101
|
Duong HT, Comhair SA, Aldred MA, Mavrakis L, Savasky BM, Erzurum SC, Asosingh K. Pulmonary artery endothelium resident endothelial colony-forming cells in pulmonary arterial hypertension. Pulm Circ 2012; 1:475-86. [PMID: 22530103 PMCID: PMC3329078 DOI: 10.4103/2045-8932.93547] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proliferative pulmonary vascular remodeling is the pathologic hallmark of pulmonary arterial hypertension (PAH) that ultimately leads to right heart failure and death. Highly proliferative endothelial cells known as endothelial colony-forming cells (ECFC) participate in vascular homeostasis in health as well as in pathological angiogenic remodeling in disease. ECFC are distinguished by the capacity to clonally proliferate from a single cell. The presence of ECFC in the human pulmonary arteries and their role in PAH pathogenesis is largely unknown. In this study, we established a simple technique for isolating and growing ECFC from cultured pulmonary artery endothelial cells (PAEC) to test the hypothesis that ECFC reside in human pulmonary arteries and that the proliferative vasculopathy of PAH is related to greater numbers and/or more proliferative ECFC in the pulmonary vascular wall. Flow cytometric forward and side scatter properties and aggregate correction were utilized to sort unmanipulated, single PAEC to enumerate ECFC in primary PAEC cultures derived from PAH and healthy lungs. After 2 weeks, wells were assessed for ECFC formation. ECFC derived from PAH PAEC were more proliferative than control. A greater proportion of PAH ECFC formed colonies following subculturing, demonstrating the presence of more ECFC with high proliferative potential among PAH PAEC. Human androgen receptor assay showed clonality of progeny, confirming that proliferative colonies were single cell-derived. ECFC expressed CD31, von Willebrand factor, endothelial nitric oxide synthase, caveolin-1 and CD34, consistent with an endothelial cell phenotype. We established a simple flow cytometry method that allows ECFC quantification using unmanipulated cells. We conclude that ECFC reside among PAEC and that PAH PAEC contain ECFC that are more proliferative than ECFC in control cultures, which likely contributes to the proliferative angiopathic process in PAH.
Collapse
Affiliation(s)
- Heng T Duong
- Department of Pathobiology, Lerner Research Institute, Genomic Medicine Institute, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
103
|
The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18:1217-23. [PMID: 22820644 DOI: 10.1038/nm.2843] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/15/2012] [Indexed: 12/16/2022]
Abstract
Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α-responsive, heparan sulfate-specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue.
Collapse
|
104
|
Ochoa CD, Alexeyev M, Pastukh V, Balczon R, Stevens T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J Biol Chem 2012; 287:25407-18. [PMID: 22637478 DOI: 10.1074/jbc.m111.301440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exotoxin Y (ExoY) is a type III secretion system effector found in ~ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
105
|
McQualter JL, Bertoncello I. Concise Review: Deconstructing the Lung to Reveal Its Regenerative Potential. Stem Cells 2012; 30:811-6. [DOI: 10.1002/stem.1055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
106
|
Grinnell K, Duong H, Newton J, Rounds S, Choudhary G, Harrington EO. Heterogeneity in apoptotic responses of microvascular endothelial cells to oxidative stress. J Cell Physiol 2012; 227:1899-910. [PMID: 21732361 DOI: 10.1002/jcp.22918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxidative stress contributes to disease and can alter endothelial cell (EC) function. EC from different vascular beds are heterogeneous in structure and function, thus we assessed the apoptotic responses of EC from lung and heart to oxidative stress. Since protein kinase Cδ (PKCδ) is activated by oxidative stress and is an important modulator of apoptosis, experiments assessed the level of apoptosis in fixed lung and heart sections of PKCδ wild-type (PKCδ(+/+)) and null (PKCδ(-/-)) mice housed under normoxia (21% O(2)) or hyperoxia (~95% O(2)). We noted a significantly greater number of TUNEL-positive cells in lungs of hyperoxic PKCδ(+/+) mice, compared to matched hearts or normoxic organs. We found that 33% of apoptotic cells identified in hyperoxic lungs of PKCδ(+/+) mice were EC, compared to 7% EC in hyperoxic hearts. We further noted that EC apoptosis was significantly reduced in lungs of PKCδ(-/-) hyperoxic mice, compared to lungs of PKCδ(+/+) hyperoxic mice. In vitro, both hyperoxia and H(2)O(2) promoted apoptosis in EC isolated from microvasculature of lung (LMVEC), but not from the heart (HMVEC). H(2)O(2) treatment significantly increased p38 activity in LMVEC, but not in HMVEC. Inhibition of p38 attenuated H(2)O(2)-induced LMVEC apoptosis. Baseline expression of total PKCδ protein, as well as the caspase-mediated, catalytically active PKCδ cleavage fragment, was higher in LMVEC, compared to HMVEC. PKCδ inhibition significantly attenuated H(2)O(2)-induced LMVEC p38 activation. Conversely, overexpression of wild-type PKCδ or the catalytically active PKCδ cleavage product greatly increased H(2)O(2)-induced HMVEC caspase and p38 activation. We propose that enhanced susceptibility of lung EC to oxidant-induced apoptosis is due to increased PKCδ→p38 signaling, and we describe a PKCδ-centric pathway which dictates the differential response of EC from distinct vascular beds to oxidative stress.
Collapse
Affiliation(s)
- Katie Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA
| | | | | | | | | | | |
Collapse
|
107
|
Comhair SAA, Xu W, Mavrakis L, Aldred MA, Asosingh K, Erzurum SC. Human primary lung endothelial cells in culture. Am J Respir Cell Mol Biol 2012; 46:723-30. [PMID: 22427538 DOI: 10.1165/rcmb.2011-0416te] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary endothelial functions are critical to maintain the low pressure of the pulmonary circulation and effective diffusion capacity of the lung. To investigate pulmonary endothelial cell biology in healthy or diseased lungs, we developed methods to harvest and culture pure populations of primary pulmonary arterial endothelial cells and microvascular endothelial cells from human lung explanted at time of transplantation or from donor lungs not used in transplantation. The purity and characteristics of cultured endothelial cells is ascertained by morphologic criteria using phase contrast and electron microscopy; phenotypic expression profile for endothelial specific proteins such as endothelial nitric oxide synthase, platelet/endothelial cell adhesion molecule, and von Willbrand factor; and endothelial function assays such as Dil-acetylated low-density lipoprotein uptake and tube formation. This detailed method provides researchers with the ability to establish cells for molecular, genetic, and biochemical investigation of human pulmonary vascular diseases.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Department of Pathobiology, Cleveland Clinic, 9500 Euclid Avenue/NC22, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Cioffi DL, Pandey S, Alvarez DF, Cioffi EA. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1067-77. [PMID: 22387293 DOI: 10.1152/ajplung.00190.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The surface of vascular endothelium bears a glycocalyx comprised, in part, of a complex mixture of oligosaccharide chains attached to cell-surface proteins and membrane lipids. Importantly, understanding of the structure and function of the endothelial glycocalyx is poorly understood. Preliminary studies have demonstrated structural differences in the glycocalyx of pulmonary artery endothelial cells compared with pulmonary microvascular endothelial cells. Herein we begin to probe in more detail structural and functional attributes of endothelial cell-surface carbohydrates. In this study we focus on the expression and function of sialic acids in pulmonary endothelium. We observed that, although pulmonary microvascular endothelial cells express similar amounts of total sialic acids as pulmonary artery endothelial cells, the nature of the sialic acid linkages differs between the two cell types such that pulmonary artery endothelial cells express both α(2,3)- and α(2,6)-linked sialic acids on the surface (i.e., surficially), whereas microvascular endothelial cells principally express α(2,3)-linked sialic acids. To determine whether sialic acids play a role in endothelial barrier function, cells were treated with neuraminidases to hydrolyze sialic acid moieties. Disruption of cell-cell and cell-matrix adhesions was observed following neuraminidase treatment, suggesting that terminal sialic acids promote endothelial barrier integrity. When we measured transendothelial resistance, differential responses of pulmonary artery and microvascular endothelial cells to neuraminidase from Clostridium perfringens suggest that the molecular architecture of the sialic acid glycomes differs between these two cell types. Collectively our observations reveal critical structural and functional differences of terminally linked sialic acids on the pulmonary endothelium.
