101
|
YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol 2016; 29:26-33. [PMID: 27262779 DOI: 10.1016/j.coph.2016.05.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
Abstract
The biology and regulation of YAP and TAZ, two closely related transcriptional regulators, are receiving increasing attention owing to their fundamental roles in organ growth, tissue repair and cancer. In particular, the widespread activation of YAP/TAZ in carcinomas, and the crucial role of YAP/TAZ activation for many 'hallmarks' of cancer are indicating YAP/TAZ as prime targets for designing anti-cancer drugs. Here, we start from the known modalities to regulate YAP/TAZ to highlight possible routes of therapeutic intervention.
Collapse
|
102
|
YIN JUN, DONG QIRONG, ZHENG MINQIAN, XU XIAOZU, ZOU GUOYOU, MA GUOLIN, LI KEFENG. Antitumor activity of dobutamine on human osteosarcoma cells. Oncol Lett 2016; 11:3676-3680. [PMID: 27284371 PMCID: PMC4887865 DOI: 10.3892/ol.2016.4479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- JUN YIN
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu 224006, P.R. China
| | - QIRONG DONG
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - MINQIAN ZHENG
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu 224006, P.R. China
| | - XIAOZU XU
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu 224006, P.R. China
| | - GUOYOU ZOU
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu 224006, P.R. China
| | - GUOLIN MA
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - KEFENG LI
- School of Medicine, University of California, San Diego, CA 92103, USA
- Tianjin Sunnypeak Biotech Co., Ltd., Tianjin 300457, P.R. China
| |
Collapse
|
103
|
Introducing STRaNDs: shuttling transcriptional regulators that are non-DNA binding. Nat Rev Mol Cell Biol 2016; 17:523-32. [PMID: 27220640 DOI: 10.1038/nrm.2016.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many proteins originally identified as cytoplasmic - including many associated with the cytoskeleton or cell junctions - are increasingly being found in the nucleus, where they have specific functions. Here, we focus on proteins that translocate from the cytoplasm to the nucleus in response to external signals and regulate transcription without binding to DNA directly (for example, through interaction with transcription factors). We propose that proteins with such characteristics are classified as a distinct group of extracellular signalling effectors, and we suggest the term STRaND (shuttling transcriptional regulators and non-DNA binding) to refer to this group. Crucial roles of STRaNDs include linking cell morphology and adhesion with changes in transcriptional programmes in response to signals such as mechanical stresses.
Collapse
|
104
|
Pei T, Li Y, Wang J, Wang H, Liang Y, Shi H, Sun B, Yin D, Sun J, Song R, Pan S, Sun Y, Jiang H, Zheng T, Liu L. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 2016; 6:17206-20. [PMID: 26015398 PMCID: PMC4627302 DOI: 10.18632/oncotarget.4043] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Yes-associated protein (YAP), a transcriptional co-activator, has important regulatory roles in cell signaling and is dysregulated in a number of cancers. However, the role of YAP in cholangiocarcinoma (CCA) progression remains unclear. Here, we demonstrated that YAP was overexpressed in CCA cells and human specimens. High levels of nuclear YAP (nYAP) correlated with histological differentiation, TNM stage, metastasis and poor prognosis in CCA. Silencing YAP increased tumor sensitivity to chemotherapy and inhibited CCA tumorigenesis and metastasis both in vivo and in vitro. YAP overexpression in vivo and in vitro promoted CCA tumorigenesis and metastasis. Additionally, we found that YAP induced epithelial-mesenchymal transition (EMT) and formed a regulatory circuit with miR-29c, IGF1, AKT and gankyrin to promote the progression of CCA. Results of CCA tissue microarray showed positive correlations between nYAP and gankyrin or p-AKT expression. Combination of nYAP and gankyrin or p-AKT exhibited improved prognostic accuracy for CCA patients. In conclusion, YAP promotes carcinogenesis and metastasis by up-regulating gankyrin through activation of the AKT pathway.
