101
|
Wen HK, Valle SJ, Morris DL. Bromelain and acetylcysteine (BromAc ®): a novel approach to the treatment of mucinous tumours. Am J Cancer Res 2023; 13:1522-1532. [PMID: 37168359 PMCID: PMC10164791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Mucins are a significant extracellular component of neoplastic entities such as pseudomyxoma peritonei and several gastrointestinal adenocarcinomas. Mucinous tumours present a challenge for systemic treatments due to poor drug penetrance and increased resistance. Therefore, the development of an effective mucolytic therapy has significant therapeutic implications for these tumour types. BromAc® is a novel mucolytic agent consisting of bromelain and acetylcysteine. It has demonstrated significant mucolysis and antitumour effects in vitro and in vivo for several mucinous tumours. It has also exhibited a synergistic potentiation of the effect of several cytotoxic agents on mucinous tumours in preclinical studies. Furthermore, it demonstrates locoregional safety and efficacy in animal and clinical studies. This literature review will summarise the history of BromAc® for mucinous tumours, including its conception, preclinical development in vitro and in vivo, and clinical evidence. The implications of current data and directions for future research are then discussed.
Collapse
Affiliation(s)
- Henry K Wen
- St George and Sutherland Clinical School, University of New South WalesKogarah, Sydney, NSW, Australia
| | - Sarah J Valle
- Mucpharm Pty Ltd, KogarahSydney, NSW, Australia
- Intensive Care Unit, St George HospitalKogarah, NSW, Australia
| | - David L Morris
- St George and Sutherland Clinical School, University of New South WalesKogarah, Sydney, NSW, Australia
- Mucpharm Pty Ltd, KogarahSydney, NSW, Australia
- Department of Surgery, St George HospitalKogarah, NSW, Australia
| |
Collapse
|
102
|
Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Expression and localisation of MUC1 modified with sialylated core-2 O-glycans in mucoepidermoid carcinoma. Sci Rep 2023; 13:5752. [PMID: 37031283 PMCID: PMC10082819 DOI: 10.1038/s41598-023-32597-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most frequent of the rare salivary gland malignancies. We previously reported high expression of Mucin 1 (MUC1) modified with sialylated core-2 O-glycans in MEC by using tissue homogenates. In this study, we characterised glycan structures of MEC and identified the localisation of cells expressing these distinctive glycans on MUC1. Mucins were extracted from the frozen tissues of three patients with MEC, and normal salivary glands (NSGs) extracted from seven patients, separated by supported molecular matrix electrophoresis (SMME) and the membranes stained with various lectins. In addition, formalin-fixed, paraffin-embedded sections from three patients with MEC were subjected to immunohistochemistry (IHC) with various monoclonal antibodies and analysed for C2GnT-1 expression by in situ hybridisation (ISH). Lectin blotting of the SMME membranes revealed that glycans on MUC1 from MEC samples contained α2,3-linked sialic acid. In IHC, MUC1 was diffusely detected at MEC-affected regions but was specifically detected at apical membranes in NSGs. ISH showed that C2GnT-1 was expressed at the MUC1-positive in MEC-affected regions but not in the NSG. MEC cells produced MUC1 modified with α2,3-linked sialic acid-containing core-2 O-glycans. MUC1 containing these glycans deserves further study as a new potential diagnostic marker of MEC.
Collapse
Affiliation(s)
- Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
103
|
Chen Y, Shao X, Yang H, Ren L, Cui Y, Zhang W, Macip S, Meng X. Interferon gamma regulates a complex pro-survival signal network in chronic lymphocytic leukemia. Eur J Haematol 2023; 110:435-443. [PMID: 36576398 DOI: 10.1111/ejh.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND It is known that the microenvironmental cytokine interferon gamma (IFN-γ) provides a survival advantage for chronic lymphocytic leukemia (CLL) cells. However, the mechanisms involved in this effect have not been properly investigated. METHODS Herein, we conducted a comprehensive screening of the effects of IFN-γ on signaling pathways and gene expression profiles in CLL cells by using western blotting, real-time quantitative reverse transcription (RT-qPCR) and high-throughput RNA sequencing (RNA-seq). RESULTS We found that IFN-γ not only activated the pro-survival signal transducer and activator of transcription 3 (STAT3), but also activated the protein kinase B and extracellular signal-regulated kinase signaling pathways. RNA-seq analysis showed that IFN-γ stimulation changed the expression profiles of more than 500 genes, with 391 being up-regulated and 123 down-regulated. These genes are involved in numerous biological processes, including anti-apoptosis, cell migration, and proliferation. IFN-γ significantly up-regulated the expression of CD38, BCL6, CXCL9, BCL2A1, SCOS3, IL-10, HGF, EGFR, THBS-1, FN1, and MUC1, which encode proteins potentially associated with disease progression, worse prognosis or poor response to treatment. Blocking janus kinases1/2 (JAK1/2) or STAT3 signal by specific inhibitors affected the expression of most genes, suggesting a pivotal role of the JAK1/2-STAT3 pathway in IFN-γ pro-survival effects in CLL. CONCLUSIONS Our data demonstrate that IFN-γ regulates a complex pro-survival signal network in CLL through JAK1/2-STAT3, which provides a rational explanation for IFN-γ promoting CLL cells survival and drug resistance.
Collapse
Affiliation(s)
- Yixiang Chen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Luoyang, China
| | - Xiaoya Shao
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Haiping Yang
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Leiying Ren
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Ying Cui
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Wenlu Zhang
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Xueqiong Meng
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
104
|
Li L, Cao J, Chen C, Qin Y, He L, Gu H, Wu G. Antitumor effect of a novel humanized MUC1 antibody-drug conjugate on triple-negative breast cancer. Heliyon 2023; 9:e15164. [PMID: 37089317 PMCID: PMC10113850 DOI: 10.1016/j.heliyon.2023.e15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer is the most common malignant cancer in women. Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes and is challenging to treat. MUC1 is a therapeutic target in breast and pancreatic cancer. We developed a novel humanized antibody that specifically binds MUC1 expressed in breast cancer cells and conjugated a humanized MUC1 (HzMUC1) antibody to monomethyl auristatin (MMAE). HzMUC1-MMAE showed an anti-proliferative effect on HER2 positive trastuzumab-resistant breast cancer. Immunoprecipitation indicated that HzMUC1 recognized native MUC1 in TNBC cells. Confocal microscopy showed that HzMUC1 bound MUC1 on the surface of TNBC cells, and the conjugates exhibited the same binding ability to HCC70 as unconjugated HzMUC1 by cell-based ELISA. Treatment of TNBC cells with HzMUC1-MMAE reduced growth of MUC1-positive cells and induced G2/M cell cycle arrest and apoptosis. In a mouse model of breast cancer, HzMUC1-MMAE significantly reduced the growth of tumors established by subcutaneous injection of HCC70 TNBC cells. Therefore, HzMUC1-ADC has therapeutic potential for TNBC.
