101
|
Batisse J, Batisse C, Budd A, Böttcher B, Hurt E. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 2009; 284:34911-7. [PMID: 19840948 DOI: 10.1074/jbc.m109.062034] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nascent mRNAs produced by transcription in the nucleus are subsequently processed and packaged into mRNA ribonucleoprotein particles (messenger ribonucleoproteins (mRNPs)) before export to the cytoplasm. Here, we have used the poly(A)-binding protein Nab2 to isolate mRNPs from yeast under conditions that preserve mRNA integrity. Upon Nab2-tandem affinity purification, several mRNA export factors were co-enriched (Yra1, Mex67, THO-TREX) that were present in mRNPs of different size and mRNA length. High-throughput sequencing of the co-precipitated RNAs indicated that Nab2 is associated with the bulk of yeast transcripts with no specificity for different mRNA classes. Electron microscopy revealed that many of the mRNPs have a characteristic elongated structure. Our data suggest that mRNPs, although associated with different mRNAs, have a unifying core structure.
Collapse
Affiliation(s)
- Julien Batisse
- Biochemie Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
102
|
Kemmler S, Occhipinti L, Veisu M, Panse VG. Yvh1 is required for a late maturation step in the 60S biogenesis pathway. ACTA ACUST UNITED AC 2009; 186:863-80. [PMID: 19797079 PMCID: PMC2753168 DOI: 10.1083/jcb.200904111] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The step by step assembly process from preribosome in the nucleus to translation-competent 60S ribosome subunit in the cytoplasm is revealed (also see Lo et al. in this issue). Before entering translation, preribosomal particles undergo sequential late maturation steps. In the case of pre-60S particles, these steps involve the release of shuttling maturation factors and transport receptors. In this study, we report a new maturation step in the 60S biogenesis pathway in budding yeast. We show that efficient release of the nucleolar/nuclear ribosomal-like protein Mrt4 (homologous to the acidic ribosomal P-protein Rpp0) from pre-60S particles requires the highly conserved protein Yvh1, which associates only with late pre-60S particles. Cell biological and biochemical analyses reveal that Mrt4 fails to dissociate from late pre-60S particles in yvh1Δ cells, inducing a delay in nuclear pre–ribosomal RNA processing and a pre-60S export defect in yvh1Δ cells. Moreover, we have isolated gain of function alleles of Mrt4 that specifically bypass the requirement for Yvh1 and rescue all yvh1Δ-associated phenotypes. Together, our data suggest that Yvh1-mediated release of Mrt4 precedes cytoplasmic loading of Rpp0 on pre-60S particles and is an obligatory late step toward construction of translation-competent 60S subunits.
Collapse
Affiliation(s)
- Stefan Kemmler
- Institute of Biochemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
103
|
Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol 2009; 7:e1000213. [PMID: 19806183 PMCID: PMC2749941 DOI: 10.1371/journal.pbio.1000213] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/24/2009] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics-an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies-to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes-most with human orthologs-to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.
Collapse
|
104
|
Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 2009; 138:911-22. [PMID: 19737519 DOI: 10.1016/j.cell.2009.06.045] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/11/2009] [Accepted: 06/17/2009] [Indexed: 11/20/2022]
Abstract
The dynein-related AAA ATPase Rea1 is a preribosomal factor that triggers an unknown maturation step in 60S subunit biogenesis. Using electron microscopy, we show that Rea1's motor domain is docked to the pre-60S particle and its tail-like structure, harboring a metal ion-dependent adhesion site (MIDAS), protrudes from the preribosome. Typically, integrins utilize a MIDAS to bind extracellular ligands, an interaction that is strengthened under applied tensile force. Likewise, the Rea1 MIDAS binds the preribosomal factor Rsa4, which is located on the pre-60S subunit at a site that is contacted by the flexible Rea1 tail. The MIDAS-Rsa4 interaction is essential for ATP-dependent dissociation of a group of non-ribosomal factors from the pre-60S particle. Thus, Rea1 aligns with its interacting partners on the preribosome to effect a necessary step on the path to the export-competent 60S subunit.