Collapse
Affiliation(s)
- Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuejin Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanlai Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of General Surgery, Qiqihaer City Hospital of Traditional Chinese Medicine, Qiqihaer, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huawen Shi
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshi Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dalong Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
105
|
Lee H, Hwang SJ, Kim HR, Shin CH, Choi KH, Joung JG, Kim HH. Neurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3p. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:599-611. [DOI: 10.1016/j.bbagrm.2016.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023]
|
106
|
He M, Zhou Z, Shah AA, Hong Y, Chen Q, Wan Y. New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div 2016; 11:4. [PMID: 27042197 PMCID: PMC4818516 DOI: 10.1186/s13008-016-0013-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 02/05/2023] Open
Abstract
PTMs (posttranslational modifications) such as ubiquitylation, sumoylation, acetylation and protein methylation are pivotal modifiers that determine the activation, deactivation or subcellular localization of signaling proteins, facilitating the initiation, amplification and transduction of signaling. Accumulating evidence suggest that several key signaling molecules in Hippo signaling pathway are tightly regulated by various types of PTMs. Malfunction of these critical signaling modules such as YAP/TAZ, MAT1/2 and LATS1/2 due to deregulated PTMs has been linked to a variety of human diseases such as cancer. In this review article, we summarized the current understanding of the impact of PTMs in regulating Hippo signaling pathway and further discussed the potential therapeutic intervention from the view of PTMs and Hippo pathway.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Peoples' Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Peoples' Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
107
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
108
|
Deng Y, Matsui Y, Pan W, Li Q, Lai ZC. Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival. Protein Cell 2016; 7:362-72. [PMID: 27000077 PMCID: PMC4853318 DOI: 10.1007/s13238-016-0258-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Collapse
Affiliation(s)
- Yaoting Deng
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yurika Matsui
- Intercollege Graduate Degree Program in Molecular, Cellular and Integrative Biosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenfei Pan
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Qiu Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Intercollege Graduate Degree Program in Molecular, Cellular and Integrative Biosciences, Pennsylvania State University, University Park, PA, 16802, USA. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
109
|
Kang W, Cheng ASL, Yu J, To KF. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol 2016; 22:1279-1288. [PMID: 26811664 PMCID: PMC4716037 DOI: 10.3748/wjg.v22.i3.1279] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
More evidence has underscored the importance of Hippo signaling pathway in gastrointestinal tissue homeostasis, whereas its deregulation induces tumorigenesis. Yes-associated protein 1 (YAP1) and its close paralog TAZ, transcriptional co-activator with a PDZ-binding motif, function as key effectors negatively controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In various cancers, Hippo pathway cross-talks with pro- or anti-tumorigenic pathways such as GPCR, Wnt/β-catenin, Notch and TGF-β signaling and is deregulated by multiple factors including cell density/junction and microRNAs. As YAP1 expression is significantly associated with poor prognosis of gastric and other gastrointestinal cancers, detailed delineation of Hippo regulation in tumorigenesis provides novel insight for therapeutic intervention. In current review, we summarized the recent research progresses on the deregulation of Hippo pathway in the gastrointestinal tract including stomach and discuss the molecular consequences leading to tumorigenesis.
Collapse
|
110
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
111
|
Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci 2015; 72:4593-612. [PMID: 26346492 PMCID: PMC11113907 DOI: 10.1007/s00018-015-2031-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.
Collapse
Affiliation(s)
- Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
112
|
Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci 2015; 5:60. [PMID: 26539288 PMCID: PMC4632682 DOI: 10.1186/s13578-015-0051-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
113
|
Ehmer U, Sage J. Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Mol Cancer Res 2015; 14:127-40. [PMID: 26432795 DOI: 10.1158/1541-7786.mcr-15-0305] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. Although the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here, recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell-cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor-suppressive attributes of YAP/TAZ are reviewed, which emphasizes the relevance of the Hippo pathway in cancer.
Collapse
Affiliation(s)
- Ursula Ehmer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California. Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
114
|
Long JS, Schoonen PM, Graczyk D, O'Prey J, Ryan KM. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene 2015; 34:5152-62. [PMID: 25659586 PMCID: PMC4761646 DOI: 10.1038/onc.2014.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Tumour cells often acquire the ability to escape cell death, a key event leading to the development of cancer. In almost half of all human cancers, the capability to induce cell death is reduced by the mutation and inactivation of p53, a tumour suppressor protein that is a central regulator of apoptosis. As a result, there is a crucial need to identify different cell death pathways that could be targeted in malignancies lacking p53. p73, the closely related p53 family member, can regulate many p53 target genes and therefore some of the same cellular responses as p53. Unlike p53, however, p73 is seldom mutated in cancer, making it an attractive, alternative death effector to target. We report here the ability of p73 to upregulate the expression of the A2B receptor, a recently characterized p53 target that effectively promotes cell death in response to extracellular adenosine--a metabolite that accumulates during various forms of cellular stress. Importantly, we show that p73-dependent stimulation of A2B signalling markedly enhances apoptosis in cancer cells that are devoid of p53. This mode of death is caspase- and puma-dependent, and can be prevented by the overexpression of anti-apoptotic Bcl-X(L). Moreover, treatment of p53-null cancer cells with the chemotherapeutic drug adriamycin (doxorubicin) induces A2B in a p73-dependent manner and, in combination with an A2B agonist, substantially enhances apoptotic death. We therefore propose an alternate and distinct p53-independent pathway to stimulate programmed cell death involving p73-mediated engagement of adenosine signalling.
