extensively used amyloid fibril sensor thioflavin T (ThT). However, it is not yet known which one of the two possible single bonds in ThT is actually involved in the twisting process. To resolve this fundamental issue, two derivatives of ThT have been designed and synthesized and subsequently their photophysical properties have been studied in different solvents. It is understood from the present study that the rotation around the central C-C single bond, and not that around the C-N single bond, is primarily responsible for the sensor activity of ThT. Detailed viscosity-dependent fluorescence studies revealed that the ThT derivative with restricted C-N bond rotation acts as a better sensor than the derivative with free C-N bond rotation. The better sensory activity is directly correlated with a shorter excited-state lifetime. Results obtained from the photophysical studies of the ThT derivatives have also been supported by the results obtained from quantum chemical calculations.
Collapse
Affiliation(s)
- Anvita Srivastava
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | | | | | | | | | | | | |
Collapse
|
147
|
Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci U S A 2010; 107:16863-8. [PMID: 20826442 DOI: 10.1073/pnas.1002867107] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a β-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT with two alternative states of β-2 microglobulin (β2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between β-sheets orthogonal to the β-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric β2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the β-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.
Collapse
|
148
|
Pronchik J, He X, Giurleo JT, Talaga DS. In Vitro Formation of Amyloid from α-Synuclein Is Dominated by Reactions at Hydrophobic Interfaces. J Am Chem Soc 2010; 132:9797-803. [DOI: 10.1021/ja102896h] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy Pronchik
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Xianglan He
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Jason T. Giurleo
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - David S. Talaga
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|
149
|
Marek P, Mukherjee S, Zanni MT, Raleigh DP. Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypeptide. J Mol Biol 2010; 400:878-88. [PMID: 20630475 DOI: 10.1016/j.jmb.2010.05.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 01/09/2023]
Abstract
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (F(C[triple bond]N)) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by F(C[triple bond]N). The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. F(C[triple bond]N) fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and F(C[triple bond]N) fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until beta-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. F(C[triple bond]N) also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. F(C[triple bond]N) is readily accommodated into proteins; thus, the approach should be broadly applicable.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
150
|
Probing the internal environment of PVP networks generated by irradiation with different sources. Colloid Polym Sci 2010. [DOI: 10.1007/s00396-010-2217-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|