Collapse
Affiliation(s)
- Donna L Cioffi
- Center for Lung Biology, Department of Biochemistry, University of South Alabama, 5851 USA Dr. N., Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
109
|
Leavesley SJ, Annamdevula N, Boni J, Stocker S, Grant K, Troyanovsky B, Rich TC, Alvarez DF. Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. JOURNAL OF BIOPHOTONICS 2012; 5:67-84. [PMID: 21987373 PMCID: PMC3517021 DOI: 10.1002/jbio.201100066] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 05/03/2023]
Abstract
Standard fluorescence microscopy approaches rely on measurements at single excitation and emission bands to identify specific fluorophores and the setting of thresholds to quantify fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue. This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra, even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP-expressing cells were readily quantified with zero false positives detected. In contrast, when the same images were analyzed using standard (single-band) thresholding approaches, either few GFP cells (high thresholds) or substantial false positives (intermediate and low thresholds) were detected. These results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise detection and quantification of fluorescence signals in highly autofluorescent tissues.
Collapse
Affiliation(s)
- Silas J Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 307 University Blvd. N., EGLB 264, Mobile, AL 36688, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Alteration of tight junctions in pulmonary microvascular endothelial cells in bleomycin-treated rats. ACTA ACUST UNITED AC 2012; 64:81-91. [DOI: 10.1016/j.etp.2010.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/25/2010] [Accepted: 06/22/2010] [Indexed: 11/24/2022]
|
111
|
Rapp BM, Saadatzedeh MR, Ofstein RH, Bhavsar JR, Tempel ZS, Moreno O, Morone P, Booth DA, Traktuev DO, Dalsing MC, Ingram DA, Yoder MC, March KL, Murphy MP. Resident Endothelial Progenitor Cells From Human Placenta Have Greater Vasculogenic Potential Than Circulating Endothelial Progenitor Cells From Umbilical Cord Blood. CELL MEDICINE 2011; 2:85-96. [PMID: 27004134 DOI: 10.3727/215517911x617888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endothelial colony-forming cells (ECFCs) isolated from umbilical cord blood (CBECFCs) are highly proliferative and form blood vessels in vivo. The purpose of this investigation was to isolate and characterize a population of resident ECFCs from the chorionic villi of term human placenta and provide a comparative analysis of their proliferative and vasculogenic potential with CBECFCs. ECFCs were isolated from umbilical cord blood and chorionic villi from placentas obtained by caesarean deliveries. Placental ECFCs (PECFCs) expressed CD144, CD31, CD105, and KDR and were negative for CD45 and CD34, consistent with other ECFC phenotypes. PECFCs were capable of 28.6 ± 6.0 population doublings before reaching senescence (vs. 47.4 ± 3.2 for CBECFCs, p < 0.05, n = 4). In single cell assays, 46.5 ± 1.2% underwent at least one division (vs. 51.0 ± 1.8% of CBECFCs, p = 0.07, n = 6), and of those dividing PECFCs, 71.8 ± 0.9% gave rise to colonies of >500 cells (highly proliferative potential clones) over 14 days (vs. 69.4 ± 0.7% of CBECFCs, p = 0.07, n = 9). PECFCs formed 5.2 ± 0.8 vessels/mm(2) in collagen/fibronectin plugs implanted into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice, whereas CBECFCs formed only 1.7 ± 1.0 vessels/mm(2) (p < 0.05, n = 4). This study demonstrates that circulating CBECFCs and resident PECFCs are identical phenotypically and contain equivalent quantities of high proliferative potential clones. However, PECFCs formed significantly more blood vessels in vivo than CBECFCs, indicating that differences in vasculogenic potential between circulating and resident ECFCs exist.
Collapse
Affiliation(s)
- Brian M Rapp
- Department of Surgery, Indiana University School of Medicine , Indianapolis, IN , USA
| | - M Reza Saadatzedeh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; †Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard H Ofstein
- Department of Surgery, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Janak R Bhavsar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; †Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary S Tempel
- ‡ Indiana University School of Medicine , Indianapolis, IN , USA
| | - Oscar Moreno
- Department of Surgery, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Peter Morone
- ‡ Indiana University School of Medicine , Indianapolis, IN , USA
| | - Dana A Booth
- Department of Surgery, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Dmitry O Traktuev
- †Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael C Dalsing
- Department of Surgery, Indiana University School of Medicine , Indianapolis, IN , USA
| | - David A Ingram
- ¶Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; #Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- ¶Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; #Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith L March
- †Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; *Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; †Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; **Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
112
|
Vadivel A, van Haaften T, Alphonse RS, Rey-Parra GJ, Ionescu L, Haromy A, Eaton F, Michelakis E, Thébaud B. Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair. Am J Respir Crit Care Med 2011; 185:564-74. [PMID: 22161159 DOI: 10.1164/rccm.201103-0545oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.
Collapse
Affiliation(s)
- Arul Vadivel
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol 2011; 86:667-78. [PMID: 22072765 DOI: 10.1128/jvi.06348-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.
Collapse
|
114
|
Chandrasekhar KS, Zhou H, Zeng P, Alge D, Li W, Finney BA, Yoder MC, Li J. Blood vessel wall-derived endothelial colony-forming cells enhance fracture repair and bone regeneration. Calcif Tissue Int 2011; 89:347-57. [PMID: 21882012 DOI: 10.1007/s00223-011-9524-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/05/2011] [Indexed: 01/13/2023]
Abstract
Endochondral bone formation requires new blood vessel formation, and endothelial progenitor cells (EPCs) may play a role in this process. Endothelial colony-forming cells (ECFCs), one subtype of EPCs, isolated from the microvasculature of rat lungs, exhibited cell surface antigen markers and gene products characteristic of endothelial cells and displayed high proliferative potential and an ability to form vessel-like network structures in vitro. The aim of this study was to evaluate whether ECFCs facilitate bone healing during fracture repair and stimulate bone regeneration. When type I collagen sponge containing ECFCs were surgically wrapped around the fractured femurs of rats, newly formed bone mineral at the site of fracture was 13% greater (P = 0.01) and energy to failure was 46% greater (P = 0.01) compared to sponge-wrapped fractures without ECFCs. When ECFCs in type I collagen sponge were surgically implanted into the bone defective area, more new vessels formed locally in comparison with sponge-alone controls and new bone tissues were seen. Further, co-implantation of ECFCs and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds at the bone defective sites stimulated more new bone tissues than HA/TCP scaffold alone. These results show that cell therapy with vessel wall-derived ECFCs can induce new vessel formation, stimulate new bone formation, and facilitate bone repair and could be a useful approach to treat non-union fractures and bone defects.