Collapse
Affiliation(s)
- J S Long
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - P M Schoonen
- Cancer Research UK Beatson Institute, Glasgow, UK
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - D Graczyk
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - J O'Prey
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - K M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
115
|
Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 2015; 23:469-83. [PMID: 26383972 PMCID: PMC5072441 DOI: 10.1038/cdd.2015.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/06/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
The tumor suppressor protein promyelocytic leukemia (PML) is a key regulator of inflammatory responses and tumorigenesis and functions through the assembly of subnuclear structures known as PML nuclear bodies (NBs). The inflammation-related cytokine tumor necrosis factor-α (TNFα) is known to induce PML protein accumulation and PML NB formation that mediate TNFα-induced cell death in cancer cells and inhibition of migration and capillary tube formation in endothelial cells (ECs). In this study, we uncover a novel mechanism of PML gene regulation in which the p38 MAPK and its downstream kinase MAP kinase-activated protein kinase 1 (MNK1) mediate TNFα-induced PML protein accumulation and PML NB formation. The mechanism includes the presence of an internal ribosome entry site (IRES) found within the well-conserved 100 nucleotides upstream of the PML initiation codon. The activity of the PML IRES is induced by TNFα in a manner that involves MNK1 activation. It is proposed that the p38–MNK1–PML network regulates TNFα-induced apoptosis in breast cancer cells and TNFα-mediated inhibition of migration and capillary tube formation in ECs.
Collapse
|
116
|
Di Cara F, Maile TM, Parsons BD, Magico A, Basu S, Tapon N, King-Jones K. The Hippo pathway promotes cell survival in response to chemical stress. Cell Death Differ 2015; 22:1526-39. [PMID: 26021298 PMCID: PMC4532776 DOI: 10.1038/cdd.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress.
Collapse
Affiliation(s)
- F Di Cara
- Department of Cell Biology, Medical Sciences Building, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - T M Maile
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - B D Parsons
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton AB T6G 2E1, Alberta, Canada
| | - A Magico
- Department of Pediatrics, Faculty of Medicine & Dentistry, Katz Group Centre, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - S Basu
- Centre for Molecular Oncology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - N Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - K King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton T6G 2E9, Alberta, Canada
| |
Collapse
|
117
|
YAP1 and AR interactions contribute to the switch from androgen-dependent to castration-resistant growth in prostate cancer. Nat Commun 2015; 6:8126. [PMID: 28230103 DOI: 10.1038/ncomms9126] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/21/2015] [Indexed: 12/25/2022] Open
Abstract
The transcriptional co-activator Yes-associated protein 1 (YAP1), a key nuclear effector of the Hippo pathway, is a potent oncogene, and yet, the interaction between YAP1 and androgen receptor (AR) remains unexplored. Here we identify YAP1 as a physiological binding partner and positive regulator of AR in prostate cancer. YAP1 and AR co-localize and interact with each other predominantly within cell nuclei by an androgen-dependent mechanism in a hormone naive and an androgen-independent mechanism in castration-resistant prostate cancer cells. The growth suppressor MST1 kinase modulates androgen-dependent and -independent nuclear YAP1-AR interactions through directly regulating YAP1 nuclear accumulation. Disruption of YAP1 signalling by genetic (RNAi) and pharmacological (Verteporfin) approaches suppresses AR-dependent gene expression and prostate cancer cell growth. These findings indicate that the YAP1-AR axis may have a critical role in prostate cancer progression and serves as a viable drug target.