Collapse
|
105
|
Abstract
More than 170 assembly factors aid the construction and maturation of yeast ribosomes. After these factors' functions are completed, they must be released from preribosomes. In this issue, Ulbrich et al. (2009) describe a mechanochemical process through which the AAA ATPase Rea1 induces release of an assembly protein complex from preribosomes.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
106
|
Ty3 nuclear entry is initiated by viruslike particle docking on GLFG nucleoporins. J Virol 2009; 83:11914-25. [PMID: 19759143 DOI: 10.1128/jvi.01192-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast retrotransposons form intracellular particles within which replication occurs. Because fungal nuclear membranes do not break down during mitosis, similar to retroviruses infecting nondividing cells, the cDNA produced must be translocated through nuclear pore complexes. The Saccharomyces cerevisiae long terminal repeat retrotransposon Ty3 assembles its Gag3 and Gag3-Pol3 precursor polyproteins into viruslike particles in association with perinuclear P-body foci. These perinuclear clusters of Ty3 viruslike particles localized to sites of clustered nuclear pore complexes (NPCs) in a nup120Delta mutant, indicating that Ty3 particles and NPCs interact physically. The NPC channels are lined with nucleoporins (Nups) with extended FG (Phe-Gly) motif repeat domains, further classified as FG, FxFG, or GLFG repeat types. These domains mediate partitioning of proteins between the cytoplasm and the nucleus. Here we have systematically examined the requirements for FG repeat domains in Ty3 nuclear transport. The GLFG domains interacted in vitro with virus-like particle Gag3, and this interaction was disrupted by mutations in the amino-terminal domain of Gag3, which is predicted to lie on the external surface of the particles. Accordingly, Ty3 transposition was decreased in strains with the GLFG repeats deleted. The spacer-nucleocapsid domain of Gag3, which is predicted to be internal to the particle, interacted with GLFG repeats and nucleocapsid localized to the nucleus. We conclude that Ty3 particle docking on nuclear pores is facilitated by interactions between Gag3 and GLFG Nups and that nuclear entry of the preintegration complex is further promoted by nuclear localization signals within the nucleocapsid and integrase.
Collapse
|
107
|
Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 2009; 24:146-57. [PMID: 19729515 DOI: 10.1096/fj.09-135863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In rRNA biogenesis, nuclear myosin 1 (NM1) and actin synergize to activate rRNA gene transcription. Evidence that actin is in preribosomal subunits and NM1 may control rRNA biogenesis post-transcriptionally prompted us to investigate whether NM1 associates with and accompanies rRNA to nuclear pores (NPC). Ultracentrifugation on HeLa nucleolar extracts showed RNA-dependent NM1 coelution with preribosomal subunits. In RNA immunoprecipitations (RIPs), NM1 coprecipitated with pre-rRNAs and 18S, 5.8S, and 28S rRNAs, but failed to precipitate 5S rRNA and 7SL RNA. In isolated nuclei and living HeLa cells, NM1 or actin inhibition and selective alterations in actin polymerization impaired 36S pre-rRNA processing. Immunoelectron microscopy (IEM) on sections of manually isolated Xenopus oocyte nuclei showed NM1 localization at the NPC basket. Field emission scanning IEM on isolated nuclear envelopes and intranuclear content confirmed basket localization and showed that NM1 decorates actin-rich pore-linked filaments. Finally, RIP and successive RIPs (reRIPs) on cross-linked HeLa cells demonstrated that NM1, CRM1, and Nup153 precipitate same 18S and 28S rRNAs but not 5S rRNA. We conclude that NM1 facilitates maturation and accompanies export-competent preribosomal subunits to the NPC, thus modulating export.