Collapse
|
115
|
Yin Q, Nan HY, Zhang WH, Yan LF, Cui GB, Huang XF, Wei JG. Pulmonary microvascular endothelial cells from bleomycin-induced rats promote the transformation and collagen synthesis of fibroblasts. J Cell Physiol 2011; 226:2091-102. [PMID: 21520061 DOI: 10.1002/jcp.22545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulation and activation of myofibroblasts are the hallmark of progressive pulmonary fibrosis, and the resident fibroblasts are the major source of myofibroblasts. However, the key factors involved in the transformation of fibroblasts are unknown. Pulmonary microvascular endothelial cells (PMVECs), major effector cells against pathogenesis in early stages of the disease, can secrete cytokines to induce the differentiation of mesenchymal cells. We speculated that PMVECs could secrete pro-fibrotic cytokines and promote the transformation of fibroblasts into myofibroblasts. Accordingly, we established a co-culture system with PMVECs and fibroblasts to examine the specific transformation and collagen synthesis of the co-cultured fibroblasts by FACS and Western blot, prior to and after treatment with neutralizing antibodies against transforming growth factor-beta1 (TGF-β1) and connective tissue growth factor (CTGF). We also analyzed expression of TGF-β1 and CTGF in PMVECs. The synthesis and secretion of TGF-β1 and CTGF protein were up-regulated in PMVECs isolated from bleomycin (BLM)-treated rats, most prominently at 7 days post-instillation. We showed that the PMVECs isolated from BLM-induced rats could induce the transformation of normal fibroblasts and their secretion of collagen I, which was inhibited by both neutralizing anti-TGF-β1 and anti-CTGF antibodies. Therefore, up-regulation of TGF-β1 and CTGF in PMVECs plays an important role in activation, transformation, and collagen synthesis of fibroblasts; in particular, these effects in PMVECs are likely to be the key factors for activation and stimulation of static fibroblasts in lung interstitium in early stages of pulmonary fibrosis disease.
Collapse
Affiliation(s)
- Qian Yin
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xinshi Road, Xi'an, PR China
| | | | | | | | | | | | | |
Collapse
|
116
|
Zebda N, Dubrovskyi O, Birukov KG. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res 2011; 83:71-81. [PMID: 21741394 DOI: 10.1016/j.mvr.2011.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 01/06/2023]
Abstract
Vascular endothelial cells lining the blood vessels form the interface between the bloodstream and the vessel wall and as such they are continuously subjected to shear and cyclic stress from the flowing blood in the lumen. Additional mechanical stimuli are also imposed on these cells in the form of substrate stiffness transmitted from the extracellular matrix components in the basement membrane, and additional mechanical loads imposed on the lung endothelium as the result of respiration or mechanical ventilation in clinical settings. Focal adhesions (FAs) are complex structures assembled at the abluminal endothelial plasma membrane which connect the extracellular filamentous meshwork to the intracellular cytoskeleton and hence constitute the ideal checkpoint capable of controlling or mediating transduction of bidirectional mechanical signals. In this review we focus on focal adhesion kinase (FAK), a component of FAs, which has been studied for a number of years with regards to its involvement in mechanotransduction. We analyzed the recent advances in the understanding of the role of FAK in the signaling cascade(s) initiated by various mechanical stimuli with particular emphasis on potential implications on endothelial cell functions.
Collapse
Affiliation(s)
- Noureddine Zebda
- Section of Pulmonary and Critical Care, Lung Injury Center, Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
117
|
Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci 2011; 124:2501-10. [PMID: 21693577 DOI: 10.1242/jcs.084558] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclical formation and regression of the ovarian corpus luteum is required for reproduction. During luteal regression, the microvasculature of the corpus luteum is extensively disrupted. Prostaglandin F2α, a primary signal for luteal regression, induces the expression of transforming growth factor β1 (TGFB1) in the corpus luteum. This study determined the actions of TGFB1 on microvascular endothelial cells isolated from the bovine corpus luteum (CLENDO cells). We hypothesized that TGFB1 participates in the disruption of the microvasculature during luteal regression. TGFB1 activated the canonical SMAD signaling pathway in CLENDO cells. TGFB1 (1 ng/ml) significantly reduced both basal and fetal-calf-serum-stimulated DNA synthesis, without reducing cell viability. TGFB1 also significantly reduced CLENDO cell transwell migration and disrupted the formation of capillary-like structures when CLENDO cells were plated on Matrigel. By contrast, CLENDO cells plated on fibrillar collagen I gels did not form capillary-like structures and TGFB1 induced cell death. Additionally, TGFB1 caused loss of VE-cadherin from cellular junctions and loss of cell-cell contacts, and increased the permeability of confluent CLENDO cell monolayers. These studies demonstrate that TGFB1 acts directly on CLENDO cells to limit endothelial cell function and suggest that TGFB1 might act in the disassembly of capillaries observed during luteal regression.
Collapse
Affiliation(s)
- Dulce Maroni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | | |
Collapse
|
118
|
Creighton J, Jian M, Sayner S, Alexeyev M, Insel PA. Adenosine monophosphate-activated kinase alpha1 promotes endothelial barrier repair. FASEB J 2011; 25:3356-65. [PMID: 21680893 DOI: 10.1096/fj.10-179218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vascular endothelium responds to damage through activation of multiple signaling events that restore cell-cell adhesion and vascular integrity. However, the molecular mechanisms that integrate these events are not clearly defined. Herein, we identify a previously unexpected role for adenosine monophosphate-activated protein kinase (AMPK) in pulmonary microvascular endothelial cell (PMVEC) repair. PMVECs selectively express the AMPKα1 catalytic subunit, pharmacological and short hairpin RNA-mediated inhibition of which attenuates Ca(2+) entry in these cells induced by the inflammatory Ca(2+)-signaling mimetic thapsigargin. We find that AMPKα1 activity is required for the formation of PMVEC cell-cell networks in a prorepair environment and for monolayer resealing after wounding. Decreasing AMPKα1 expression reduces barrier resistance in PMVEC monolayers, results consistent with a role for AMPKα1 in cell-cell adhesion. AMPKα1 colocalizes and coimmunoprecipitates with the adherens junction protein N-cadherin and cofractionates with proteins selectively expressed in caveolar membranes. Assessment of permeability, by measuring the filtration coefficient (K(f)) in isolated perfused lungs, confirmed that AMPK activation contributes to barrier repair in vivo. Our findings thus provide novel evidence for AMPKα1 in Ca(2+) influx-mediated signaling and wound repair in the endothelium.
Collapse
Affiliation(s)
- Judy Creighton
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
119
|
Toya SP, Malik AB. Role of endothelial injury in disease mechanisms and contribution of progenitor cells in mediating endothelial repair. Immunobiology 2011; 217:569-80. [PMID: 21513999 DOI: 10.1016/j.imbio.2011.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 12/30/2022]
Abstract
Recent research on the endothelium demonstrates complex interactions of endothelial cells with circulating immune cells, mediators such as cytokines, hormones and growth factors, and with the underlying parenchymal cells. These disparate interactions are involved in promotion of vascular development; maintenance of tissue homeostasis; and regulation of vascular repair. Injury to the endothelial monolayer is the sine qua non of organ dysfunction with endothelial repair the necessary first step needed for recovery. Thus, the capacity of the endothelium to regenerate itself is a key determinant of organ repair and survival after injury. Using the example of the lung, we will review the current state of knowledge regarding the importance of endothelium in the above mentioned processes with a focus on the role of stem cells, both endogenous (i.e., localized within the vessel wall) as well as exogenous (i.e., arriving in the vessel wall from distant sites such as the bone marrow) in promoting endothelial repair and regeneration. The subject of endothelial regeneration and the ways in which stem and progenitor cells contribute to this process has promise in treating vascular diseases. As we will highlight in this review, some questions have been addressed but many more remain and need to be addressed before cell-based therapies become a viable option.