Collapse
|
105
|
Mao L, Su S, Li J, Yu S, Gong Y, Chen C, Hu Z, Huang X. Development of Engineered CAR T Cells Targeting Tumor-Associated Glycoforms of MUC1 for the Treatment of Intrahepatic Cholangiocarcinoma. J Immunother 2023; 46:89-95. [PMID: 36883998 PMCID: PMC9988215 DOI: 10.1097/cji.0000000000000460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a common malignancy arising from the liver with limited 5-year survival. Thus, there is an urgency to explore new treatment methods. Chimeric antigen receptor T (CAR T) cell therapy is a very promising cancer treatment. Though, several groups have investigated CAR T cells targeting MUC1 in solid cancer models, Tn-MUC1-targeted CAR T cells have not yet to be reported in ICC. In this study, we confirmed Tn-MUC1 as a potential therapeutic target for ICC and demonstrated that its expression level was positively correlated with the poor prognosis of ICC patients. More importantly, we successfully developed effective CAR T cells to target Tn-MUC1-positive ICC tumors and explored their antitumor activities. Our results suggest the CAR T cells could specifically eliminate Tn-MUC1-positive ICC cells, but not Tn-MUC1-negative ICC cells, in vitro and in vivo. Therefore, our study is expected to provide new therapeutic strategies and ideas for the treatment of ICC.
Collapse
Affiliation(s)
- Li Mao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Sheng Su
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Songyang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yu Gong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Changzhou Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhiqiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiaowu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Pifferi C, Aguinagalde L, Ruiz-de-Angulo A, Sacristán N, Baschirotto PT, Poveda A, Jiménez-Barbero J, Anguita J, Fernández-Tejada A. Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chem Sci 2023; 14:3501-3513. [PMID: 37006677 PMCID: PMC10055764 DOI: 10.1039/d2sc05639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The overexpression of aberrantly glycosylated tumor-associated mucin-1 (TA-MUC1) in human cancers makes it a major target for the development of anticancer vaccines derived from synthetic MUC1-(glyco)peptide antigens. However, glycopeptide-based subunit vaccines are weakly immunogenic, requiring adjuvants and/or additional immunopotentiating approaches to generate optimal immune responses. Among these strategies, unimolecular self-adjuvanting vaccine constructs that do not need coadministration of adjuvants or conjugation to carrier proteins emerge as a promising but still underexploited approach. Herein, we report the design, synthesis, immune-evaluation in mice, and NMR studies of new, self-adjuvanting and self-assembling vaccines based on our QS-21-derived minimal adjuvant platform covalently linked to TA-MUC1-(glyco)peptide antigens and a peptide helper T-cell epitope. We have developed a modular, chemoselective strategy that harnesses two distal attachment points on the saponin adjuvant to conjugate the respective components in unprotected form and high yields via orthogonal ligations. In mice, only tri-component candidates but not unconjugated or di-component combinations induced significant TA-MUC1-specific IgG antibodies able to recognize the TA-MUC1 on cancer cells. NMR studies revealed the formation of self-assembled aggregates, in which the more hydrophilic TA-MUC1 moiety gets exposed to the solvent, favoring B-cell recognition. While dilution of the di-component saponin-(Tn)MUC1 constructs resulted in partial aggregate disruption, this was not observed for the more stably-organized tri-component candidates. This higher structural stability in solution correlates with their increased immunogenicity and suggests a longer half-life of the construct in physiological media, which together with the enhanced antigen multivalent presentation enabled by the particulate self-assembly, points to this self-adjuvanting tri-component vaccine as a promising synthetic candidate for further development.
Collapse
Affiliation(s)
- Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Priscila Tonon Baschirotto
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Juan Anguita
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Inflammation and Macrophage Plasticity Laboratory, CIC BioGUNE, BRTA Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
107
|
Rodriguez Torres S, Gresseau L, Benhamida M, Fernandez-Marrero Y, Annabi B. Epigallocatechin-3-Gallate Prevents the Acquisition of a Cancer Stem Cell Phenotype in Ovarian Cancer Tumorspheres through the Inhibition of Src/JAK/STAT3 Signaling. Biomedicines 2023; 11:biomedicines11041000. [PMID: 37189618 DOI: 10.3390/biomedicines11041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Three-dimensional tumorsphere cultures recapitulate the expression of several cancer stem cell (CSC) biomarkers and represent an effective in vitro platform to screen the anti-CSC properties of drugs. Whereas ovarian carcinoma is among the leading causes of death for women, ovarian CSC (OvCSC), a highly malignant subpopulation of ovarian cancer cells, is thought to be responsible for therapy resistance, metastasis, and tumor relapse. Epigallocatechin-3-gallate (EGCG), a diet-derived active polyphenol found in green tea leaves, can suppress ovarian cancer cell proliferation and induce apoptosis. However, its capacity to prevent the acquisition of cancer stemness traits in ovarian malignancies remains unclear. Here, we exploited the in vitro three-dimensional tumorsphere culture model to explore the capacity of EGCG to alter CSC biomarkers expression, signal transducing events and cell chemotaxis. Total RNA and protein lysates were isolated from human ES-2 ovarian cancer cell tumorspheres for gene assessment by RT-qPCR and protein expression by immunoblot. Real-time cell chemotaxis was assessed with xCELLigence. Compared with their parental adherent cells, tumorspheres expressed increased levels of the CSC markers NANOG, SOX2, PROM1, and Fibronectin. EGCG treatment reduced dose-dependently tumorspheres size and inhibited the transcriptional regulation of those genes. Src and JAK/STAT3 signaling pathways appeared to be relevant for CSC phenotype and chemotactic response. In conclusion, these data highlight and support the chemopreventive benefits of the diet-derived EGCG and its capacity to target intracellular transducing events that regulate the acquisition of an invasive CSC phenotype.
Collapse
Affiliation(s)
- Sahily Rodriguez Torres
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Loraine Gresseau
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Meriem Benhamida
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
108
|
Murwanti R, Denda-Nagai K, Sugiura D, Mogushi K, Gendler SJ, Irimura T. Prevention of Inflammation-Driven Colon Carcinogenesis in Human MUC1 Transgenic Mice by Vaccination with MUC1 DNA and Dendritic Cells. Cancers (Basel) 2023; 15:cancers15061920. [PMID: 36980805 PMCID: PMC10047104 DOI: 10.3390/cancers15061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The preventive efficacy of MUC1-specific DNA immunization on inflammation-driven colon carcinogenesis in human MUC1 transgenic (MUC1.Tg) mice was investigated. Mice were vaccinated with MUC1 DNA mixed with autologous bone-marrow-derived dendritic cells (BMDCs), and then colonic tumors were induced by azoxymethane (AOM) injection and oral administration of dextran sulfate sodium (DSS). Two types of tumors, squamous metaplasia and tubular adenoma, were observed. Both expressed high levels of MUC1 as indicated by the binding of anti-MUC1 antibodies with different specificities, whereas MUC1 expression was not detected in normal colonic mucosa. When mice were immunized with MUC1 DNA + BMDCs, tumor incidence, tumor number, and tumor size were significantly reduced. In contrast, vaccination with MUC1 DNA alone or BMDCs alone was ineffective in reducing tumor burden. Inflammation caused by DSS was not suppressed by the MUC1 DNA + BMDCs vaccination. Furthermore, MUC1 protein expression levels, as judged by anti-MUC1 antibody binding in tumors grown after vaccination, did not significantly differ from the control. In conclusion, an inflammation-driven carcinogenesis model was established in MUC1.Tg mice, closely resembling human colon carcinogenesis. In this model, vaccination with MUC1 DNA + BMDCs was effective in overriding MUC1 tolerance and reducing the tumor burden by a mechanism not affecting the level of colonic inflammation.
