101
|
Alexander S, Weigelin B, Winkler F, Friedl P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 2013; 25:659-71. [PMID: 23896198 DOI: 10.1016/j.ceb.2013.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Key steps of cancer progression and therapy response depend upon interactions between cancer cells with the reactive tumour microenvironment. Intravital microscopy enables multi-modal and multi-scale monitoring of cancer progression as a dynamic step-wise process within anatomic and functional niches provided by the microenvironment. These niches deliver cell-derived and matrix-derived signals that enable cell subsets or single cancer cells to survive, migrate, grow, undergo dormancy, and escape immune surveillance. Beyond basic research, intravital microscopy has reached preclinical application to identify mechanisms of tumour-stroma interactions and outcome. We here summarise how n-dimensional 'dynamic histopathology' of tumours by intravital microscopy shapes mechanistic insight into cell-cell and cell-tissue interactions that underlie single-cell and collective cancer invasion, metastatic seeding at distant sites, immune evasion, and therapy responses.
Collapse
Affiliation(s)
- Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
102
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
103
|
Grass GD, Tolliver LB, Bratoeva M, Toole BP. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem 2013; 288:26089-26104. [PMID: 23888049 DOI: 10.1074/jbc.m113.497685] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.
Collapse
Affiliation(s)
- G Daniel Grass
- From the Department of Regenerative Medicine and Cell Biology and
| | | | - Momka Bratoeva
- From the Department of Regenerative Medicine and Cell Biology and
| | - Bryan P Toole
- From the Department of Regenerative Medicine and Cell Biology and; the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
104
|
Castoldi R, Ecker V, Wiehle L, Majety M, Busl-Schuller R, Asmussen M, Nopora A, Jucknischke U, Osl F, Kobold S, Scheuer W, Venturi M, Klein C, Niederfellner G, Sustmann C. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32:5593-601. [PMID: 23812422 PMCID: PMC3898114 DOI: 10.1038/onc.2013.245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
Simultaneous targeting of epidermal growth factor receptor (EGFR) and Met in cancer therapy is under pre-clinical and clinical evaluation. Here, we report the finding that treatment with EGFR inhibitors of various tumor cells, when stimulated with hepatocyte growth factor (HGF) and EGF, results in transient upregulation of phosphorylated AKT. Furthermore, EGFR inhibition in this setting stimulates a pro-invasive phenotype as assessed in Matrigel-based assays. Simultaneous treatment with AKT and EGFR inhibitors abrogates this invasive growth, hence functionally linking signaling and phenotype. This observation implies that during treatment of tumors a balanced ratio of EGFR and Met inhibition is required. To address this, we designed a bispecific antibody targeting EGFR and Met, which has the advantage of a fixed 2:1 stoichiometry. This bispecific antibody inhibits proliferation in tumor cell cultures and co-cultures with fibroblasts in an additive manner compared with treatment with both single agents. In addition, cell migration assays reveal a higher potency of the bispecific antibody in comparison with the antibodies' combination at low doses. We demonstrate that the bispecific antibody inhibits invasive growth, which is specifically observed with cetuximab. Finally, the bispecific antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model bearing a strong autocrine HGF-loop. Together, our findings strongly support a combination treatment of EGFR and Met inhibitors and further evaluation of resistance mechanisms to EGFR inhibition in the context of active Met signaling.
Collapse
Affiliation(s)
- R Castoldi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - V Ecker
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - L Wiehle
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Majety
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - R Busl-Schuller
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Asmussen
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - A Nopora
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - U Jucknischke
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - F Osl
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - S Kobold
- Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - W Scheuer
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Venturi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Klein
- pRED, Roche Glycart AG, Schlieren, Switzerland
| | - G Niederfellner
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Sustmann
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
105
|
Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiäinen M, Gstaiger M, Lehti K. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. ACTA ACUST UNITED AC 2013; 201:467-84. [PMID: 23629968 PMCID: PMC3639392 DOI: 10.1083/jcb.201205176] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Metalloproteinase-mediated cleavage of EphA2 induces breast tumor cells to shift from collective invasion to single-cell invasion. Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion.