Collapse
Affiliation(s)
- Sophie P Toya
- Department of Pharmacology and the Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
120
|
Ultrastructural analysis reveals cAMP-dependent enhancement of microvascular endothelial barrier functions via Rac1-mediated reorganization of intercellular junctions. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2424-36. [PMID: 21457935 DOI: 10.1016/j.ajpath.2011.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
Evidence exists that cAMP stabilizes the endothelial barrier, in part via activation of the small GTPase Rac1. However, despite the high medical relevance of this signaling pathway, the mechanistic effects on intercellular contacts on the ultrastructural level are largely unknown. In microvascular endothelial cell monolayers, in which increased cAMP strengthened barrier properties, similar to intact microvessels in vivo, both forskolin and rolipram (F/R) to increase cAMP and 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphorothioate (O-Me-cAMP) to stimulate exchange protein directly activated by cAMP/Ras proximate-1 (EPac/Rap 1) signaling enhanced transendothelial electrical resistance and induced activation of Rac1. Concurrently, augmented immunofluorescence intensity and linearization of signals at cell borders were observed for intercellular junction proteins VE-cadherin and claudin 5. Ultrastructural analysis of the intercellular contact zone architecture documented that exposure to F/R or O-Me-cAMP led to a significant increase in the proportion of contact sites displaying complex interdigitations of cell borders, in which membranes of neighboring cells were closely apposed over comparatively long distances; in addition, they were stabilized by numerous intercellular junctions. Interference with Rac1 activation by NSC-23766 completely abolished both barrier stabilization and contact zone reorganization in response to O-Me-cAMP, whereas F/R-mediated Rac1 activation and barrier enhancement were not affected by NSC-23766. In parallel experiments using macrovascular endothelium, increased cAMP failed to induce Rac1 activation, barrier enhancement, and contact zone reorganization. These results indicate that, in microvascular endothelium, Rac1-mediated alterations in contact zone architecture contribute to cAMP-induced barrier stabilization.
Collapse
|
121
|
Bertok S, Wilson MR, Dorr AD, Dokpesi JO, O'Dea KP, Marczin N, Takata M. Characterization of TNF receptor subtype expression and signaling on pulmonary endothelial cells in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L781-9. [PMID: 21378027 DOI: 10.1152/ajplung.00326.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TNF plays a crucial role in the pathogenesis of acute lung injury. However, the expression profile of its two receptors, p55 and p75, on pulmonary endothelium and their influence on TNF signaling during lung microvascular inflammation remain uncertain. Using flow cytometry, we characterized the expression profile of TNF receptors on the surface of freshly harvested pulmonary endothelial cells (PECs) from mice and found expression of both receptors with dominance of p55. To investigate the impact of stimulating individual TNF receptors, we treated wild-type and TNF receptor knockout mice with intravenous TNF and determined surface expression of adhesion molecules (E-selectin, VCAM-1, ICAM-1) on PECs by flow cytometry. TNF-induced upregulation of all adhesion molecules was substantially attenuated by absence of p55, whereas lack of p75 had a similar but smaller effect that varied between adhesion molecules. Selective blockade of individual TNF receptors by specific antibodies in wild-type primary PEC culture confirmed that the in vivo findings were due to direct effects of TNF receptor inhibition on endothelium and not other cells (e.g., circulating leukocytes). Finally, we found that PEC surface expression of p55 dramatically decreased in the early stages of endotoxemia following intravenous LPS, while no change in p75 expression was detected. These data demonstrate a crucial in vivo role of p55 and an auxiliary role of p75 in TNF-mediated adhesion molecule upregulation on PECs. It is possible that the importance of the individual receptors varies at different stages of pulmonary microvascular inflammation following changes in their relative expression.
Collapse
Affiliation(s)
- Szabolcs Bertok
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
122
|
Relevance of disease- and organ-specific endothelial cells forin vitroresearch. Cell Biol Int 2010; 34:1231-8. [DOI: 10.1042/cbi20100531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
123
|
Ochoa CD, Stevens T, Balczon R. Cold exposure reveals two populations of microtubules in pulmonary endothelia. Am J Physiol Lung Cell Mol Physiol 2010; 300:L132-8. [PMID: 20971804 DOI: 10.1152/ajplung.00185.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubules are composed of α-tubulin and β-tubulin dimers. Microtubules yield tubulin dimers when exposed to cold, which reassemble spontaneously to form microtubule fibers at 37°C. However, mammalian neurons, glial cells, and fibroblasts have cold-stable microtubules. While studying the microtubule toxicity mechanisms of the exotoxin Y from Pseudomonas aeruginosa in pulmonary microvascular endothelial cells, we observed that some endothelial microtubules were very difficult to disassemble in the cold. As a consequence, we designed studies to test the hypothesis that microvascular endothelium has a population of cold-stable microtubules. Pulmonary microvascular endothelial cells and HeLa cells (control) were grown under regular cell culture conditions, followed by exposure to an ice-cold water bath and a microtubule extraction protocol. Polymerized microtubules were detected by immunofluorescence confocal microscopy and Western blot analyses. After cold exposure, immunofluorescence revealed that the majority of HeLa cell microtubules disassembled, whereas a smaller population of endothelial cell microtubules disassembled. Immunoblot analyses showed that microvascular endothelial cells express the microtubule cold-stabilizing protein N-STOP (neuronal stable tubule-only polypeptides), and that N-STOP binds to endothelial microtubules after cold exposure, but not if microtubules are disassembled with nocodazole before cold exposure. Hence, pulmonary endothelia have a population of cold-stable microtubules.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Departments of Pharmacology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
124
|
Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L513-22. [PMID: 20675437 DOI: 10.1152/ajplung.00274.2009] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A.
Collapse
|
125
|
Abstract
OBJECTIVE Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. DESIGN Prospective, randomized, controlled study. SETTING Research laboratory. SUBJECTS One hundred twenty male CD40 rats. INTERVENTIONS To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. MEASUREMENTS Static and dynamic lung mechanics and hemodynamics were measured continuously. MAIN RESULTS Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. CONCLUSIONS Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.
Collapse
|
126
|
|
127
|
Schniedermann J, Rennecke M, Buttler K, Richter G, Städtler AM, Norgall S, Badar M, Barleon B, May T, Wilting J, Weich HA. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels. BMC Cell Biol 2010; 11:50. [PMID: 20594323 PMCID: PMC2911414 DOI: 10.1186/1471-2121-11-50] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/01/2010] [Indexed: 11/16/2022] Open
Abstract
Background Postnatal endothelial progenitor cells (EPCs) have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs) were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony). These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs) in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.