Collapse
Affiliation(s)
- Retno Murwanti
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55283, Indonesia
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Sugiura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sandra J Gendler
- Department of Immunology, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Glycobiologics, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
109
|
Luo YZ, Zhu H. Immunotherapy for advanced or recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:405-424. [PMID: 37009314 PMCID: PMC10052663 DOI: 10.4251/wjgo.v15.i3.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality, and is prone to intra- and extrahepatic metastasis due to the anatomical and functional characteristics of the liver. Due to the complexity and high relapse rate associated with radical surgery or radiofrequency ablation, immune checkpoint inhibitors (ICIs) are increasingly being used to treat HCC. Several immunotherapeutic agents, along with their combinations, have been clinically approved to treat advanced or recurrent HCC. This review discusses the leading ICIs in practice and those currently undergoing randomized phase 1–3 trials as monotherapy or combination therapy. Furthermore, we summarize the rapidly developing alternative strategies such as chimeric antigen receptor-engineered T cell therapy and tumor vaccines. Combination therapy is a promising potential treatment option. These immunotherapies are also summarized in this review, which provides insights into the advantages, limitations, and novel angles for future research in establishing viable and alternative therapies against HCC.
Collapse
Affiliation(s)
- Ying-Zhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
110
|
Melnik D, Cortés-Sánchez JL, Sandt V, Kahlert S, Kopp S, Grimm D, Krüger M. Dexamethasone Selectively Inhibits Detachment of Metastatic Thyroid Cancer Cells during Random Positioning. Cancers (Basel) 2023; 15:cancers15061641. [PMID: 36980530 PMCID: PMC10046141 DOI: 10.3390/cancers15061641] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
We recently reported that synthetic glucocorticoid dexamethasone (DEX) is able to suppress metastasis-like spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells cultured under random positioning. We now show that this inhibition was selective for two metastatic thyroid carcinoma cells, FTC-133 and WRO, whereas benign Nthy-ori 3-1 thyrocytes and recurrent ML-1 follicular thyroid cancer cells were not affected by DEX. We then compare Nthy-ori 3-1 and FTC-133 cells concerning their adhesion and mechanosignaling. We demonstrate that DEX disrupts random positioning-triggered p38 stress signaling in FTC-133 cells, thereby antagonizing a variety of biological functions. Thus, DEX treatment of FTC-133 cells is associated with increased adhesiveness, which is mainly caused by the restored, pronounced formation of a normal number of tight junctions. Moreover, we show that Nthy-ori 3-1 and ML-1 cells upregulate the anti-adhesion protein mucin-1 during random positioning, presumably as a protection against mechanical stress. In summary, mechanical stress seems to be an important component in this metastasis model system that is processed differently by metastatic and healthy cells. The balance between adhesion, anti-adhesion and cell–cell connections enables detachment of adherent human cells on the random positioning machine—or not, allowing selective inhibition of thyroid in vitro metastasis by DEX.
Collapse
Affiliation(s)
- Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Stefan Kahlert
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Institute of Anatomy, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Core Facility Tissue Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6757471
| |
Collapse
|
111
|
The New Frontier of Immunotherapy: Chimeric Antigen Receptor T (CAR-T) Cell and Macrophage (CAR-M) Therapy against Breast Cancer. Cancers (Basel) 2023; 15:cancers15051597. [PMID: 36900394 PMCID: PMC10000829 DOI: 10.3390/cancers15051597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer represents one of the most common tumor histologies. To date, based on the specific histotype, different therapeutic strategies, including immunotherapies, capable of prolonging survival are used. More recently, the astonishing results that were obtained from CAR-T cell therapy in haematological neoplasms led to the application of this new therapeutic strategy in solid tumors as well. Our article will deal with chimeric antigen receptor-based immunotherapy (CAR-T cell and CAR-M therapy) in breast cancer.
Collapse
|
112
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
113
|
van Schaik JE, Muller Kobold AC, van der Laan BFAM, van der Vegt B, van Hemel BM, Plaat BEC. SCC Antigen Concentrations in Fine-Needle Aspiration Samples to Detect Cervical Lymph Node Metastases: A Prospective Analysis. Otolaryngol Head Neck Surg 2023; 168:407-412. [PMID: 35639471 DOI: 10.1177/01945998221102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the diagnostic value of measuring squamous cell carcinoma antigen (SCC-Ag) and cancer antigen 15-3 (CA15-3) concentrations in fine-needle aspiration (FNA) samples for the detection of squamous cell carcinoma (SCC) metastases in cervical lymph nodes. STUDY DESIGN A prospective study with patients consecutively included between November 2018 and May 2021. SETTING A tertiary head and neck oncologic center. METHODS Out of 138 patients, SCC-Ag concentrations were analyzed in 168 FNA cervical lymph node samples and CA15-3 in 152 samples. Results were compared with FNA cytology (FNAC) or definitive histology to establish sensitivity and specificity rates. RESULTS For the detection of cervical SCC lymph node metastases, SCC-Ag measurement had an 89.4% sensitivity and 79.3% specificity at a cutoff concentration of 0.1 µg/L. Measurement of CA15-3 concentration in addition to SCC-Ag concentration did not lead to improved accuracy for the detection of SCC. In histology-confirmed cases, FNAC had an 80.0% sensitivity and 100% specificity, as opposed to 93.3% and 57.1%, respectively, for SCC-Ag. CONCLUSION Measurement of SCC-Ag concentration for detection of SCC lymph node metastases has a sensitivity at least comparable to FNAC and could be used as a relatively cheap screening tool in samples with nondiagnostic or indeterminate FNAC results or when multiple lymph nodes are sampled. However, SCC-Ag in FNA samples has a lower specificity than FNAC assessed by pathologists experienced in head and neck oncology. Addition of CA15-3 measurement did not lead to improved accuracy.
Collapse
Affiliation(s)
- Jeroen E van Schaik
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna C Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bettien M van Hemel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn E C Plaat
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
114
|
Bose M, Sanders A, De C, Zhou R, Lala P, Shwartz S, Mitra B, Brouwer C, Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl Res 2023; 253:41-56. [PMID: 36031050 DOI: 10.1016/j.trsl.2022.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
The third leading cause of cancer-related deaths in the United States is pancreatic cancer, more than 95% of which is pancreatic ductal adenocarcinoma (PDA). The incidence rate of PDA nearly matches its mortality rate and the best treatment till date is surgical resection for which only 25% are eligible. Tumor recurrence and metastasis are the main causes of cancer-related mortality. MUC1 is a transmembrane glycoprotein expressed on most epithelial cells. It is overexpressed and aberrantly glycosylated in cancer and is known as tumor-associated MUC1 (tMUC1). More than 80% of PDAs express tMUC1. A monoclonal antibody called TAB004 has been developed specifically against human tMUC1 extracellular domain. We report that treatment with TAB004 significantly reduced the colony forming potential of multiple PDA cell lines while sparing normal pancreatic epithelial cell line. Binding of TAB004 to tMUC1 compromised desmosomal integrity, induced ER stress and anoikis in PDA cells. The mechanisms underlying TAB004's antitumor effects were found to be reduced activation of the EGFR-PI3K signaling pathway, and degradation of tMUC1, thereby reducing expression of its transcriptional targets, c-Src and c-Myc. This reduction in oncogenic signaling triggered anoikis as indicated by reduced expression of antiapoptotic proteins, PTRH2 and BCL2. TAB004 treatment slowed the growth of PDA xenograft compared to IgG control and enhanced survival of mice when combined with 5-FU. Since TAB004 significantly reduced colony forming potential and triggered anoikis in the PDA cells, we suggest that it could be used as a potential prophylactic agent to curb tumor relapse after surgery, prevent metastasis and help increase the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Chandrav De
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Priyanka Lala
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Sophia Shwartz
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Bhaskar Mitra
- Pacific Northwest National Laboratory, Richland, Washington
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina.