Collapse
Affiliation(s)
- Ales Obrdlik
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
108
|
The shuttling protein Npl3 promotes translation termination accuracy in Saccharomyces cerevisiae. J Mol Biol 2009; 394:410-22. [PMID: 19733178 DOI: 10.1016/j.jmb.2009.08.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/24/2009] [Accepted: 08/29/2009] [Indexed: 01/20/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins are multifunctional proteins that bind to newly synthesized mRNAs in the nucleus and participate in many subsequent steps of gene expression. A well-studied Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein that has several nuclear functions is Npl3p. Here, we provide evidence that Npl3p also has a cytoplasmic role: it functions in translation termination fidelity. Yeast harboring the npl3-95 mutant allele have an impaired ability to translate lacZ, enhanced sensitivity to cycloheximide and paromomycin, and increased ability to read through translation termination codons. Most of these defects are enhanced in yeast that also lack Upf1p, an RNA surveillance factor crucial for translation termination. We show that the npl3-95 mutant allele encodes a form of Npl3p that is part of high molecular-weight complexes that cofractionate with the poly(A)-binding protein Pab1p. Together, these results lead us to propose a model in which Npl3p engenders translational fidelity by promoting the remodeling of mRNPs during translation termination.
Collapse
|
109
|
Kelly SM, Corbett AH. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 2009; 10:1199-208. [PMID: 19552647 DOI: 10.1111/j.1600-0854.2009.00944.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of the nucleus during the evolutionary development of the eukaryotic cell necessitated the development of a transport system to convey messenger RNA (mRNA) from the site of transcription in the nucleus to ribosomes in the cytoplasm. In this review, we highlight components of each step in mRNA biogenesis, from transcription to processing, that are coupled with mRNA export from the nucleus. We also review the mechanism by which proteins from one step in the mRNA assembly line are replaced by those required for the next. These 'molecular wardrobe changes' appear to be key steps in facilitating the rapid and efficient nuclear export of mRNA transcripts.
Collapse
Affiliation(s)
- Seth M Kelly
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
110
|
Faza MB, Kemmler S, Jimeno S, González-Aguilera C, Aguilera A, Hurt E, Panse VG. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. ACTA ACUST UNITED AC 2009; 184:833-46. [PMID: 19289793 PMCID: PMC2699155 DOI: 10.1083/jcb.200810059] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionarily conserved protein Sem1/Dss1 is a subunit of the regulatory particle (RP) of the proteasome, and, in mammalian cells, binds the tumor suppressor protein BRCA2. Here, we describe a new function for yeast Sem1. We show that sem1 mutants are impaired in messenger RNA (mRNA) export and transcription elongation, and induce strong transcription-associated hyper-recombination phenotypes. Importantly, Sem1, independent of the RP, is functionally linked to the mRNA export pathway. Biochemical analyses revealed that, in addition to the RP, Sem1 coenriches with components of two other multisubunit complexes: the nuclear pore complex (NPC)-associated TREX-2 complex that is required for transcription-coupled mRNA export, and the COP9 signalosome, which is involved in deneddylation. Notably, targeting of Thp1, a TREX-2 component, to the NPC is perturbed in a sem1 mutant. These findings reveal an unexpected nonproteasomal function of Sem1 in mRNA export and in prevention of transcription-associated genome instability. Thus, Sem1 is a versatile protein that might stabilize multiple protein complexes involved in diverse pathways.
Collapse
|
111
|
Lo KY, Johnson AW. Reengineering ribosome export. Mol Biol Cell 2009; 20:1545-54. [PMID: 19144820 PMCID: PMC2649259 DOI: 10.1091/mbc.e08-10-1000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/08/2008] [Accepted: 01/05/2009] [Indexed: 12/20/2022] Open
Abstract
Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages.