Collapse
Affiliation(s)
- Judith Schniedermann
- Division Molecular Biotechnology, Department of Gene Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ochoa CD, Wu S, Stevens T. New developments in lung endothelial heterogeneity: Von Willebrand factor, P-selectin, and the Weibel-Palade body. Semin Thromb Hemost 2010; 36:301-8. [PMID: 20490980 DOI: 10.1055/s-0030-1253452] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quiescent pulmonary endothelium establishes an antithrombotic, anti-inflammatory surface that promotes blood flow. However, the endothelium rapidly responds to injury and inflammation by promoting thrombosis and enabling the directed transmigration of inflammatory cells, such as neutrophils, into the alveolar airspace. Although the endothelial cell signals responsible for establishing a prothrombotic surface are distinct from those responsible for recognizing circulating neutrophils, these processes are highly interrelated. Von Willebrand factor (VWF)-stimulated secretion plays an important role in thrombus formation, and P-selectin surface expression plays a key role in neutrophil binding necessary for transmigration. Both VWF and P-selectin are located within Weibel-Palade bodies in pulmonary arteries and arterioles, yet Weibel-Palade bodies are absent in capillaries. Despite the absence of the Weibel-Palade bodies, pulmonary capillaries express both VWF and P-selectin. The physiological and pathophysiological significance of these observations is unclear. In this review, we address some anatomical and physiological features that distinguish pulmonary artery, capillary, and vein endothelium. In addition, we review our current understanding regarding the stimulated secretion of VWF and P-selectin in pulmonary artery and capillary endothelium. This information is considered in the context of vasculitis and pneumonia, two pathophysiological processes to which the stimulated secretion of VWF and P-selectin contribute.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
129
|
Giordano RJ, Edwards JK, Tuder RM, Arap W, Pasqualini R. Combinatorial ligand-directed lung targeting. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2009; 6:411-5. [PMID: 19687212 PMCID: PMC3266014 DOI: 10.1513/pats.200903-014aw] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/26/2009] [Indexed: 12/13/2022]
Abstract
Phage display of random peptide libraries is a powerful, unbiased method frequently used to discover ligands for virtually any protein of interest and to reveal functional protein-protein interaction partners. Moreover, in vivo phage display permits selection of peptides that bind specifically to different vascular beds without any previous knowledge pertaining to the nature of their corresponding receptors. Vascular targeting exploits molecular differences inherent in blood vessels within given organs and tissues, as well as diversity between normal and angiogenic blood vessels. Over the years, our group has identified phage capable of homing to lung blood vessels based on screenings using immortalized lung endothelial cells combined with in vivo selections after intravenous administration of combinatorial libraries. Peptides targeting lung vasculature have been extensively characterized and a lead homing peptide has shown interesting biological properties, bringing novel insights as to the implications of lung endothelial cell apoptosis in the pathogenesis of emphysema. We have also designed and developed targeted nanoparticles with imaging capabilities and/or drug delivery functions by combining phage display technology and elemental gold (Au) nanoparticles, constituting a promising platform for the development of therapeutic agents for imaging and treatment of lung disorders. Given the important role of the endothelium in the pathogenesis and progression of several diseases associated with the airways, ligand-directed discovery of lung vascular markers is an important milestone toward the development of future targeted therapies.
Collapse
Affiliation(s)
- Ricardo J. Giordano
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Julianna K. Edwards
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Rubin M. Tuder
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Wadih Arap
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Renata Pasqualini
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
130
|
Alexeyev MF, Fayzulin R, Shokolenko IN, Pastukh V. A retro-lentiviral system for doxycycline-inducible gene expression and gene knockdown in cells with limited proliferative capacity. Mol Biol Rep 2009; 37:1987-91. [PMID: 19655272 DOI: 10.1007/s11033-009-9647-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/21/2009] [Indexed: 01/06/2023]
Abstract
Currently, there is no reliable system for regulated gene expression and regulated gene knockdown in cells with finite lifespan. In this manuscript, we describe a vector system, consisting of a retrovirus for the delivery of rtTA, and a lentivirus for the delivery of either a transgene or a miR-shRNA for the modification of primary cells. Primary rat pulmonary microvascular endothelial cells (PMVEC) modified by these vectors for the inducible expression of Gaussia luciferase or DsRed Express demonstrated greater than 100-fold induction of the transgene expression with doxycycline. The system works reliably in both sequential and simultaneous infection modes, with about 95% of the sells selected with two antibiotics being inducible in each mode. The lentiviral vector for gene knockdown allows for the direct cloning of shRNA oligos using alpha-complementation, and for the monitoring of induction of RNA interference with fluorescent reporter, mCherry. The gene knockdown vector was validated by knocking down beta-actin expression in PMVECs, with two of the four constructs showing 59 and 75% knockdown, respectively, compared to uninduced controls. The vectors described here were successfully used for the modification of various primary and established cell lines for regulated gene expression and regulated knockdown.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, 307 University Blvd., Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
131
|
Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M. Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 2009; 43:26-34. [PMID: 19648475 DOI: 10.1165/rcmb.2009-0073oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During high tidal volume mechanical ventilation in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), regions of the lung are exposed to excessive stretch, causing inflammatory responses and further lung damage. In this study, the effects of mechanical stretch on intracellular Ca(2+) concentration ([Ca(2+)](i)), which regulates a variety of endothelial properties, were investigated in human pulmonary microvascular endothelial cells (HPMVECs). HPMVECs grown on fibronectin-coated silicon chambers were exposed to uniaxial stretching, using a cell-stretching apparatus. After stretching and subsequent unloading, [Ca(2+)](i), as measured by fura-2 fluorescence, was transiently increased in a strain amplitude-dependent manner. The elevation of [Ca(2+)](i) induced by stretch was not evident in the Ca(2+)-free solution and was blocked by Gd(3+), a stretch-activated channel inhibitor, or ruthenium red, a transient receptor potential vanilloid inhibitor. The disruption of actin polymerization with cytochalasin D inhibited the stretch-induced elevation of [Ca(2+)](i). In contrast, increases in [Ca(2+)](i) induced by thapsigargin or thrombin were not affected by cytochalasin D. Increased actin polymerization with sphingosine-1-phosphate or jasplakinolide enhanced the stretch-induced elevation of [Ca(2+)](i). A simple network model of the cytoskeleton was also developed in support of the notion that actin stress fibers are required for efficient force transmission to open stretch-activated Ca(2+) channels. In conclusion, mechanical stretch activates Ca(2+) influx via stretch-activated channels which are tightly regulated by the actin cytoskeleton different from other Ca(2+) influx pathways such as receptor-operated and store-operated Ca(2+) entries in HPMVECs. These results suggest that abnormal Ca(2+) homeostasis because of excessive mechanical stretch during mechanical ventilation may play a role in the progression of ALI/ARDS.
Collapse
Affiliation(s)
- Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Meoli DF, White RJ. Thrombin induces fibronectin-specific migration of pulmonary microvascular endothelial cells: requirement of calcium/calmodulin-dependent protein kinase II. Am J Physiol Lung Cell Mol Physiol 2009; 297:L706-14. [PMID: 19648282 DOI: 10.1152/ajplung.90598.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of excess vasoconstriction and vascular cell proliferation that results in increased pulmonary vascular resistance and right heart failure. We have previously shown (66) that tissue factor expression is increased in the abnormal vessels of patients and rats with PAH. We hypothesized that tissue factor and its downstream mediator, thrombin, would promote migration of endothelial cells (EC) and the vascular pathology of PAH. Immunostaining revealed EC and a fibronectin-enriched matrix within the "plexiform-like" lesions in a rat model of severe PAH. In a modified Boyden assay, protease-activated receptor 1 (PAR1; thrombin receptor) stimulation by agonist peptide or thrombin induced pulmonary microvascular EC (PMVEC) migration when the cells were interacting with fibronectin, but not with other extracellular matrix proteins. Thrombin/fibronectin-induced migration was confirmed in wound healing and angiogenesis assays and was abrogated by the PAR1 antagonist SCH79797 and soluble RGD peptide. This fibronectin dependence was unique to PAR1 activation; other EC agonists evaluated did not induce migration on any matrix, and 10% FBS stimulated similar levels of migration on all matrix proteins tested. Thrombin/fibronectin stimulated autophosphorylation of calcium/calmodulin dependent protein kinase II (CaMKII) in PMVEC, and inhibitors of CaMKII blocked thrombin-induced migration on fibronectin, but had no effect on migration induced by 10% FBS. In contrast, EC isolated from the proximal pulmonary artery migrated in response to most agonists independent of the matrix substrate. Our findings illustrate EC heterogeneity in a single tissue and indicate a novel role for CaMKII in mediating EC migration. Because PMVEC have been shown to have impressive proliferative potential, thrombin/fibronectin-stimulated migration of these cells to a site of injured endothelium is a potential mechanism by which thrombin contributes to the development of vascular lesions in PAH.