Collapse
|
118
|
Sun Z, Xu R, Li X, Ren W, Ou C, Wang Q, Zhang H, Zhang X, Ma J, Wang H, Li G. Prognostic Value of Yes-Associated Protein 1 (YAP1) in Various Cancers: A Meta-Analysis. PLoS One 2015; 10:e0135119. [PMID: 26263504 PMCID: PMC4532485 DOI: 10.1371/journal.pone.0135119] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/19/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Yes-associated protein 1 (YAP1) is an effector of Hippo pathway, which is critical for regulating organ size, cell proliferation and tumor growth in mammals. Many previous studies have explored the relationship between YAP1 and various types of cancer. However, these studies were limited by the small samples size and the findings were inconsistent among them. Therefore, a meta-analysis was conducted to assess the association between YAP1 and malignancies. METHODS A systematic literature search was conducted for eligible studies in the PubMed, Corchane Library, Web of Knowledge, EMBASE and CBM disc databases from inception to August 1st 2014. After heterogeneity analysis, pooled harzad ratio (HR) with 95% confidence interval (95%CI) using both fixed and random effect models were estimated in STATA 10.0. Meta regression analysis, subgroup analysis and sensitivity analysis were performed to explore the potential sources of heterogeneity and to evaluate the robustness of the result. Publication bias was assessed by Egger's test and funnel plot. RESULTS A total of 21 unique articles from 2009 to 2014, comprising 2983 patients, were analyzed in the meta-analysis. The association of YAP1 expression and overall survival time (OS) was evaluated in 20 studies including 2067 patients. Positive YAP1 showed poorer OS (HR = 1.826; 95% CI = 1.465-2.275; p <0.002). For evaluating disease-free survival time (DFS), 10 studies with 1139 patients were analyzed. Positive YAP1 indicated worse DFS (HR = 2.114; 95%CI = 1.406-3.179; p <0.001). Subgroup analysis showed that both positive nuclear YAP1 (HR = 1.390, 95% CI: 0.810-2.400, p = 0.729) and up-regulation overall YAP1 (HR = 2.237, 95% CI: 1.548-3.232, p <0.001) had poorer OS for patients with malignancies. Similarly, both positive nuclear YAP1 (HR = 3.733, 95% CI: 1.469-9.483, p = 0.001) and up-regulation overall YAP1 (HR = 1.481, 95% CI: 1.163-1.886, p = 0.554) showed worse DFS. The patients with urogenital system cancer had the poorest OS (HR = 2.133, 95% CI: 1.549-2.937, p = 0.020). The patients with alimentary system cancer had the most significant impact on DFS (HR = 1.879, 95% CI: 1.537-2.297, p <0.001). CONCLUSION Both overall and nuclear YAP1 overexpression are intimately associated with adverse OS and DFS in numerous cancers, suggesting that YAP1 may act as a potential therapeutic targets of these malignancies in the future.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ruiwei Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, China
- Department of Infection Control, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiayu Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiguo Ren
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunlin Ou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qisan Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Han Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xuemei Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
119
|
Abstract
The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes because of injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein transcription coactivator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor signaling, and oxidative stress are known to play critical roles in cardiac physiology. In addition, Yes-associated protein has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings on the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.
Collapse
Affiliation(s)
- Qi Zhou
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Li Li
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Bin Zhao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| | - Kun-Liang Guan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| |
Collapse
|
120
|
Liu S, Pang Q, Zhang J, Liu C. YAP in tumorigenesis: Friend or foe? J Hepatol 2015; 62:1444. [PMID: 25687424 DOI: 10.1016/j.jhep.2015.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/14/2015] [Indexed: 12/04/2022]
Affiliation(s)
- Sushun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
121
|
Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein. Tumour Biol 2015; 36:8047-54. [PMID: 25971581 DOI: 10.1007/s13277-015-3539-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022] Open
Abstract
It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.
Collapse
|
122
|
Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17:500-10. [PMID: 25751140 PMCID: PMC4380774 DOI: 10.1038/ncb3111] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumor suppressor pathway and controls cell growth, tissue homeostasis, and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo-YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP S94, a residue essential for the interaction with TEAD, thus disrupting the YAP-TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Young Chul Kim
- Department of Cardiology, Veterans Medical Research Foundation, 3350 La Jolla Village Dr., San Diego, California 92161, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Carsten Gram Hansen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Soohyun Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
123
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
124
|
Wu H, Wei L, Fan F, Ji S, Zhang S, Geng J, Hong L, Fan X, Chen Q, Tian J, Jiang M, Sun X, Jin C, Yin ZY, Liu Q, Zhang J, Qin F, Lin KH, Yu JS, Deng X, Wang HR, Zhao B, Johnson RL, Chen L, Zhou D. Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun 2015; 6:6239. [PMID: 25695629 DOI: 10.1038/ncomms7239] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The role of the unfolded protein response (UPR) in tissue homeostasis remains largely unknown. Here we find that loss of Mst1/2, the mammalian Hippo orthologues, or their regulator WW45, leads to a remarkably enlarged endoplasmic reticulum (ER) size-associated UPR. Intriguingly, attenuation of the UPR by tauroursodeoxycholic acid (TUDCA) diminishes Mst1/2 mutant-driven liver overgrowth and tumorigenesis by promoting nuclear exit and degradation of Hippo downstream effector Yap. Yap is required for UPR activity and ER expansion to alleviate ER stress. During the adaptive stage of the UPR, PERK kinase-eIF2α axis activates Yap, while prolonged ER stress-induced Hippo signalling triggers assembly of the GADD34/PP1 complex in a negative feedback loop to inhibit Yap and promote apoptosis. Significantly, the deregulation of UPR signals associated with Yap activation is found in a substantial fraction of human hepatocellular carcinoma (HCC). Thus, we conclude Yap integrates Hippo and UPR signalling to control liver size and tumorigenesis.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Luyao Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Fuqin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Suyuan Ji
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Xin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jing Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Mingting Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Changnan Jin
- Department of Hepatology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361001, China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China
| | - Qingxu Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Funiu Qin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Kwang-Huei Lin
- College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yang 333, Taiwan
| | - Jau-Song Yu
- College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yang 333, Taiwan
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| |
Collapse
|
125
|
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues. Mol Cell Biol 2015; 35:1449-61. [PMID: 25691658 DOI: 10.1128/mcb.00765-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.