Collapse
Affiliation(s)
- Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Haartman Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
106
|
Endothelin-1 enriched tumor phenotype predicts breast cancer recurrence. ISRN ONCOLOGY 2013; 2013:385398. [PMID: 23844294 PMCID: PMC3694385 DOI: 10.1155/2013/385398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
Abstract
Introduction. Breast cancer recurrence can develop years after primary treatment. Crosstalk between breast cancer cells and their stromal microenvironment may influence tumor progression. Our primary study aim was to determine whether endothelin-1 (ET-1) expression in tumor and stroma predicts breast cancer relapse. The secondary aim was to determine ET-1/endothelin receptor A (ETAR) role on signaling pathways and apoptosis in breast cancer. Experimental Design. Patients with histologically documented stages I-III invasive breast cancer were included in the study. ET-1 expression by immunohistochemistry (IHC) in tumor cells and stroma was analyzed. Association between ET-1 expression and clinical outcome was assessed using multivariate Cox proportional hazard model. Kaplan-Meier curves were used to estimate disease-free survival (DFS). In addition, the effect of ET-1/ETAR on signaling pathways and apoptosis was evaluated in MCF-7 and MDA-MB-231 breast cancer cells. Results. With a median followup of 7 years, ET-1 non-enriched tumor phenotype had a significant association with favorable disease-free survival (HR = 0.16; 95% CI 0.03-0.77; P value <0.02). ER negativity, advanced stage of disease and ET-1-enriched tumor phenotype were all associated with a higher risk for recurrence. Experimental study demonstrated that ET-1 stimulation promoted Akt activation in MCF-7 and MDA-MB-231 cells. Furthermore, silencing of ETAR induced apoptosis in both hormone receptor negative and hormone receptor positive breast cancer cells. Conclusions. We found ET-1 expression in tumor and stroma to be an independent prognostic marker for breast cancer recurrence. Prospective studies are warranted to examine whether ET-1 expression in tumor/stroma could assist in stratifying patients with hormone receptor positive breast cancer for adjuvant therapy.
Collapse
|
107
|
Fang M, Peng CW, Pang DW, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 2013; 9:151-63. [PMID: 23691472 PMCID: PMC3643664 DOI: 10.7497/j.issn.2095-3941.2012.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/19/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is a major threat to public health in the 21st century because it is one of the leading causes of death worldwide. The mechanisms of carcinogenesis, cancer invasion, and metastasis remain unclear. Thus, the development of a novel approach for cancer detection is urgent, and real-time monitoring is crucial in revealing its underlying biological mechanisms. With the optical and chemical advantages of quantum dots (QDs), QD-based nanotechnology is helpful in constructing a biomedical imaging platform for cancer behavior study. This review mainly focuses on the application of QD-based nanotechnology in cancer cell imaging and tumor microenvironment studies both in vivo and in vitro, as well as the remaining issues and future perspectives.
Collapse
Affiliation(s)
- Min Fang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | | | | | | |
Collapse
|
108
|
Keating P, Cambrosio A, Nelson NC, Mogoutov A, Cointet JP. Therapy's Shadow: A Short History of the Study of Resistance to Cancer Chemotherapy. Front Pharmacol 2013; 4:58. [PMID: 23675349 PMCID: PMC3646244 DOI: 10.3389/fphar.2013.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
This article traces the history of research on resistance to drug therapy in oncology using scientometric techniques and qualitative analysis. Using co-citation analysis, we generate maps to visualize subdomains in resistance research in two time periods, 1975–1990 and 1995–2010. These maps reveal two historical trends in resistance research: first, a shift in focus from generic mechanisms of resistance to chemotherapy to a focus on resistance to targeted therapies and molecular mechanisms of oncogenesis; and second, a movement away from an almost exclusive reliance on animal and cell models and toward the generation of knowledge about resistance through clinical trial work. A close reading of highly cited articles within each subdomain cluster reveals specific points of transition from one regime to the other, in particular the failure of several promising theories of resistance to be translated into clinical insights and the emergence of interest in resistance to a new generation of targeted agents such as imatinib and trastuzumab. We argue that the study of resistance in the oncology field has thus become more integrated with research into cancer therapy – rather than constituting it as a separate domain of study, as it has done in the past, contemporary research treats resistance as the flip side to treatment, as therapy’s shadow.
Collapse
Affiliation(s)
- Peter Keating
- Department of History, Université du Québec à Montréal Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
109
|
Myosin-Va contributes to manifestation of malignant-related properties in melanoma cells. J Invest Dermatol 2013; 133:2809-2812. [PMID: 23652798 PMCID: PMC3806899 DOI: 10.1038/jid.2013.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
110
|
Parsons BL, Myers MB. KRAS mutant tumor subpopulations can subvert durable responses to personalized cancer treatments. Per Med 2013; 10:191-199. [PMID: 27867401 DOI: 10.2217/pme.13.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
KRAS mutations in colorectal and lung cancers predict failure to respond to therapies that target the EGFR. Significant percentages of patients with KRAS wild-type tumors also fail to respond to these therapies. Relapse occurs in patients with KRAS wild-type and mutant tumors, with moderately longer progression-free survival in patients with KRAS wild-type tumors. Colon and lung tumors frequently carry KRAS mutant tumor subpopulations not detected by DNA sequencing. This suggests detected and undetected KRAS mutant subpopulations in colon and lung tumors are undermining the efficacy of anti-EGFR therapies. Therefore, consideration should be given to combining therapies that target KRAS mutant cells with those that downregulate EGFR signaling. As tumors are frequently polyclonal in origin and comprised of distinct clonal populations carrying complementing genetic and/or epigenetic lesions, preclinical models that assess the efficacy of combination therapies in the context of heterogeneous tumor cell populations will be essential for progress in this area.