| |
Collapse
|
115
|
Quesnel A, Coles N, Angione C, Dey P, Polvikoski TM, Outeiro TF, Islam M, Khundakar AA, Filippou PS. Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer 2023; 23:174. [PMID: 36809974 PMCID: PMC9942363 DOI: 10.1186/s12885-023-10588-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free technique, has already shown promise in cancer diagnostics. METHODS RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and spheroids. RESULTS Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content. CONCLUSION RS combined with machine learning could pave the way for more objective and less invasive grading of glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression changes.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Nathan Coles
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Darlington, UK
- Centre for Digital Innovation, Teesside University, Darlington, UK
| | - Priyanka Dey
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2UP, Portsmouth, UK
| | - Tuomo M Polvikoski
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK.
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK.
| |
Collapse
|
116
|
Kim YI, Pecha RL, Keihanian T, Mercado M, Pena-Munoz SV, Lang K, Van Buren G, Dhingra S, Othman MO. MUC1 Expressions and Its Prognostic Values in US Gastric Cancer Patients. Cancers (Basel) 2023; 15:cancers15040998. [PMID: 36831343 PMCID: PMC9954699 DOI: 10.3390/cancers15040998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
This study aims to evaluate the prognostic value of MUC expression in US GC patients. A total of 70 tumor specimens were collected from GC patients who underwent surgery or endoscopic resection between 2013 and 2019 at a tertiary referral center in the US. MUC expression status including MUC1, MUC2, MUC5AC, and MUC6 was evaluated by immunohistochemical staining. The positive rates of MUC1, MUC2, MUC5AC, and MUC6 were 71.4%, 78.6%, 74.3%, and 33.3%, respectively. Patients with positive MUC1 expression had a significantly higher rate of aggressive pathologic features including diffuse-type cancer (42.0% vs. 0%; p < 0.001), advanced GC (80.0% vs. 30.0%, p < 0.001), lymph node metastasis (62.0% vs. 20.0%; p = 0.001), and distant metastasis (32.0% vs. 5.0%; p = 0.017) compared with those with negative MUC1 expression. However, the differences in the pathologic features were not observed according to MUC2, MUC5AC, and MUC6 expression status. In early gastric cancer (EGC), patients with a high level of MUC1 expression showed a higher rate of lymphovascular invasion (71.4% vs. 21.4%; p = 0.026) and EGC meeting non-curative resection (85.7% vs. 42.9%; p = 0.061) than those with negative MUC1. In US GC patients, MUC1 expression is associated with aggressive pathological features, and might be a useful prognostic marker.
Collapse
Affiliation(s)
- Young-Il Kim
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Gastric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
- Correspondence: (Y.-I.K.); (M.O.O.)
| | - Robert Luke Pecha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tara Keihanian
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Mercado
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Valeria Pena-Munoz
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash Lang
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sadhna Dhingra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed O. Othman
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (Y.-I.K.); (M.O.O.)
| |
Collapse
|
117
|
DelaCourt A, Mehta A. Beyond glyco-proteomics-Understanding the role of genetics in cancer biomarkers. Adv Cancer Res 2023; 157:57-81. [PMID: 36725113 DOI: 10.1016/bs.acr.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of robust cancer biomarkers is the most effective way to improve overall survival, as early detection and treatment leads to significantly better clinical outcomes. Many of the cancer biomarkers that have been identified and are clinically utilized are glycoproteins, oftentimes a specific glycoform. Aberrant glycosylation is a common theme in cancer, with dysregulated glycosylation driving tumor initiation and metastasis, and abnormal glycosylation can be detection both on the tissue surface and in serum. However, most cancer types are heterogeneous in regard to tumor genomics, and this heterogeneity extends to cancer glycomics. This limits the sensitivity of standalone glycan-based biomarkers, which has slowed their implementation clinically. However, if targeted biomarker development can take into account genomic tumor information, the development of complementary biomarkers that target unique cancer subgroups can be accomplished. This idea suggests the need for algorithm-based cancer biomarkers, which can utilize multiple biomarkers along with relevant demographic information. This concept has already been established in the detection of hepatocellular carcinoma with the GALAD score, and an algorithm-based approach would likely be effective in improving biomarker sensitivity for additional cancer types. In order to increase cancer diagnostic biomarker sensitivity, there must be more targeted biomarker development that considers tumor genomic, proteomic, metabolomic, and clinical data while identifying tumor biomarkers.
Collapse
Affiliation(s)
- Andrew DelaCourt
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand Mehta
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
118
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
119
|
Supimon K, Sangsuwannukul T, Sujjitjoon J, Chieochansin T, Junking M, Yenchitsomanus PT. Cytotoxic activity of anti-mucin 1 chimeric antigen receptor T cells expressing PD-1-CD28 switch receptor against cholangiocarcinoma cells. Cytotherapy 2023; 25:148-161. [PMID: 36396553 DOI: 10.1016/j.jcyt.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Cholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA. METHODS To overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28. RESULTS Initially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed. CONCLUSION Taken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.
Collapse
Affiliation(s)
- Kamonlapat Supimon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanich Sangsuwannukul
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
120
|
MUC1 promotes cancer stemness and predicts poor prognosis in osteosarcoma. Pathol Res Pract 2023; 242:154329. [PMID: 36680928 DOI: 10.1016/j.prp.2023.154329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancy. Combining chemotherapy and surgical treatment significantly improved clinical outcomes for osteosarcoma patients. Osteosarcoma stem cells (OSCs) are often more malignant than differentiated cancer cells and are a key determinant of responses to chemotherapy and radiation therapy, therefore, the removal of OSCs could be an effective therapeutic strategy. Myxoprotein 1 (MUC1) is aberrantly overexpressed in many human cancers and it promotes cancer stemness through activation of pluripotency networks. In this study, we observed elevated MUC1 in osteosarcoma and a depressed prognosis in patients with high MUC1 expression profiles. Our observations also revealed that MUC1 promoted OS stemness and tumor metastasis both in vivo and in vitro. These data led us to hypothesize that MUC1 may be a therapeutic target for patients with OS.