Collapse
|
126
|
Su T, Bondar T, Zhou X, Zhang C, He H, Medzhitov R. Two-signal requirement for growth-promoting function of Yap in hepatocytes. eLife 2015; 4:e02948. [PMID: 25667983 PMCID: PMC4363878 DOI: 10.7554/elife.02948] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023] Open
Abstract
The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. In this study, we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation, and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tian Su
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Tanya Bondar
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Xu Zhou
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Cuiling Zhang
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Hang He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | - Ruslan Medzhitov
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
127
|
Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, Wang H, Li P, Zhang L, Lowery FJ, Kuo WL, Xiao Y, Ensor J, Sahin AA, Zhang XHF, Hung MC, Zhang JD, Yu D. 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 2015; 27:177-92. [PMID: 25670079 PMCID: PMC4325275 DOI: 10.1016/j.ccell.2014.11.025] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/10/2014] [Accepted: 11/24/2014] [Indexed: 12/01/2022]
Abstract
Transforming growth factor β (TGF-β) functions as a tumor suppressor in premalignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effector Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in premalignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β's tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression.
Collapse
Affiliation(s)
- Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ozgur Sahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wen-Ling Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe Ensor
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Jitao David Zhang
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche, Ltd., 4070 Basel, Switzerland
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
128
|
Mao B, Gao Y, Bai Y, Yuan Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai) 2015; 47:2-9. [PMID: 25476206 DOI: 10.1093/abbs/gmu109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregulation of the key components in the pathway will result in degenerative disorder, developmental defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and discuss how Hippo pathway responds to cellular stress and regulates early development events, tissue homeostasis as well as tumorigenesis.
Collapse
Affiliation(s)
- Beibei Mao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhao Gao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujie Bai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengqiang Yuan
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
129
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
130
|
Zhu C, Li L, Zhao B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai) 2015; 47:16-28. [PMID: 25487920 DOI: 10.1093/abbs/gmu110] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hippo pathway was initially identified in Drosophila by genetic mosaic screens for tumor suppressor genes. Researches indicated that the Hippo pathway is a key regulator of organ size and is conserved during evolution. Furthermore, studies of mouse models and clinical samples demonstrated the importance of Hippo pathway dysregulation in human cancer development. In addition, the Hippo pathway contributes to progenitor cell and stem cell self-renewal and is thus involved in tissue regeneration. In the Hippo pathway, MST1/2 kinases together with the adaptor protein SAV phosphorylate LATS1/2 kinases. Interaction with an adaptor protein MOB is also important for LATS1/2 activation. Activated LATS1/2 in turn phosphorylate and inhibit Yes-associated protein (YAP). YAP is a key downstream effector of the Hippo pathway, and is a transcriptional co-activator that mainly interacts with TEAD family transcription factors to promote gene expression. Alteration of gene expression by YAP leads to cell proliferation, apoptosis evasion, and also stem cell amplification. In this review, we mainly focus on YAP, discussing its regulation and mechanisms of action in the context of organ size control, tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Chu Zhu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
131
|
Zheng HX, Wu LN, Xiao H, Du Q, Liang JF. Inhibitory effects of dobutamine on human gastric adenocarcinoma. World J Gastroenterol 2014; 20:17092-17099. [PMID: 25493021 PMCID: PMC4258577 DOI: 10.3748/wjg.v20.i45.17092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/29/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the inhibitory effects of dobutamine on gastric adenocarcinoma cells.