Collapse
Affiliation(s)
- David F Meoli
- Aab Cardiovascular Research Institute and Department of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
133
|
Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI. Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 2009; 297:L650-7. [PMID: 19617313 DOI: 10.1152/ajplung.00015.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary vascular endothelial cells express a variety of ion channels that mediate Ca(2+) influx in response to diverse environmental stimuli. However, it is not clear whether Ca(2+) influx from discrete ion channels is functionally coupled to specific outcomes. Thus we conducted a systematic study in mouse lung to address whether the alpha(1G) T-type Ca(2+) channel and the transient receptor potential channel TRPV4 have discrete functional roles in pulmonary capillary endothelium. We used real-time fluorescence imaging for endothelial cytosolic Ca(2+), immunohistochemistry to probe for surface expression of P-selectin, and the filtration coefficient to specifically measure lung endothelial permeability. We demonstrate that membrane depolarization via exposure of pulmonary vascular endothelium to a high-K(+) perfusate induces Ca(2+) entry into alveolar septal endothelial cells and exclusively leads to the surface expression of P-selectin. In contrast, Ca(2+) entry in septal endothelium evoked by the selective TRPV4 activator 4alpha-phorbol-12,13-didecanoate (4alpha-PDD) specifically increases lung endothelial permeability without effect on P-selectin expression. Pharmacological blockade or knockout of alpha(1G) abolishes depolarization-induced Ca(2+) entry and surface expression of P-selectin but does not prevent 4alpha-PDD-activated Ca(2+) entry and the resultant increase in permeability. Conversely, blockade or knockout of TRPV4 specifically abolishes 4alpha-PDD-activated Ca(2+) entry and the increase in permeability, while not impacting depolarization-induced Ca(2+) entry and surface expression of P-selectin. We conclude that in alveolar septal capillaries Ca(2+) entry through alpha(1G) and TRPV4 channels differentially and specifically regulates the transition of endothelial procoagulant phenotype and barrier integrity, respectively.
Collapse
Affiliation(s)
- Songwei Wu
- Center for Lung Biology and Dept. of Pharmacology, Univ. of South Alabama College of Medicine, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A 2009; 106:10684-9. [PMID: 19541651 DOI: 10.1073/pnas.0901326106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, through the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha (HIFs), induces angiogenesis by up-regulating a common set of angiogenic cytokines. Unlike HIF-1alpha, which regulates a unique set of genes, most genes regulated by HIF-2alpha overlap with those induced by HIF-1alpha. Thus, the unique contribution of HIF-2alpha remains largely obscure. By using adenoviral mutant HIF-1alpha and adenoviral mutant HIF-2alpha constructs, where the HIFs are transcriptionally active under normoxic conditions, we show that HIF-2alpha but not HIF-1alpha regulates adenosine A(2A) receptor in primary cultures of human lung endothelial cells. Further, siRNA knockdown of HIF-2alpha completely inhibits hypoxic induction of A(2A) receptor. Promoter studies show a 2.5-fold induction of luciferase activity with HIF-2alpha cotransfection. Analysis of the A(2A) receptor gene promoter revealed a hypoxia-responsive element in the region between -704 and -595 upstream of the transcription start site. By using a ChIP assay, we demonstrate that HIF-2alpha binding to this region is specific. In addition, we demonstrate that A(2A) receptor has angiogenic potential, as assessed by increases in cell proliferation, cell migration, and tube formation. Additional data show increased expression of A(2A) receptor in human lung tumor cancer samples relative to adjacent normal lung tissue. These data also demonstrate that A(2A) receptor is regulated by hypoxia and HIF-2alpha in human lung endothelial cells but not in mouse-derived endothelial cells.
Collapse
|
135
|
Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T. TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 2009; 11:765-76. [PMID: 18783312 PMCID: PMC2850299 DOI: 10.1089/ars.2008.2221] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rises in cytosolic calcium are sufficient to initiate the retraction of endothelial cell borders and to increase macromolecular permeability. Although endothelial cell biologists have recognized the importance of shifts in cytosolic calcium for several decades, only recently have we gained a rudimentary understanding of the membrane calcium channels that change cell shape. Members of the transient receptor potential family (TRP) are chief among the molecular candidates for permeability-coupled calcium channels. Activation of calcium entry through store-operated calcium entry channels, most notably TRPC1 and TRPC4, increases lung endothelial cell permeability, as does activation of calcium entry through the TRPV4 channel. However, TRPC1 and TRPC4 channels appear to influence the lung extraalveolar endothelial barrier most prominently, whereas TRPV4 channels appear to influence the lung capillary endothelial barrier most prominently. Thus, phenotypic heterogeneity in ion channel expression and function exists within the lung endothelium, along the arterial-capillary-venous axis, and is coupled to discrete control of endothelial barrier function.
Collapse
Affiliation(s)
- Donna L Cioffi
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
136
|
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11:791-810. [PMID: 18783313 PMCID: PMC2790033 DOI: 10.1089/ars.2008.2220] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Randall S Frey
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
137
|
Early incorporated endothelial cells as origin of metastatic tumor vasculogenesis. Clin Exp Metastasis 2009; 26:589-98. [PMID: 19330530 DOI: 10.1007/s10585-009-9257-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 03/13/2009] [Indexed: 12/18/2022]
Abstract
Vascularization of solid tumors is thought to occur by sprouting or intussusceptive angiogenesis, co-option of existing vessels, and vasculogenic mimicry after the onset of tumor hypoxia, when the tumor radius exceeds the oxygen diffusion distance. In contrast, here we show that individual endothelial cells that are incorporated into pre-hypoxic tumors give rise to tumor blood vessels via vasculogenesis. Small metastatic lung tumor sections obtained after tail-vein injection of a syngeneic breast cancer cell line in the nude mice were labeled with antibodies against endothelial cell markers. Immunofluorescence showed the incorporation and mixed growth of CD31-, Tie-2-, and CD105-positive endothelial cells in tumors with radii less than oxygen diffusion distance and subsequent development of blood vessels from these early-incorporated endothelial cells. This observation lays the foundation of a novel vasculogenic paradigm of tumor vascularization, where incorporation of endothelial cells and their growth among tumor cells occur before the onset of core hypoxia in lung metastatic tumors.
Collapse
|
138
|
Effros RM, Parker JC. Pulmonary vascular heterogeneity and the Starling hypothesis. Microvasc Res 2009; 78:71-7. [PMID: 19332080 DOI: 10.1016/j.mvr.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 03/13/2009] [Indexed: 12/19/2022]
Abstract
It has generally been assumed that movement of fluid between the pulmonary microvasculature and surrounding tissues is governed by a "Starling" balance of hydrostatic and protein osmotic forces similar to that which prevails in the extremities. However, both recent and older observations suggest that the lungs are more resistant to edema formation than most other organs. Several structural aspects of the lung may account for protection of the airspaces from edema formation. The pulmonary microvasculature, which comprises >70% of the pulmonary circulatory bed, appears to be less permeable to fluid and electrolytes than the endothelium of the pulmonary arteries and veins and other microvascular exchange areas. This arrangement may help explain why early edema is confined to the perivascular and peribronchial regions and why lymphatics do not reach the alveoli. Unlike the peripheral vasculature, which is compressed by edema formation, the extra-alveolar vessels remain tethered open by airway distention, even when interstitial pressures rise above those in the vessels. This may also facilitate return of proteins to the circulation. Ultrafiltration of plasma may lower local protein concentrations in the interstitium, thereby slowing further edema formation. Transendothelial reabsorption of fluid may also be altered by vesicular transport.