Collapse
Affiliation(s)
- Barbara L Parsons
- US FDA, National Center for Toxicological Research, Division of Genetic & Molecular Toxicology, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Meagan B Myers
- US FDA, National Center for Toxicological Research, Division of Genetic & Molecular Toxicology, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
111
|
Mandel K, Seidl D, Rades D, Lehnert H, Gieseler F, Hass R, Ungefroren H. Characterization of spontaneous and TGF-β-induced cell motility of primary human normal and neoplastic mammary cells in vitro using novel real-time technology. PLoS One 2013; 8:e56591. [PMID: 23457587 PMCID: PMC3572945 DOI: 10.1371/journal.pone.0056591] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/11/2013] [Indexed: 01/09/2023] Open
Abstract
The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor's metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in vitro motility of patient-derived primary human breast cancer epithelial cells (HBCEC). Initially, the RTCA assay was validated using established human breast cancer cell lines with either an invasive (MDA-MB-231, MDA-MB-435s) or a non-invasive phenotype (MCF-7, MDA-MB-468), and primary NSCLC cells (Tu459). Previous standard assays of cell migration/invasion revealed that only MDA-MB-231, −435s, and Tu459 cells exhibited spontaneous and TGF-β1-stimulated migration and invasion through a Matrigel barrier. In the present study, the TGF-β1-stimulated activities could be blocked by SB431542, a potent kinase inhibitor of the TGF-β type I receptor ALK5. Application of the RTCA assay to patient-derived tumor cells showed that 4/4 primary HBCEC and primary NSCLC cells, but not normal human mammary epithelial cells (HMEC), displayed high spontaneous migratory and invasive activity which correlated with higher MMP-2 expression and uPA protein levels in HBCEC compared to HMEC. Upon treatment with TGF-β1, HBCEC exhibited morphologic and gene regulatory alterations indicative of epithelial-to-mesenchymal transition. However, exclusively the invasive but not the migratory activity of HBCEC was further enhanced by TGF-β1. This indicates the requirement for molecular, e.g. integrin interactions with Matrigel components in HBCEC in order to become responsive to pro-invasive TGF-β effects. Together, these results show for the first time that tumorigenic HBCEC but not normal HMEC possess a strong basal migratory as well as a basal and TGF-β1-inducible invasive potential. These findings qualify the RTCA assay as an in vitro migration/invasion testing system for patient-specific primary breast cancer cells.
Collapse
Affiliation(s)
- Katharina Mandel
- Biochemistry and Tumor Biology Laboratory, Gynecology Research Unit, Department of Gynecology and Obstetrics, Medical University, Hannover, Germany
| | - Daniel Seidl
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
- Department of Radiation Oncology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Gynecology Research Unit, Department of Gynecology and Obstetrics, Medical University, Hannover, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
112
|
Pedersen SF, Stock C. Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res 2013; 73:1658-61. [PMID: 23302229 DOI: 10.1158/0008-5472.can-12-4188] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the last 15 years it has become increasingly clear that dysregulated expression, splicing, and/or function of ion channels and transporters (ICT) occur in all cancers. Being linked to the widely accepted hallmarks of cancer, ICTs represent novel therapeutic, diagnostic, and prognostic targets. To discuss the current status of the field, a colloquium on "Ion Transport and Cancer" was held, covering the roles of ICTs in cancer cell proliferation, apoptosis, motility, and invasion, and in both the generation of and the interaction of the cancer cells with the tumor environment. Additional sessions dealt with pancreatic ductal adenocarcinoma and transport protein-based therapeutic and diagnostic concepts. There was overall consensus that essential contributions of ICT dysregulation to the cancer process have been demonstrated. Future research should be directed toward further elucidating the mechanisms and developing therapeutic applications.