METHODS: Dobutamine was used to treat gastric adenocarcinoma cells (SGC-7901) and cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of dobutamine combined with cisplatin on cell viability were also analyzed. Cell migration was studied using the wound healing assay, and cell proliferation was analyzed using the colony formation assay. A cell invasion assay was carried out using Transwell cell culture chambers. The cell cycle and cell apoptosis were analyzed by flow cytometry. Western blot and immunocytochemistry were performed to determine the expression of Yes-associated protein (YAP) in treated cells.
RESULTS: Dobutamine significantly inhibited cell growth, migration, cell colony formation, and cell invasion into Matrigel. Dobutamine also arrested the cell cycle at G1/S phase, and increased the rate of apoptosis of gastric adenocarcinoma cells. The expression of YAP was detected mainly in the nucleus in the absence of dobutamine. However, reduced expression of phosphorylated YAP was mainly found in the cytosol following treatment with dobutamine.
CONCLUSION: Dobutamine has significant inhibitory effects on gastric adenocarcinoma cells and may be used in neoadjuvant therapy not only for gastric cancer, but also for other tumors.
Collapse
|
132
|
Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 2014; 32:511-34. [PMID: 23592418 DOI: 10.1007/s10555-013-9424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p73 gene encodes the tumour suppressive full-length TAp73 and N-terminal-truncated DNp73 isoforms that act as dominant negative inhibitors of TAp73. The overall effect of p73 in oncogenesis is thought to depend on the TAp73 to DNp73 isoforms' ratio. TAp73 isoforms include a number of C-terminal variants as a result of alternative splicing in 3'-end. TAp73 isoforms protect cells from oncogenic alterations in a multifaceted way since they are implicated in the suppression of all demonstrated hallmarks and enabling characteristics of cancer. Their best established role is in apoptosis, a process which seems to be differently affected by each TAp73 C-terminal variant. Based on previous findings and our thorough bioinformatics analysis, we highlight that TAp73 variants are functionally non-equivalent, since they present major differences in their transactivation efficiencies, protein interactions, response to DNA damage and apoptotic effects that are attributable to the primary structure of their C terminus. In this review, we summarise these differences and we unveil the link between crucial C-terminal motifs/residues and the oncosuppressive potential of TAp73 isoforms, emphasising on the importance of considering C terminus during the development of p73-based anticancer biologics.
Collapse
Affiliation(s)
- Stella Logotheti
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, 11635, Athens, Greece
| | | | | | | | | |
Collapse
|
133
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
134
|
AMPK couples p73 with p53 in cell fate decision. Cell Death Differ 2014; 21:1451-9. [PMID: 24874608 DOI: 10.1038/cdd.2014.60] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/16/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
The p53 family of proteins has an important role in determining cell fate in response to different types of stress, such as DNA damage, hypoxia, or oncogenic stress. In recent years, p53 has also been shown to respond to metabolic stress, and to be induced by the AMP-activated protein kinase (AMPK), a central cellular energy sensor. A bioinformatic analysis revealed three putative AMPK phopshorylation sites in p73, a p53 tumor suppressor paralog. In vitro and in vivo assays confirmed that AMPK phosphorylates p73 on a novel residue, S426. Following specific pharmacologic stimulation of AMPK in cells, p73 protein half-life was prolonged leading to p73 accumulation in the nucleus. We show that p73 escaped the E3 ligase Itch resulting in reduced p73 ubiquitination and proteasomal degradation. Furthermore, chronic activation of AMPK led to apoptosis that was p73 dependent, but only in p53-expressing cells. Surprisingly, we found that p73 was required for p53 stabilization and accumulation under AMPK activation, but was dispensable under DNA damage. Our findings couple p73 with p53 in determining cell fate under AMPK-induced metabolic stress.
Collapse
|
135
|
Matsumoto H, Murakami Y, Kataoka K, Lin H, Connor KM, Miller JW, Zhou D, Avruch J, Vavvas DG. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death Dis 2014; 5:e1269. [PMID: 24874741 PMCID: PMC4047884 DOI: 10.1038/cddis.2014.218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/28/2022]
Abstract
Photoreceptor cell death is the definitive cause of vision loss in retinal detachment (RD). Mammalian STE20-like kinase (MST) is a master regulator of both cell death and proliferation and a critical factor in development and tumorigenesis. However, to date the role of MST in neurodegeneration has not been fully explored. Utilizing MST1−/− and MST2−/− mice we identified MST2, but not MST1, as a regulator of photoreceptor cell death in a mouse model of RD. MST2−/− mice demonstrated significantly decreased photoreceptor cell death and outer nuclear layer (ONL) thinning after RD. Additionally, caspase-3 activation was attenuated in MST2−/− mice compared to control mice after RD. The transcription of p53 upregulated modulator of apoptosis (PUMA) and Fas was also reduced in MST2−/− mice post-RD. Retinas of MST2−/− mice displayed suppressed nuclear relocalization of phosphorylated YAP after RD. Consistent with the reduction of photoreceptor cell death, MST2−/− mice showed decreased levels of proinflammatory cytokines such as monocyte chemoattractant protein 1 and interleukin 6 as well as attenuated inflammatory CD11b cell infiltration during the early phase of RD. These results identify MST2, not MST1, as a critical regulator of caspase-mediated photoreceptor cell death in the detached retina and indicate its potential as a future neuroprotection target.