Collapse
|
121
|
Deng G, Zha H, Luo H, Zhou Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front Bioeng Biotechnol 2023; 11:1118546. [PMID: 36741760 PMCID: PMC9892635 DOI: 10.3389/fbioe.2023.1118546] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of incidence rate and mortality of cancer is increasing rapidly, and the development of precise intervention measures for cancer detection and treatment will help reduce the burden and pain of cancer. At present, the sensitivity and specificity of tumor markers such as CEA and CA-125 used clinically are low, while PET, SPECT, and other imaging diagnoses with high sensitivity possess shortcomings, including long durations to obtain formal reports and the inability to identify the molecular pathological type of cancer. Cancer surgery is limited by stage and easy to recur. Radiotherapy and chemotherapy often cause damage to normal tissues, leading to evident side effects. Aptamers can selectively and exclusively bind to biomarkers and have, therefore, gained attention as ligands to be targeted for cancer detection and treatment. Gold nanoparticles (AuNPs) are considered as promising nano carriers for cancer diagnosis and treatment due to their strong light scattering characteristics, effective biocompatibility, and easy surface modification with targeted agents. The aptamer-gold nanoparticles targeting delivery system developed herein can combine the advantages of aptamers and gold nanoparticles, and shows excellent targeting, high specificity, low immunogenicity, minor side effects, etc., which builds a bridge for cancer markers to be used in early and efficient diagnosis and precise treatment. In this review, we summarize the latest progress in the application of aptamer-modified gold nanoparticles in cancer targeted diagnosis and delivery of therapeutic agents to cancer cells and emphasize the prospects and challenges of transforming these studies into clinical applications.
Collapse
Affiliation(s)
- Guozhen Deng
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - He Zha
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, JianYang, Sichuan, China
| |
Collapse
|
122
|
Filippi A, Mocanu MM. Mining TCGA Database for Genes with Prognostic Value in Breast Cancer. Int J Mol Sci 2023; 24:1622. [PMID: 36675137 PMCID: PMC9862022 DOI: 10.3390/ijms24021622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of the study was to use transcriptomics data to identify genes associated with advanced/aggressive breast cancer and their effect on survival outcomes. We used the publicly available The Cancer Genome Atlas (TCGA) database to obtain RNA sequence data from patients with less than five years survival (Poor Prognosis, n = 101), patients with greater than five years survival (Good Prognosis, n = 200), as well as unpaired normal tissue data (normal, n = 105). The data analyses performed included differential expression between groups and selection of subsets of genes, gene ontology, cell enrichment analysis, and survival analyses. Gene ontology results showed significantly reduced enrichment in gene sets related to tumor immune microenvironment in Poor Prognosis and cell enrichment analysis confirmed significantly reduced numbers of macrophages M1, CD8 T cells, plasma cells and dendritic cells in samples in the Poor Prognosis samples compared with Good Prognosis. A subset of 742 genes derived from differential expression analysis as well as genes coding for immune checkpoint molecules was evaluated for their effect on overall survival. In conclusion, this study may contribute to the better understanding of breast cancer transcriptomics and provide possible targets for further research and eventual therapeutic interventions.
Collapse
Affiliation(s)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
123
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
124
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
125
|
Shang B, Wang R, Qiao H, Zhao X, Wang L, Sui S. Multi-omics analysis of pyroptosis regulation patterns and characterization of tumor microenvironment in patients with hepatocellular carcinoma. PeerJ 2023; 11:e15340. [PMID: 37193028 PMCID: PMC10183172 DOI: 10.7717/peerj.15340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver, and pyroptosis has been identified as a novel cellular program that plays a role in numerous diseases including cancer. However, the functional role of pyroptosis in HCC remains unclear. The purpose of this study is to explore the relationship between the two found hub genes and provide targets for clinical treatment. Methods The Cancer Genome Atlas (TCGA) database was used to collect the gene data and clinically-related information of patients with HCC. After the differentially expressed genes (DEGs) were identified, they were intersected with the genes related to pyroptosis, and a risk prediction model was established to predict the overall survival (OS). Subsequently, drug sensitivity analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) was used to analyze the biological characteristics of the DEGs. Different immune cell infiltration and related pathways were analyzed, and hub genes were identified by protein-protein interaction (PPI). Finally, the expression of hub genes was verified by real-time quantitative PCR (qRT-PCR) and immunohistochemistry. Results We conducted a comprehensive bioinformatics analysis to investigate the molecular mechanisms of pyroptosis in hepatocellular carcinoma (HCC). A total of 8,958 differentially expressed genes were identified, and 37 differentially expressed genes were associated with pyroptosis through intersection. Moreover, we developed an OS model with excellent predictive ability and discovered the differences in biological function, drug sensitivity, and immune microenvironment between high-risk and low-risk groups. Through enrichment analysis, we found that the differentially expressed genes are related to various biological processes. Then, 10 hub genes were identified from protein-protein interaction networks. Finally, midkine (MDK) was screened from the 10 hub genes and further verified by PCR and immunohistochemistry, which revealed its high expression in HCC. Conclusion We have developed a reliable and consistent predictive model based on the identification of potential hub genes, which can be used to accurately forecast the prognosis of patients, thus providing direction for further clinical research and treatment.
Collapse
Affiliation(s)
- Bingbing Shang
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruohan Wang
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, China
| | - Xixi Zhao
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, China
| | - Shaoguang Sui
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
126
|
Zhu Y, Yang D, Guo T, Lin M. Use of S2.2/DOX Magnetic Nanoliposomes in MR Molecule Imaging and Targeted Thermochemotherapy for Breast Cancer In Vitro. Technol Cancer Res Treat 2023; 22:15330338231194498. [PMID: 37563954 PMCID: PMC10422896 DOI: 10.1177/15330338231194498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To prepare S2.2/DOX magnetic nanoliposomes by combining the potential benefits of MNPs in MRI and the targeted performance of nano-drugs as an innovative method for integrated diagnosis and treatment of breast cancer (BC). METHODS We created a S2.2-PEG-MZF/DOX molecular probe by using a lipid material to encapsulate PEG-MZF-NPs and doxorubicin (DOX), and a S2.2 aptamer to target MUC1 to conjugate with PEG-MZF/DOX nanoliposomes. The potential of probe for cell-specific targeting and magnetic resonance (MR) molecular imaging was evaluated by MR scanner and Prussian blue staining. Additionally, we explored the feasibility by using nanoliposome magnetic induction heating to interfere with MCF-7 (MUC1+) BC cells under the influence of an alternating magnetic field (AMF). RESULTS PEG-MZF-NPs were biologically safe. The T2 relaxation rate of PEG-MZF-NPs was found to inhibit T2 signal in a concentration-dependent manner, and the T2 signal of the S2.2-PEG-MZF molecular probe in MCF-7 cells was significantly lower than that in PEG-MZF-NPs group. Moreover, the T2 signal reduction was more pronounced in MCF-7 cells than in the hepatoma cell line HepG2 (MUC1-), suggesting a strong MRI potential of the S2.2-PEG-MZF molecular probe. The S2.2-PEG-MZF/DOX nanoliposome was able to achieve the desired temperature range for tumor hyperthermia (42-44 °C) in vitro. The S2.2-PEG-MZF/DOX nanoliposome accompanied by magnetic fluid hyperthermia (MFH) could inhibit proliferation and invasion and induce apoptosis of MCF-7 cells. The effects of this approach were significantly higher than those observed in the other groups. CONCLUSION We successfully developed a novel technique for BC diagnosis and treatment using thermochemotherapy under the guidance of MR molecular imaging. This approach holds great potential for improving the management of this devastating disease in the future.