Collapse
Affiliation(s)
- Richard M Effros
- Los Angeles Biomedical Institute at Harbor-UCLA Medical Center, 1124 West Carson St, J4, Torrance, CA 90502, USA.
| | | |
Collapse
|
139
|
Lu Q, Patel B, Harrington EO, Rounds S. Transforming growth factor-beta1 causes pulmonary microvascular endothelial cell apoptosis via ALK5. Am J Physiol Lung Cell Mol Physiol 2009; 296:L825-38. [PMID: 19270180 DOI: 10.1152/ajplung.90307.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that transforming growth factor (TGF)-beta1 protected against main pulmonary artery endothelial cell (PAEC) apoptosis induced by serum deprivation and VEGF receptor blockade through a mechanism associated with ALK5-mediated Bcl-2 upregulation. In the current study, we investigated the effect of TGF-beta1 on pulmonary microvascular endothelial cell (PMVEC) apoptosis. We found that, in contrast to the results seen in conduit PAEC, TGF-beta1 caused apoptosis of PMVEC, an effect that was also dependent on ALK5 activity. We noted that non-SMAD signaling pathways did not play a role in TGF-beta1-induced apoptosis. Both SMAD2 and SMAD1/5 were activated upon exposure to TGF-beta1. TGF-beta1-induced activation of SMAD2, but not SMAD1/5, was abolished by ALK5 inhibition, an effect that associated with prevention of TGF-beta1-induced apoptosis. These results suggest that SMAD2 is important in TGF-beta1-induced apoptosis of PMVEC. While caspase-12 activity was not altered, caspase-8 was activated by TGF-beta1, an effect that correlated with a reduction of cFLIP protein levels. Additionally, TGF-beta1 decreased Bcl-2 protein levels and induced cytochrome c cytosolic redistribution. These results suggest that TGF-beta1 caused apoptosis of PMVEC likely through both caspase-8-dependent extrinsic pathway and mitochondria-mediated intrinsic pathway. We noted that inhibition of ALK5 attenuated serum deprivation-induced apoptosis, an effect that correlated with increased expression and activation of CREB and its potential target genes, Bcl-2 and cFLIP. These results suggest that CREB may be important in mediating apoptosis resistance of PMVEC upon ALK5 inhibition perhaps through upregulation of Bcl-2 and cFLIP. Finally, we noted that SMAD1/5 were activated upon ALK5 inhibition in the presence of low levels of TGF-beta1, an effect associated with enhanced endothelial proliferation. We speculate that imbalance of ALK1 and ALK5 may contribute to the development of pulmonary artery hypertension.
Collapse
Affiliation(s)
- Qing Lu
- Providence VA Medical Center, Research Services, Providence, RI 02908, USA.
| | | | | | | |
Collapse
|
140
|
Isakson BE. Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication. J Cell Sci 2009; 121:3664-73. [PMID: 18946029 DOI: 10.1242/jcs.037481] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] originating in the vascular smooth-muscle cells (VSMCs) has been shown to modulate the Ca(2+) stores in endothelial cells (ECs). However, the reverse is not found, suggesting that Ins(1,4,5)P(3) movement might be unidirectional across gap junctions at the myoendothelial junction (MEJ), or that distribution of the Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)-R] is different between the two cell types. To study trans-junctional communication at the MEJ, we used a vascular-cell co-culture model system and selectively modified the connexin composition in gap junctions in the two cell types. We found no correlation between modification of connexin expression and Ins(1,4,5)P(3) signaling between ECs and VSMCs. We next explored the distribution of Ins(1,4,5)P(3)-R isoforms in the two cell types and found that Ins(1,4,5)P(3)-R1 was selectively localized to the EC side of the MEJ. Using siRNA, selective knockdown of Ins(1,4,5)P(3)-R1 in ECs eliminated the secondary Ins(1,4,5)P(3)-induced response in these cells. By contrast, siRNA knockdown of Ins(1,4,5)P(3)-R2 or Ins(1,4,5)P(3)-R3 in ECs did not alter the EC response to VSMC stimulation. The addition of 5-phosphatase inhibitor (5-PI) to ECs that were transfected with Ins(1,4,5)P(3)-R1 siRNA rescued the Ins(1,4,5)P(3) response, indicating that metabolic degradation of Ins(1,4,5)P(3) is an important part of EC-VSMC coupling. To test this concept, VSMCs were loaded with 5-PI and BAPTA-loaded ECs were stimulated, inducing an Ins(1,4,5)P(3)-mediated response in VSMCs; this indicated that Ins(1,4,5)P(3) is bidirectional across the gap junction at the MEJ. Therefore, localization of Ins(1,4,5)P(3)-R1 on the EC side of the MEJ allows the ECs to respond to Ins(1,4,5)P(3) from VSMCs, whereas Ins(1,4,5)P(3) moving from ECs to VSMCs is probably metabolized before binding to a receptor. This data implicates the MEJ as being a unique cell-signaling domain in the vasculature.
Collapse
Affiliation(s)
- Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA 22908, USA.
| |
Collapse
|
141
|
Abstract
The pulmonary circulation represents a unique vascular bed, receiving 100% of the cardiac output while maintaining low blood pressure. Multiple different cell types, including endothelium, smooth muscle, and fibroblasts, contribute to normal vascular function, and to the vascular response to injury. Our understanding of the basic cell biology of these various cell types, and the roles they play in vascular homeostasis and disease, remains quite limited despite several decades of study. Recent advances in approaches that enable the mapping of cell origin and the study of the molecular basis of structure and function have resulted in a rapid accumulation of new information that is essential to vascular biology. A recent National Institutes of Health workshop was held to discuss emerging concepts in lung vascular biology. The findings of this workshop are summarized in this article.
Collapse
|
142
|
Simon A, Harrington EO, Liu GX, Koren G, Choudhary G. Mechanism of C-type natriuretic peptide-induced endothelial cell hyperpolarization. Am J Physiol Lung Cell Mol Physiol 2008; 296:L248-56. [PMID: 19036874 DOI: 10.1152/ajplung.90303.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C-type natriuretic peptide (CNP) has a demonstrated hyperpolarizing effect on vascular smooth muscle cells. However, its autocrine function, including its electrophysiological effect on endothelial cells, is not known. Here, we report the effect of CNP on the membrane potential (E(m)) of pulmonary microvascular endothelial cells and describe its target receptors, second messengers, and ion channels. We measured changes in E(m) using fluorescence imaging and perforated patch-clamping techniques. In imaging experiments, samples were preincubated in the potentiometric dye DiBAC(4)(3), and subsequently exposed to CNP in the presence of selective inhibitors of ion channels or second messengers. CNP exposure induced a dose-dependent decrease in fluorescence, indicating that CNP induces endothelial cell hyperpolarization. CNP-induced hyperpolarization was inhibited by the K(+) channel blockers, tetraethylammonium or iberiotoxin, the nonspecific cation channel blocker, La(3+), or by depletion or repletion of extracellular Ca(2+) or K(+), respectively. CNP-induced hyperpolarization was also blocked by pharmacological inhibition of PKG or by small interfering RNA (siRNA)-mediated knockdown of natriuretic peptide receptor-B (NPR-B). CNP-induced hyperpolarization was mimicked by the PKG agonist, 8-bromo-cGMP, and attenuated by both the endothelial nitric oxide synthase (eNOS) inhibitor, N(omega)-nitro-l-arginine methyl ester (l-NAME), and the soluble guanylyl cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Presence of iberiotoxin-sensitive, CNP-induced outward current was confirmed by perforated patch-clamping experiments. We conclude that CNP hyperpolarizes pulmonary microvascular endothelial cells by activating large-conductance calcium-activated potassium channels mediated by the activation of NPR-B, PKG, eNOS, and sGC.