Collapse
Affiliation(s)
- H Matsumoto
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Y Murakami
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - K Kataoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - H Lin
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - K M Connor
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - J W Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - D Zhou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - J Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - D G Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
136
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
137
|
Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 2014; 20:599-606. [PMID: 24813251 PMCID: PMC4057660 DOI: 10.1038/nm.3562] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022]
Abstract
Oncogene-induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and the mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies, including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53-independent, proapoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway coactivator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1-induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine-threonine kinase, STK4. Notably, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a new synthetic-lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels.
Collapse
|
138
|
Machado-Neto JA, Lazarini M, Favaro P, Franchi GC, Nowill AE, Saad STO, Traina F. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res 2014; 324:137-45. [PMID: 24726915 DOI: 10.1016/j.yexcr.2014.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Gilberto Carlos Franchi
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
139
|
Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35:702-14. [PMID: 24488880 DOI: 10.1002/humu.22523] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/12/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (ΔN isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ΔN proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | | | | |
Collapse
|
140
|
Marino A, Menghini R, Fabrizi M, Casagrande V, Mavilio M, Stoehr R, Candi E, Mauriello A, Moreno-Navarrete JM, Gómez-Serrano M, Peral B, Melino G, Lauro R, Fernandez Real JM, Federici M. ITCH deficiency protects from diet-induced obesity. Diabetes 2014; 63:550-61. [PMID: 24170694 DOI: 10.2337/db13-0802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Classically activated macrophages (M1) secrete proinflammatory cytokine and are predominant in obese adipose tissue. M2 macrophages, prevalent in lean adipose tissue, are induced by IL-13 and IL-4, mainly secreted by Th2 lymphocytes, and produce the anti-inflammatory cytokine IL-10. ITCH is a ubiquitously expressed E3 ubiquitin ligase involved in T-cell differentiation and in a wide range of inflammatory pathways. ITCH downregulation in lymphocytes causes aberrant Th2 differentiation. To investigate the role of Th2/M2 polarization in obesity-related inflammation and insulin resistance, we compared wild-type and Itch(-/-) mice in a context of diet-induced obesity (high-fat diet [HFD]). When subjected to HFD, Itch(-/-) mice did not show an increase in body weight or insulin resistance; calorimetric analysis suggested an accelerated metabolism. The molecular analysis of metabolically active tissue revealed increased levels of M2 markers and genes involved in fatty acid oxidation. Histological examination of livers from Itch(-/-) mice suggested that ITCH deficiency protects mice from obesity-related nonalcoholic fatty liver disease. We also found a negative correlation between ITCH and M2 marker expression in human adipose tissues. Taken together, our data indicate that ITCH E3 ubiquitin ligase deficiency protects from the metabolic disorder caused by obesity.
Collapse
Affiliation(s)
- Arianna Marino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Chatterjee SJ, McCaffrey L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. BREAST CANCER-TARGETS AND THERAPY 2014; 6:15-27. [PMID: 24648766 PMCID: PMC3929326 DOI: 10.2147/bctt.s43764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous group of diseases that frequently exhibits loss of growth control, and disrupted tissue organization and differentiation. Several recent studies indicate that apical–basal polarity provides a tumor-suppressive function, and that disrupting polarity proteins affects many stages of breast cancer progression from initiation through metastasis. In this review we highlight some of the recent advances in our understanding of the molecular mechanisms by which loss of apical–basal polarity deregulates apoptosis, proliferation, and promotes invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Sudipa June Chatterjee
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
142
|
Shimomura T, Miyamura N, Hata S, Miura R, Hirayama J, Nishina H. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity. Biochem Biophys Res Commun 2013; 443:917-23. [PMID: 24380865 DOI: 10.1016/j.bbrc.2013.12.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/03/2023]
Abstract
YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.