Collapse
MESH Headings
- Fatty Acids, Unsaturated/pharmacology
- GTP-Binding Proteins/physiology
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/physiology
- Models, Molecular
- Nuclear Export Signals
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- Nucleocytoplasmic Transport Proteins/physiology
- Protein Transport/genetics
- Protein Transport/physiology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/physiology
- Ribosomes/drug effects
- Ribosomes/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/physiology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Kai-Yin Lo
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX 78712
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
112
|
Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J 2009; 28:556-67. [PMID: 19165146 DOI: 10.1038/emboj.2009.5] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 01/05/2009] [Indexed: 11/08/2022] Open
Abstract
In metazoans, nuclear export of bulk mRNA is mediated by Tap-p15, a conserved heterodimeric export receptor that cooperates with adaptor RNA-binding proteins. In this article, we show that Thoc5, a subunit of the mammalian TREX complex, binds to a distinct surface on the middle (Ntf2-like) domain of Tap. Notably, adaptor protein Aly and Thoc5 can simultaneously bind to non-overlapping binding sites on Tap-p15. In vivo, Thoc5 was not required for bulk mRNA export. However, nuclear export of HSP70 mRNA depends on both Thoc5 and Aly. Consistent with a function as a specific export adaptor, Thoc5 exhibits in vitro RNA-binding activity and is associated with HSP70 mRNPs in vivo as a component of the stable THO complex. Thus, through the combinatorial use of an adaptor (e.g., Aly) and co-adapter (e.g., Thoc5), Tap-p15 could function as an export receptor for different classes of mRNAs.
Collapse
|
113
|
Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 2009; 21:109-18. [PMID: 19167202 DOI: 10.1016/j.ceb.2009.01.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 12/19/2022]
Abstract
Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA-dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of post-translational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates.
Collapse
|
114
|
Prohaska K, Williams N. Assembly of the Trypanosoma brucei 60S ribosomal subunit nuclear export complex requires trypanosome-specific proteins P34 and P37. EUKARYOTIC CELL 2009; 8:77-87. [PMID: 18723605 PMCID: PMC2620753 DOI: 10.1128/ec.00234-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/14/2008] [Indexed: 12/30/2022]
Abstract
We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.
Collapse
Affiliation(s)
- Kimberly Prohaska
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, New York 14214, USA
| | | |
Collapse
|
115
|
|
116
|
Vanrobays E, Leplus A, Osheim YN, Beyer AL, Wacheul L, Lafontaine DLJ. TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA (NEW YORK, N.Y.) 2008; 14:2061-73. [PMID: 18755838 PMCID: PMC2553727 DOI: 10.1261/rna.1176708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/30/2008] [Indexed: 05/20/2023]
Abstract
Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.
Collapse
Affiliation(s)
- Emmanuel Vanrobays
- Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041, Belgium
| | | | | | | | | | | |
Collapse
|
117
|
Lai MC, Lee YHW, Tarn WY. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell 2008; 19:3847-58. [PMID: 18596238 DOI: 10.1091/mbc.e07-12-1264] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear export of mRNA is tightly linked to transcription, nuclear mRNA processing, and subsequent maturation in the cytoplasm. Tip-associated protein (TAP) is the major nuclear mRNA export receptor, and it acts coordinately with various factors involved in mRNA expression. We screened for protein factors that associate with TAP and identified several candidates, including RNA helicase DDX3. We demonstrate that DDX3 directly interacts with TAP and that its association with TAP as well as mRNA ribonucleoprotein complexes may occur in the nucleus. Depletion of TAP resulted in nuclear accumulation of DDX3, suggesting that DDX3 is, at least in part, exported along with messenger ribonucleoproteins to the cytoplasm via the TAP-mediated pathway. Moreover, the observation that DDX3 localizes transiently in cytoplasmic stress granules under cell stress conditions suggests a role for DDX3 in translational control. Indeed, DDX3 associates with translation initiation complexes. However, DDX3 is probably not critical for general mRNA translation but may instead promote efficient translation of mRNAs containing a long or structured 5' untranslated region. Given that the DDX3 RNA helicase activity is essential for its involvement in translation, we suggest that DDX3 facilitates translation by resolving secondary structures of the 5'-untranslated region in mRNAs during ribosome scanning.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
118
|
Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10. [PMID: 18391941 DOI: 10.1038/ncb1723] [Citation(s) in RCA: 549] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/23/2008] [Indexed: 01/05/2023]
Abstract
Eukaryotic cells use autophagy and the ubiquitin-proteasome system (UPS) as their major protein degradation pathways. Whereas the UPS is required for the rapid degradation of proteins when fast adaptation is needed, autophagy pathways selectively remove protein aggregates and damaged or excess organelles. However, little is known about the targets and mechanisms that provide specificity to this process. Here we show that mature ribosomes are rapidly degraded by autophagy upon nutrient starvation in Saccharomyces cerevisiae. Surprisingly, this degradation not only occurs by a non-selective mechanism, but also involves a novel type of selective autophagy, which we term 'ribophagy'. A genetic screen revealed that selective degradation of ribosomes requires catalytic activity of the Ubp3p/Bre5p ubiquitin protease. Although ubp3Delta and bre5Delta cells strongly accumulate 60S ribosomal particles upon starvation, they are proficient in starvation sensing and in general trafficking and autophagy pathways. Moreover, ubiquitination of several ribosomal subunits and/or ribosome-associated proteins was specifically enriched in ubp3Delta cells, suggesting that the regulation of ribophagy by ubiquitination may be direct. Interestingly, ubp3Delta cells are sensitive to rapamycin and nutrient starvation, implying that selective degradation of ribosomes is functionally important in vivo. Taken together, our results suggest a link between ubiquitination and the regulated degradation of mature ribosomes by autophagy.