Collapse
Affiliation(s)
- Yinxing Zhu
- Taizhou School of Clinical Medicine, Nanjing Medical University, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Dazhuang Yang
- Imaging Department, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
127
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
128
|
Tong F, Zhao JX, Fang ZY, Cui XT, Su DY, Liu X, Zhou JH, Wang GX, Qiu ZJ, Liu SZ, Fu JQ, Kang CS, Wang JC, Wang QX. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII. Pharmacol Res 2023; 187:106606. [PMID: 36516884 DOI: 10.1016/j.phrs.2022.106606] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) is a mutant isoform of EGFR with a deletion of exons 2-7 making it insensitive to EGF stimulation and downstream signal constitutive activation. However, the mechanism underlying the stability of EGFRvIII remains unclear. Based on CRISPR-Cas9 library screening, we found that mucin1 (MUC1) is essential for EGFRvIII glioma cell survival and temozolomide (TMZ) resistance. We revealed that MUC1-C was upregulated in EGFRvIII-positive cells, where it enhanced the stability of EGFRvIII. Knockdown of MUC1-C increased the colocalization of EGFRvIII and lysosomes. Upregulation of MUC1 occurred in an NF-κB dependent manner, and inhibition of the NF-κB pathway could interrupt the EGFRvIII-MUC1 feedback loop by inhibiting MUC1-C. In a previous report, we identified AC1Q3QWB (AQB), a small molecule that could inhibit the phosphorylation of NF-κB. By screening the structural analogs of AQB, we obtained EPIC-1027, which could inhibit the NF-κB pathway more effectively. EPIC-1027 disrupted the EGFRvIII-MUC1-C positive feedback loop in vitro and in vivo, inhibited glioma progression, and promoted sensitization to TMZ. In conclusion, we revealed the pivotal role of MUC1-C in stabilizing EGFRvIII in glioblastoma (GBM) and identified a small molecule, EPIC-1027, with great potential in GBM treatment.
Collapse
Affiliation(s)
- Fei Tong
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Ji-Xing Zhao
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Zi-Yuan Fang
- Clinical Medical College, Hebei University, Baoding 071000, China
| | - Xiao-Teng Cui
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Dong-Yuan Su
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Jun-Hu Zhou
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Guang-Xiu Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Zhi-Jun Qiu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shi-Zhong Liu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun-Qi Fu
- Department of Neurosurgery, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Hainan 570311, China; Department of Neurosurgery, Haikou People's Hospital, Hainan 570208, China
| | - Chun-Sheng Kang
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| | - Jia-Chong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Hainan 570311, China; Department of Neurosurgery, Haikou People's Hospital, Hainan 570208, China.
| | - Qi-Xue Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| |
Collapse
|
129
|
Wu G, Li L, Liu M, Chen C, Wang G, Jiang Z, Qin Y, He L, Li H, Cao J, Gu H. Therapeutic effect of a MUC1-specific monoclonal antibody-drug conjugates against pancreatic cancer model. Cancer Cell Int 2022; 22:417. [PMID: 36572921 PMCID: PMC9793597 DOI: 10.1186/s12935-022-02839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive malignancies without effective targeted therapies. MUC1 has emerged as a potential common target for cancer therapy because it is overexpressed in a variety of different cancers including the majority of pancreatic cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1 have been reported. Recently, we generated a humanized MUC1 antibody (HzMUC1) specific to the interaction region between MUC1-N and MUC1-C. In this study, we generated the antibody drug conjugate (ADC) by conjugating HzMUC1 with monomethyl auristatin (MMAE), and examined the efficacy of HzMUC1-MMAE against the MUC1-positive pancreatic cancer in vitro and in vivo. METHODS Western blot and immunoprecipitation were used to detect MUC1 in pancreatic cancer cells. MUC1 localization in pancreatic cancer cells was determined by confocal microscopy. HzMUC1 was conjugated with the monomethyl auristatin (MMAE), generating the HzMUC1-MMAE ADC. Colony formation assay and flow cytometry were used to assess the effects of the HzMUC1-MMAE cell viability, cell cycle progression and apoptosis. Capan-2 and CFPAC-1 xenograft model were used to test the efficacy of HzMUC1-MMAE against pancreatic cancer. RESULTS HzMUC1 antibody binds to MUC1 on the cell surface of pancreatic cancer cells. HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in pancreatic cancer cells. Importantly, HzMUC1-MMAE significantly reduced the growth of pancreatic xenograft tumors by inhibiting cell proliferation and enhancing cell death. CONCLUSION Our results indicate that HzMUC1-ADC is a promising novel targeted therapy for pancreatic cancer. HzMUC1-ADC should also be an effective drug for the treatment of different MUC1-positive cancers.
Collapse
Affiliation(s)
- Guang Wu
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Lan Li
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, 325035 Wenzhou, China
| | - Mengnan Liu
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Chunyan Chen
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Guangze Wang
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Zewei Jiang
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yaqian Qin
- grid.414906.e0000 0004 1808 0918Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Licai He
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hongzhi Li
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jiawei Cao
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| | - Haihua Gu
- grid.268099.c0000 0001 0348 3990Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
130
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
131
|
Anti-MUC1 nanobody conjugated by chitosan nanoparticle with enhancement of anti-proliferation activity in breast cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
132
|
Glycosylation Alterations in Cancer Cells, Prognostic Value of Glycan Biomarkers and Their Potential as Novel Therapeutic Targets in Breast Cancer. Biomedicines 2022; 10:biomedicines10123265. [PMID: 36552021 PMCID: PMC9775348 DOI: 10.3390/biomedicines10123265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Although we are lately witnessing major improvements in breast cancer treatment and patient outcomes, there is still a significant proportion of patients not receiving efficient therapy. More precisely, patients with triple-negative breast cancer or any type of metastatic disease. Currently available prognostic and therapeutic biomarkers are not always applicable and oftentimes lack precision. The science of glycans is a relatively new scientific approach to better characterize malignant transformation and tumor progression. In this review, we summarize the most important information about glycosylation characteristics in breast cancer cells and how different glycoproteins and enzymes involved in glycosylation could serve as more precise biomarkers, as well as new therapeutic targets.