Collapse
Affiliation(s)
- Tadanori Shimomura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryota Miura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Jun Hirayama
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
143
|
|
144
|
Chen W, Wang W, Zhu B, Guo H, Sun Y, Ming J, Shen N, Li Z, Wang Z, Liu L, Cai B, Duan J, Li J, Liu C, Zhong R, Hu W, Huang T, Miao X. A functional variant rs1820453 in YAP1 and breast cancer risk in Chinese population. PLoS One 2013; 8:e79056. [PMID: 24223879 PMCID: PMC3815349 DOI: 10.1371/journal.pone.0079056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Background To investigate the association between rs1820453 which located in the promoter region of yes-associated protein 1 (YAP1) gene and breast cancer (BC) risk. Method and Findings We conducted a hospital-based case-control study including a total of 480 BC cases and 545 cancer-free controls in Chinese population. Then the expression quantitative trait locus (e-QTL) analysis was performed to explore the possible function of rs1820453 to the YAP1 gene expression. The association between rs1820453 and BC risk was significantly identified with the odds ratio (OR) was 1.27 (95 % confidence interval (CI) =1.03-1.57) under allelic model when adjusted by age and menopausal status. In addition, the correlation analysis of rs1820453 and YAP1 expression level found that this variant was significantly associated with the gene expression in Chinese population. When compared with level of mRNA expression of the AA genotype (6.011±0.046), the mRNA expression level in CC genotype (5.903±0.026) was statistically lower (P=0.024). Conclusion The results from this study suggested that rs1820453 A>C change may affect the gene expression and contribute to the risk of developing BC in Chinese population though larger sample-size studies along with functional experiments were anticipated to warrant the results.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Beibei Zhu
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenling Wang
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifeng Liu
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxi Cai
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayu Duan
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XM); (TH)
| | - Xiaoping Miao
- State Key Laboratory of Environment Health ( Incubation), Ministry of Education Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XM); (TH)
| |
Collapse
|
145
|
A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol 2013; 9:696. [PMID: 24104479 PMCID: PMC3817404 DOI: 10.1038/msb.2013.54] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
This study defines a network of synthetic sick/lethal interactions with a set of query genes in a series of isogenic cancer cell lines. Analysis of differential essentiality reveals general properties in genetic interaction networks derived from studies on model organisms. ![]()
This study defined about 200 negative genetic interactions in the isogenic cancer cell line background. Mapping of negative genetic interactions in a systematic fashion in isogenic cancer cell lines has revealed novel functions for several uncharacterized genes. This study demonstrates that differential essentiality profiles derived from isogenic cancer cell lines can be used to classify genetic dependencies in non-isogenic cancer cell lines.
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.
Collapse
|
146
|
Tissue-specific differences in the regulation of KIBRA gene expression involve transcription factor TCF7L2 and a complex alternative promoter system. J Mol Med (Berl) 2013; 92:185-96. [DOI: 10.1007/s00109-013-1089-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
147
|
ATM kinase enables the functional axis of YAP, PML and p53 to ameliorate loss of Werner protein-mediated oncogenic senescence. Cell Death Differ 2013; 20:1498-509. [PMID: 23933816 DOI: 10.1038/cdd.2013.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Werner syndrome (WS) results from dysfunction of the WRN protein, and is associated with premature aging and early death. Here we report that loss of WRN function elicits accumulation of the Yes-associated protein (YAP protein), a major effector of the Hippo tumor suppressor pathway, both experimentally and in WS-derived fibroblasts. YAP upregulation correlates with slower cell proliferation and accelerated senescence, which are partially mediated by the formation of a complex between YAP and the PML protein, whose activity promotes p53 activation. The ATM kinase is necessary for YAP and PML accumulation in WRN-depleted cells. Notably, the depletion of either YAP or PML partially impairs the induction of senescence following WRN loss. Altogether, our findings reveal that loss of WRN activity triggers the activation of an ATM-YAP-PML-p53 axis, thereby accelerating cellular senescence. The latter has features of SASP (senescence-associated secretory phenotype), whose protumorigenic properties are potentiated by YAP, PML and p53 depletion.
Collapse
|
148
|
Novel combination of sorafenib and celecoxib provides synergistic anti-proliferative and pro-apoptotic effects in human liver cancer cells. PLoS One 2013; 8:e65569. [PMID: 23776502 PMCID: PMC3680460 DOI: 10.1371/journal.pone.0065569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023] Open
Abstract
Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies.
Collapse
|
149
|
Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 2013; 23:380-9. [PMID: 23607968 DOI: 10.1016/j.tcb.2013.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022]
Abstract
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.
Collapse
Affiliation(s)
- Ilenia Bernascone
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Madrid 28049, Spain
| | | |
Collapse
|
150
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|