Collapse
|
113
|
A hybrid model of tumor-stromal interactions in breast cancer. Bull Math Biol 2013; 75:1304-50. [PMID: 23292359 DOI: 10.1007/s11538-012-9787-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022]
Abstract
Ductal carcinoma in situ (DCIS) is an early stage noninvasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix (ECM) surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. Here we develop a mathematical model that incorporates the cross-talk between stromal and tumor cells, which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-β signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation. We then study a hybrid model for the interaction of cells with the tumor microenvironment (TME), in which epithelial cells (ECs) are modeled individually while the ECM is treated as a continuum, and show how these interactions affect the early development of tumors. Finally, we incorporate breakdown of the epithelium into the model and predict the early stages of tumor invasion into the stroma. Our results shed light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggest how epigenetic changes in transformed cells affect tumor progression.
Collapse
|
114
|
|
115
|
Blockade of EGFR signaling promotes glioma stem-like cell invasiveness by abolishing ID3-mediated inhibition of p27KIP1 and MMP3 expression. Cancer Lett 2013; 328:235-42. [DOI: 10.1016/j.canlet.2012.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
|
116
|
Dovas A, Patsialou A, Harney AS, Condeelis J, Cox D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc 2012. [PMID: 23198984 DOI: 10.1111/j.1365-2818.2012.03667.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumour-associated macrophages participate in several protumour functions including tumour growth and angiogenesis, and facilitate almost every step of the metastatic cascade. Interfering with macrophage functions may therefore provide an important strategy in the clinical management of cancer and metastatic disease. Our understanding of macrophage functions has been greatly expanded by direct observations of macrophage-carcinoma cell interactions using light microscopy. Imaging approaches include intravital microscopy of tumours in mouse models of cancer and visualization of macrophage-carcinoma cell interactions in in vitro assays; whether atop 2D substrates, embedded in 3D matrices or in more complex assemblies of multiple cell types that mimic specific topologies of the tumour microenvironment. Such imaging and reconstitution approaches have provided us with a wealth of information on the motile behaviour and physical associations between macrophages and carcinoma cells and the role of the tumour microenvironment in influencing the movement of these cells. Finally, high-resolution imaging techniques have permitted researchers to correlate motility patterns with specific gene signatures and biochemical pathways in cells, pointing to potential targets for intervention. Here, we review experimental approaches employed in the study of macrophage interactions with carcinoma cells with an emphasis on imaging invasive and metastatic cell motility in breast carcinomas.
Collapse
Affiliation(s)
- A Dovas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
117
|
Abstract
Studies of cell migration in three-dimensional (3D) cell culture systems and in vivo have revealed several differences when compared with cell migration in two dimensions, including their morphology and mechanical and signalling control. Here, researchers assess the contribution of 3D models to our understanding of cell migration, both in terms of the mechanisms used to drive single cell and collective cell migration and how migrating cells respond to a changing environment in vivo.
Collapse
Affiliation(s)
- Peter Friedl
- Radboud University Nijmegen Medical Centre, 6500HC Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
118
|
Hass R, Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 2012; 10:26. [PMID: 22943670 PMCID: PMC3444900 DOI: 10.1186/1478-811x-10-26] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
119
|
Abstract
Most invasive solid tumours display predominantly collective invasion, in which groups of cells invade the peritumoral stroma while maintaining cell-cell contacts. As the concepts and experimental models for functional analysis of collective cancer cell invasion are rapidly developing, we propose a framework for addressing potential mechanisms, experimental strategies and technical challenges to study this process.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
120
|
Hua D, Qi S, Li H, Zhang Z, Fu L. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066002. [PMID: 22734758 DOI: 10.1117/1.jbo.17.6.066002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We performed large area nonlinear optical microscopy (NOM) for label-free monitoring of the process of pulmonary melanoma metastasis ex vivo with subcellular resolution in C57BL/6 mice. Multiphoton autofluorescence (MAF) and second harmonic generation (SHG) images of lung tissue are obtained in a volume of ≈ 2.2 mm × 2.2 mm × 30 μm. Qualitative differences in morphologic features and quantitative measurement of pathological lung tissues at different time points are characterized. We find that combined with morphological features, the quantitative parameters, such as the intensity ratio of MAF and SHG between pathological tissue and normal tissue and the MAF to SHG index versus depth clearly shows the tissue physiological changes during the process of pulmonary melanoma metastasis. Our results demonstrate that large area NOM succeeds in monitoring the process of pulmonary melanoma metastasis, which can provide a powerful tool for the research in tumor pathophysiology and therapy evaluation.
Collapse
Affiliation(s)
- Daozhu Hua
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
121
|
Friedl P, Alexander S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011; 147:992-1009. [DOI: 10.1016/j.cell.2011.11.016] [Citation(s) in RCA: 1419] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 02/07/2023]
|