Collapse
|
133
|
Xiao L, Guan X, Xiang M, Wang Q, Long Q, Yue C, Chen L, Liu J, Liao C. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol 2022; 13:1088560. [PMID: 36561746 PMCID: PMC9763287 DOI: 10.3389/fimmu.2022.1088560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chaoyi Yue
- School of Medicine and Technology, Zunyi Medical University, Zunyi, China
| | - Lulu Chen
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| |
Collapse
|
134
|
Chen Q, Lu L, Ma W. Efficacy, Safety, and Challenges of CAR T-Cells in the Treatment of Solid Tumors. Cancers (Basel) 2022; 14:cancers14235983. [PMID: 36497465 PMCID: PMC9739567 DOI: 10.3390/cancers14235983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been the fifth pillar of cancer treatment in the past decade. Chimeric antigen receptor (CAR) T-cell therapy is a newly designed adoptive immunotherapy that is able to target and further eliminate cancer cells by engaging with MHC-independent tumor-antigens. CAR T-cell therapy has exhibited conspicuous clinical efficacy in hematological malignancies, but more than half of patients will relapse. Of note, the efficacy of CAR T-cell therapy has been even more disappointing in solid tumors. These challenges mainly include (1) the failures of CAR T-cells to treat highly heterogeneous solid tumors due to the difficulty in identifying unique tumor antigen targets, (2) the expression of target antigens in non-cancer cells, (3) the inability of CAR T-cells to effectively infiltrate solid tumors, (4) the short lifespan and lack of persistence of CAR T-cells, and (5) cytokine release syndrome and neurotoxicity. In combination with these characteristics, the ideal CAR T-cell therapy for solid tumors should maintain adequate T-cell response over a long term while sparing healthy tissues. This article reviewed the status, clinical application, efficacy, safety, and challenges of CAR T-cell therapies, as well as the latest progress of CAR T-cell therapies for solid tumors. In addition, the potential strategies to improve the efficacy of CAR T-cells and prevent side effects in solid tumors were also explored.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Medicine, Yale School of Public Health, New Haven, CT 06520, USA
- Yale Cancer Center and Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Wenxue Ma
- Sanford Stem Cell Clinical Center, Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-246-1477
| |
Collapse
|
135
|
Sui JH, Wei YY, Li J, Xu ZR. A portable multicolor aptasensor for MUC1 detection based on enzyme-mediated cascade reaction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
136
|
Pollini T, Adsay V, Capurso G, Molin MD, Esposito I, Hruban R, Luchini C, Maggino L, Matthaei H, Marchegiani G, Scarpa A, Wood LD, Bassi C, Salvia R, Mino-Kenudson M, Maker AV. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms. Lancet Gastroenterol Hepatol 2022; 7:1141-1150. [PMID: 36057265 PMCID: PMC9844533 DOI: 10.1016/s2468-1253(22)00235-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention because they represent one of the only radiographically identifiable precursors of invasive pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the immune system in the progression of IPMNs is unclear, but understanding its role could reveal the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression or treat invasive disease. The available evidence supports a shift in the immune composition of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its microbiome.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA,Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Volcan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Gabriele Capurso
- Department of Pancreatobiliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele, Milan, Italy
| | - Marco Dal Molin
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, USA
| | - Irene Esposito
- Department of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ralph Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura Maggino
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
137
|
Wang K, Zhang T, Liu M, Wang D, Zhu H, Wang Z, Yu F, Liu Y, Zhao W. Synthesis and immunological evaluation of Mincle ligands-based antitumor vaccines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
138
|
Li J, Guo B, Zhang W, Yue S, Huang S, Gao S, Ma J, Cipollo JF, Yang S. Recent advances in demystifying O-glycosylation in health and disease. Proteomics 2022; 22:e2200156. [PMID: 36088641 DOI: 10.1002/pmic.202200156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
O-Glycosylation is one of the most common protein post-translational modifications (PTM) and plays an essential role in the pathophysiology of diseases. However, the complexity of O-glycosylation and the lack of specific enzymes for the processing of O-glycans and their O-glycopeptides make O-glycosylation analysis challenging. Recently, research on O-glycosylation has received attention owing to technological innovation and emerging O-glycoproteases. Several serine/threonine endoproteases have been found to specifically cleave O-glycosylated serine or threonine, allowing for the systematic analysis of O-glycoproteins. In this review, we first assessed the field of protein O-glycosylation over the past decade and used bibliometric analysis to identify keywords and emerging trends. We then summarized recent advances in O-glycosylation, covering several aspects: O-glycan release, site-specific elucidation of intact O-glycopeptides, identification of O-glycosites, characterization of different O-glycoproteases, mass spectrometry (MS) fragmentation methods for site-specific O-glycosylation assignment, and O-glycosylation data analysis. Finally, the role of O-glycosylation in health and disease was discussed.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shan Huang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
139
|
Tumour-associated Mucin1 correlates with the procoagulant properties of cancer cells of epithelial origin. THROMBOSIS UPDATE 2022. [DOI: 10.1016/j.tru.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
140
|
An In Vitro Comparison of Costimulatory Domains in Chimeric Antigen Receptor T Cell for Breast Cancer Treatment. J Immunol Res 2022; 2022:2449373. [DOI: 10.1155/2022/2449373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Adoptive cellular therapy with chimeric antigen receptor (CAR) T cells has emerged as a potential novel treatment for various cancers. In this study, we have generated CAR T cells targeting mucin-1 (MUC1), which is an aberrantly glycosylated antigen overexpressed on breast cancer cells. Two different signaling domains, including CD28 and 41BB, were incorporated and directly compared the superiority of different costimulatory signals. Two different CAR MUC1 constructs were transduced into primary T cells and evaluated their characteristics and antitumor activities against MUC1+ cancer cells. CAR MUC1 T cells showed high transduction efficiency and antigen specificity toward MUC1+ cancer cell lines and primary breast cancer cells. When coculturing with target cells, the transduced cells exhibited potent antitumor activity in vitro and secrete proinflammatory cytokines. Upon antigen stimulation, incorporation of the 41BB signaling domain was able to improve T cell proliferation and reduce surface PD1 expression and the upregulation of suppressive cytokines, when compared with CAR MUC1 containing the CD28 domain. Our findings show that CAR T cell targeting MUC1 can be effective against MUC1+ breast cancer cell and support the further development of CAR MUC1 T cells containing 41BB signaling in preclinical and clinical studies of breast cancer treatment.
Collapse
|
141
|
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, Javanmard SH. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv 2022; 12:32834-32843. [PMID: 36425208 PMCID: PMC9667373 DOI: 10.1039/d2ra05930d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing, sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 μg mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Mohamadmahdi Samandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
- Department of Biomedical Engineering, University of Connecticut Farmington CT 06030 USA
| | | | - Bahare Zarrin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| |
Collapse
|
142
|
Yang R, Han Y, Yi W, Long Q. Autoantibodies as biomarkers for breast cancer diagnosis and prognosis. Front Immunol 2022; 13:1035402. [PMID: 36451832 PMCID: PMC9701846 DOI: 10.3389/fimmu.2022.1035402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 10/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide and is a substantial public health problem. Screening for breast cancer mainly relies on mammography, which leads to false positives and missed diagnoses and is especially non-sensitive for patients with small tumors and dense breasts. The prognosis of breast cancer is mainly classified by tumor, node, and metastasis (TNM) staging, but this method does not consider the molecular characteristics of the tumor. As the product of the immune response to tumor-associated antigens, autoantibodies can be detected in peripheral blood and can be used as noninvasive, presymptomatic, and low-cost biomarkers. Therefore, autoantibodies can provide a possible supplementary method for breast cancer screening and prognosis classification. This article introduces the methods used to detect peripheral blood autoantibodies and the research progress in the screening and prognosis of breast cancer made in recent years to provide a potential direction for the examination and treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
143
|
A phase I study of an adenoviral vector delivering a MUC1/CD40-ligand fusion protein in patients with advanced adenocarcinoma. Nat Commun 2022; 13:6453. [PMID: 36307410 PMCID: PMC9616917 DOI: 10.1038/s41467-022-33834-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer vaccines as immunotherapy for solid tumours are currently in development with promising results. We report a phase 1 study of Ad-sig-hMUC1/ecdCD40L (NCT02140996), an adenoviral-vector vaccine encoding the tumour-associated antigen MUC1 linked to CD40 ligand, in patients with advanced adenocarcinoma. The primary objective of this study is safety and tolerability. We also study the immunome in vaccinated patients as a secondary outcome. This trial, while not designed to determine clinical efficacy, reports an exploratory endpoint of overall response rate. The study meets its pre-specified primary endpoint demonstrating safety and tolerability in a cohort of 21 patients with advanced adenocarcinomas (breast, lung and ovary). The maximal dose of the vaccine is 1 ×1011 viral particles, with no dose limiting toxicities. All drug related adverse events are of low grades, most commonly injection site reactions in 15 (71%) patients. Using exploratory high-dimensional analyses, we find both quantitative and relational changes in the cancer immunome after vaccination. Our data highlights the utility of high-dimensional analyses in understanding and predicting effective immunotherapy, underscoring the importance of immune competency in cancer prognosis.