Collapse
Affiliation(s)
- Claudine Kraft
- Institute of Biochemistry, HPM, ETH Hönggerberg, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
119
|
Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. Mol Cell Biol 2008; 28:3151-61. [PMID: 18332120 DOI: 10.1128/mcb.01674-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BUD23 was identified from a bioinformatics analysis of Saccharomyces cerevisiae genes involved in ribosome biogenesis. Deletion of BUD23 leads to severely impaired growth, reduced levels of the small (40S) ribosomal subunit, and a block in processing 20S rRNA to 18S rRNA, a late step in 40S maturation. Bud23 belongs to the S-adenosylmethionine-dependent Rossmann-fold methyltransferase superfamily and is related to small-molecule methyltransferases. Nevertheless, we considered that Bud23 methylates rRNA. Methylation of G1575 is the only mapped modification for which the methylase has not been assigned. Here, we show that this modification is lost in bud23 mutants. The nuclear accumulation of the small-subunit reporters Rps2-green fluorescent protein (GFP) and Rps3-GFP, as well as the rRNA processing intermediate, the 5' internal transcribed spacer 1, indicate that bud23 mutants are defective for small-subunit export. Mutations in Bud23 that inactivated its methyltransferase activity complemented a bud23Delta mutant. In addition, mutant ribosomes in which G1575 was changed to adenosine supported growth comparable to that of cells with wild-type ribosomes. Thus, Bud23 protein, but not its methyltransferase activity, is important for biogenesis and export of the 40S subunit in yeast.
Collapse
|
120
|
|
121
|
Hung NJ, Lo KY, Patel SS, Helmke K, Johnson AW. Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell 2007; 19:735-44. [PMID: 18077551 DOI: 10.1091/mbc.e07-09-0968] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that nuclear export of the large (60S) ribosomal subunit relies on Nmd3 in a Crm1-dependent manner. Recently the general mRNA export factor, the Mtr2/Mex67 heterodimer, was shown to act as an export receptor in parallel with Crm1. These observations raise the possibility that nuclear export of the 60S subunit in Saccharomyces cerevisiae requires multiple export receptors. Here, we show that the previously characterized 60S subunit biogenesis factor, Arx1, also acts as an export receptor for the 60S subunit. We found that deletion of ARX1 was synthetic lethal with nmd3 and mtr2 mutants and was synthetic sick with several nucleoporin mutants. Deletion of ARX1 led to accumulation of pre-60S particles in the nucleus that were enriched for Nmd3, Crm1, Mex67, and Mtr2, suggesting that in the absence of Arx1, 60S export is impaired even though the subunit is loaded with export receptors. Finally, Arx1 interacted with several nucleoporins in yeast two-hybrid as well as in vitro assays. These results show that Arx1 can directly bridge the interaction between the pre-60S particle and the NPC and thus is a third export receptor for the 60S subunit in yeast.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
122
|
Yao W, Lutzmann M, Hurt E. A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J 2007; 27:6-16. [PMID: 18046452 DOI: 10.1038/sj.emboj.7601947] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/14/2007] [Indexed: 01/20/2023] Open
Abstract
The transport receptor Mex67-Mtr2 functions in mRNA export, and also by a loop-confined surface on the heterodimer binds to and exports pre-60S particles. We show that Mex67-Mtr2 through the same surface that recruits pre-60S particles interacts with the Nup84 complex, a structural module of the nuclear pore complex devoid of Phe-Gly domains. In vitro, pre-60S particles and the Nup84 complex compete for an overlapping binding site on the loop-extended Mex67-Mtr2 surface. Chemical crosslinking identified Nup85 as the subunit in the Nup84 complex that directly binds to the Mex67 loop. Genetic studies revealed that this interaction is crucial for mRNA export. Notably, pre-60S subunit export impaired by mutating Mtr2 or the 60S adaptor Nmd3 could be partially restored by second-site mutation in Nup85 that caused dissociation of Mex67-Mtr2 from the Nup84 complex. Thus, the Mex67-Mtr2 export receptor employs a versatile binding platform on its surface that could create a crosstalk between mRNA and ribosome export pathways.