Collapse
|
144
|
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
145
|
Liu L, Chen X, Sun B. Construction of a Recyclable DNAzyme Motor for MUC1-Specific Glycoform In Situ Quantification. Anal Chem 2022; 94:13745-13752. [PMID: 36161871 DOI: 10.1021/acs.analchem.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in the glycosylation content, especially in specific proteins, are of great importance for interpreting the mechanisms and development of certain diseases. However, current detection techniques are limited by the weak ionization efficiency of glycosyls and poor anti-interference of fluorescence signals. Herein, we present a general in situ quantification strategy for protein-specific glycoforms by constructing a recyclable DNAzyme motor for mass spectrometric detection using MUC1-specific sialic acid (Sia) as a model. This approach relies on a DNAzyme-based recycling strategy and two well-designed probes: a protein and a glycan probe. The protein probe consists of an aptamer and a DNAzyme. The glycan probe contains three functional domains: a DNAzyme complementary sequence, a substrate peptide segment, and a dibenzocyclooctyne tag. First, these two probes bind to their corresponding targets and trigger hybridization between adjacent probes on the same protein. With the help of the metal cofactor, the DNAzyme of the protein probe hydrolyzes the double-stranded glycan probe. The protein probe then reverts to a single-stranded state and remains intact for the next round of hybridization and cleavage. In this way, the recyclable DNAzyme motor can hydrolyze all glycan probes bound to the target protein. Finally, the reporter peptide released from the hydrolyzed glycan probes can be quantified by mass spectrometry, thereby converting the signal of the protein-specific glycoform to that of mass spectrometry. This strategy has been successfully used for in situ quantification of MUC1-specific Sia in different breast cancer cell lines. It provides a promising platform for protein-specific glycoform quantification.
Collapse
Affiliation(s)
- Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| |
Collapse
|
146
|
Lee HL, Chien YC, Wang HL, Hua CH, Liu LC, Wu GW, Bai LY, Yang SF, Yu YL. Analysis of MUC6 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma. J Cancer 2022; 13:3251-3257. [PMID: 36118520 PMCID: PMC9475359 DOI: 10.7150/jca.75754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading malignancy associated with cancer-related deaths worldwide. Many studies have indicated that mucin (MUC) expression plays an important role in cancer metastasis and recurrence. MUC6 expression is observed in gastric and oncocytic phenotypes and may play an important role during cancer progression. We found the level of MUC6 is lower in HCC patients but did not affect the survival of HCC patients. Therefore, in this study, we investigated the combined effect of MUC6 polymorphisms and exposure to environmental carcinogens on the susceptibility to and clinicopathological characteristics of HCC. Three single-nucleotide polymorphisms (SNPs) of MUC6 (rs61869016, rs6597947, and rs7481521) from 1197 healthy controls and 423 HCC patients were analyzed using real-time PCR. After adjusting for other co-variants, we found that carrying a CC genotype at MUC6 rs61869016 had a lower risk of developing HCC than wildtype carriers. Moreover, patients with a smoking habit who carried the C allele of rs61869016 and T allele of rs7481521 had a higher (B or C) Child-Pugh score than other genotypes, suggesting significant functional compromise and decompensated disease. Therefore, our findings suggest that genetic variations in MUC6 may corelate to HCC and indicate progression in HCC patients.
Collapse
Affiliation(s)
- Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.,Ph.D. Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan.,Institute of Translational Medicine and New Drug Development, Taichung 40402, Taiwan.,Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Hsiang-Ling Wang
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung 40404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Chih Liu
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Guo-Wei Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Yuan Bai
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.,Ph.D. Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan.,Institute of Translational Medicine and New Drug Development, Taichung 40402, Taiwan.,Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
147
|
Dolan JP, Machin DC, Dedola S, Field RA, Webb ME, Turnbull WB. Synthesis of cholera toxin B subunit glycoconjugates using site-specific orthogonal oxime and sortase ligation reactions. Front Chem 2022; 10:958272. [PMID: 36186584 PMCID: PMC9515619 DOI: 10.3389/fchem.2022.958272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The chemoenzymatic synthesis of a series of dual N- and C-terminal-functionalized cholera toxin B subunit (CTB) glycoconjugates is described. Mucin 1 peptides bearing different levels of Tn antigen glycosylation [MUC1(Tn)] were prepared via solid-phase peptide synthesis. Using sortase-mediated ligation, the MUC1(Tn) epitopes were conjugated to the C-terminus of CTB in a well-defined manner allowing for high-density display of the MUC1(Tn) epitopes. This work explores the challenges of using sortase-mediated ligation in combination with glycopeptides and the practical considerations to obtain high levels of conjugation. Furthermore, we describe methods to combine two orthogonal labeling methodologies, oxime- and sortase-mediated ligation, to expand the biochemical toolkit and produce dual N- and C-terminal-labeled conjugates.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Darren C. Machin
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | | | - Robert A. Field
- Iceni Glycoscience Ltd., Norwich, United Kingdom
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Michael E. Webb
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
148
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
149
|
Tang R, Fu Y, Gong B, Fan Y, Wang H, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T Cells for Precise Cancer Cell Targeting. Angew Chem Int Ed Engl 2022; 61:e202205902. [DOI: 10.1002/anie.202205902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yu‐Hao Fu
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Bo Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ying‐Ying Fan
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
150
|
Zou Y, Zhang X, Liang J, Peng L, Qin J, Zhou F, Liu T, Dai L. Mucin 1 aggravates synovitis and joint damage of rheumatoid arthritis by regulating inflammation and aggression of fibroblast-like synoviocytes. Bone Joint Res 2022; 11:639-651. [PMID: 36048147 PMCID: PMC9533250 DOI: 10.1302/2046-3758.119.bjr-2021-0398.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms. Methods Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay. Results A total of 63 RA patients and ten controls were included. Expression of MUC1 was observed in both the synovial lining and sublining layer. The percentage of MUC1+ cells in the lining layer of synovium was significantly higher in RA than that in control, and positively correlated to joint destruction scores of RA. Meanwhile, MUC1+ cells in the sublining layer were positively correlated to the Krenn subscore of inflammatory infiltration. Knockdown of MUC1, rather than GO-203 treatment, ameliorated the expression of proinflammatory cytokines, cell migration, and invasion of rheumatoid synoviocytes. Knockdown of MUC1 decreased expression of RhoA, Cdc42, and Rac1. Treatment with LPA compromised the inhibition of migration and invasion, but not inflammation, of synoviocytes by MUC1 knockdown. Conclusion Upregulated MUC1 promotes the aggression of rheumatoid synoviocytes via Rho guanosine triphosphatases (GTPases), thereby facilitating synovitis and joint destruction during the pathological process of RA. Cite this article: Bone Joint Res 2022;11(9):639–651.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jinjian Liang
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Liqin Peng
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jiale Qin
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Feng Zhou
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| |
Collapse
|