Collapse
Affiliation(s)
- Wei Yao
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
123
|
Bradatsch B, Katahira J, Kowalinski E, Bange G, Yao W, Sekimoto T, Baumgärtel V, Boese G, Bassler J, Wild K, Peters R, Yoneda Y, Sinning I, Hurt E. Arx1 functions as an unorthodox nuclear export receptor for the 60S preribosomal subunit. Mol Cell 2007; 27:767-79. [PMID: 17803941 DOI: 10.1016/j.molcel.2007.06.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/30/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
Shuttling transport receptors carry cargo through nuclear pore complexes (NPCs) via transient interactions with Phe-Gly (FG)-rich nucleoporins. Here, we identify Arx1, a factor associated with a late 60S preribosomal particle in the nucleus, as an unconventional export receptor. Arx1 binds directly to FG nucleoporins and exhibits facilitated translocation through NPCs. Moreover, Arx1 functionally overlaps with the other 60S export receptors, Xpo1 and Mex67-Mtr2, and is genetically linked to nucleoporins. Unexpectedly, Arx1 is structurally unrelated to known shuttling transport receptors but homologous to methionine aminopeptidases (MetAPs), however, without enzymatic activity. Typically, the MetAP fold creates a central cavity that binds the methionine. In contrast, the predicted central cavity of Arx1 is involved in the interaction with FG repeat nucleoporins and 60S subunit export. Thus, an ancient enzyme fold has been adopted by Arx1 to function as a nuclear export receptor.
Collapse
Affiliation(s)
- Bettina Bradatsch
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
125
|
Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y, Oeffinger M, Rout MP, Hiley SL, Hughes T, Woolford JL. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007; 21:2580-92. [PMID: 17938242 PMCID: PMC2000323 DOI: 10.1101/gad.1569307] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/21/2007] [Indexed: 12/31/2022]
Abstract
More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- GTP Phosphohydrolases
- Genes, Fungal
- Macromolecular Substances
- Models, Biological
- Models, Molecular
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Protein L10
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Piyanun Harnpicharnchai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yurong Guo
- Division of Pulmonary and Critical Care Medicine, School of Medicine, John Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | - Shawna L. Hiley
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Timothy Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
126
|
Zemp I, Kutay U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 2007; 581:2783-93. [PMID: 17509569 DOI: 10.1016/j.febslet.2007.05.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/06/2007] [Indexed: 01/20/2023]
Abstract
Based on the characterization of ribosome precursor particles and associated trans-acting factors, a biogenesis pathway for the 40S and 60S subunits has emerged. After nuclear synthesis and assembly steps, pre-ribosomal subunits are exported through the nuclear pore complex in a Crm1- and RanGTP-dependent manner. Subsequent cytoplasmic biogenesis steps of pre-60S particles include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S subunits. Cytoplasmic maturation of 40S subunit precursors includes rRNA dimethylation and pre-rRNA cleavage, allowing 40S subunits to achieve translation competence. We review current knowledge of nuclear export and cytoplasmic maturation of ribosomal subunits.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, HPM F11.1, Schafmattstr. 18, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|