Collapse
Affiliation(s)
- Aaron Simon
- Providence VA Medical Center, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
143
|
Zhu B, Zhang L, Alexeyev M, Alvarez DF, Strada SJ, Stevens T. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype. Am J Physiol Lung Cell Mol Physiol 2008; 296:L220-8. [PMID: 19028977 DOI: 10.1152/ajplung.90474.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stably expressed in pulmonary microvascular endothelial cells. hPDE5A1 expression reduced the basal and atrial natriuretic peptide (ANP)-stimulated cGMP concentrations in these cells. hPDE5A1-expressing cells displayed attenuated network formation on Matrigel in vitro and also produced fewer blood vessels in Matrigel plug assays in vivo; the inhibitory actions of hPDE5A1 were reversed using sildenafil. To examine whether endogenous PDE5 activity suppresses endothelial cell angiogenic potential, small interfering RNA (siRNA) constructs were stably expressed in pulmonary artery endothelial cells. siRNA selectively decreased PDE5 expression and increased basal and ANP-stimulated cGMP concentrations in these conduit cells. PDE5 downregulation increased network formation on Matrigel in vitro and increased blood vessel formation in Matrigel plug assays in vivo. Collectively, our results indicate that PDE5 activity is an essential determinant of angiogenesis and suggest that PDE5 downregulation in microvascular endothelium imparts a stable, enhanced angiogenic potential to this cell type.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | | | |
Collapse
|
144
|
Chang R, Chicoine LG, Cui H, Kanagy NL, Walker BR, Liu Y, English BK, Nelin LD. Cytokine-induced arginase activity in pulmonary endothelial cells is dependent on Src family tyrosine kinase activity. Am J Physiol Lung Cell Mol Physiol 2008; 295:L688-97. [PMID: 18621907 DOI: 10.1152/ajplung.00504.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that the Src family tyrosine kinases (STKs) are involved in the upregulation of arginase and inducible nitric oxide synthase (iNOS) expression in response to inflammatory stimuli in pulmonary endothelial cells. Treatment of bovine pulmonary arterial endothelial cells (bPAEC) with lipopolysaccharide and tumor necrosis factor-alpha (L/T) resulted in increased urea and nitric oxide (NO) production, and this increase in urea and NO production was inhibited by the STK inhibitor PP1 (10 microM). The STK inhibitors PP2 (10 microM) and herbimycin A (10 microM) also prevented the L/T-induced expression of both arginase II and iNOS mRNA in bPAEC. Together, the data demonstrate a central role of STK in the upregulation of both arginase II and iNOS in bPAEC in response to L/T treatment. To identify the specific kinase(s) required for the induction of urea and NO production, we studied human pulmonary microvascular endothelial cells (hPMVEC) so that short interfering RNA (siRNA) techniques could be employed. We found that hPMVEC express Fyn, Yes, c-Src, Lyn, and Blk and that the protein expression of Fyn, Yes, c-Src, and Lyn could be inhibited with specific siRNA. The siRNA targeting Fyn prevented the cytokine-induced increase in urea and NO production, whereas siRNAs specifically targeting Yes, c-Src, and Lyn had no appreciable effect on cytokine-induced urea and NO production. These findings support our hypothesis that inflammatory stimuli lead to increased urea and NO production through a STK-mediated pathway. Furthermore, these results indicate that the STK Fyn plays a critical role in this process.
Collapse
Affiliation(s)
- Rossana Chang
- Center for Perinatal Research, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Lorico A, Mercapide J, Soloduschko V, Alexeyev M, Fodstad O, Rappa G. Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma. Cancer Gene Ther 2008; 15:605-15. [DOI: 10.1038/cgt.2008.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
146
|
Troyanovsky B, Alvarez DF, King JA, Schaphorst KL. Thrombin enhances the barrier function of rat microvascular endothelium in a PAR-1-dependent manner. Am J Physiol Lung Cell Mol Physiol 2007; 294:L266-75. [PMID: 18083763 DOI: 10.1152/ajplung.00107.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin is a multifunctional coagulation protease with pro- and anti-inflammatory vascular effects. We questioned whether thrombin may have segmentally differentiated effects on pulmonary endothelium. In cultured rat endothelial cells, rat thrombin (10 U/ml) recapitulated the previously reported decrease in transmonolayer electrical resistance (TER), F-actin stress fiber formation, paracellular gap formation, and increased permeability. In contrast, in rat pulmonary microvascular endothelial cells (PMVEC), isolated on the basis of Griffonia simplicifolia lectin recognition, thrombin increased TER, induced fewer stress fibers, and decreased permeability. To assess for differential proteinase-activated receptor (PAR) expression as a basis for the different responses, PAR family expression was analyzed. Both pulmonary artery endothelial cells and PMVEC expressed PAR-1 and PAR-2; however, only PMVEC expressed PAR-3, as shown by both RT-PCR and Western analysis. PAR-1 activating peptides (PAR-APs: SFLLRN-NH(2) and TFLLRN-NH(2)) were used to confirm a role for the PAR-1 receptor. PAR-APs (25-250 muM) also increased TER, formed fewer stress fibers, and did not induce paracellular gaps in PMVEC in contrast to that shown in pulmonary artery endothelial cells. These results were confirmed in isolated perfused rat lung preparations. PAR-APs (100 mug/ml) induced a 60% increase in the filtration coefficient over baseline. However, by transmission electron microscopy, perivascular fluid cuffs were seen only along conduit veins and arteries without evidence of intra-alveolar edema. We conclude that thrombin exerts a segmentally differentiated effect on endothelial barrier function in vitro, which corresponds to a pattern of predominant perivascular fluid cuff formation in situ. This may indicate a distinct role for thrombin in the microcirculation.
Collapse
Affiliation(s)
- B Troyanovsky
- Center for Lung Biology, University of South Alabama College of Medicine, 307 North University Drive, Mobile, AL 36688-0002, USA
| | | | | | | |
Collapse
|
147
|
Creighton J, Zhu B, Alexeyev M, Stevens T. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci 2007; 121:110-9. [PMID: 18073242 DOI: 10.1242/jcs.011692] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic cAMP fluctuations that are restricted to a sub-plasma-membrane domain strengthen endothelial barrier integrity. Phosphodiesterases (PDEs) localize within this domain where they limit cAMP diffusion into the bulk cytosolic compartment; however, the molecular identity of PDEs responsible for endothelial cell membrane cAMP compartmentation remain poorly understood. Our present findings reveal that the D4 splice variant of the PDE4 phosphodiesterase family - PDE4D4 - is expressed in pulmonary microvascular endothelial cells, and is found in plasma membrane fractions. PDE4D4 interacts with alpha II spectrin within this membrane domain. Although constitutive PDE4D4 activity limits cAMP access to the bulk cytosol, inhibiting its activity permits cAMP to access a cytosolic domain that is rich in microtubules, where it promotes protein kinase A (PKA) phosphorylation of tau at Ser214. Such phosphorylation reorganizes microtubules and induces interendothelial cell gap formation. Thus, spectrin-anchored PDE4D4 shapes the physiological response to cAMP by directing it to barrier-enhancing effectors while limiting PKA-mediated microtubule reorganization.
Collapse
Affiliation(s)
- Judy Creighton
- Center for Lung Biology, The University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
148
|
Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 2007; 294:L419-30. [PMID: 18065657 DOI: 10.1152/ajplung.00314.2007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been isolated postnatally from bone marrow, blood, and both the intima and adventitia of conduit vessels. However, it is unknown whether EPCs can be isolated from the lung microcirculation. Thus we sought to determine whether the microvasculature possesses EPCs capable of de novo vasculogenesis. Rat pulmonary artery (PAEC) and microvascular (PMVEC) endothelial cells were isolated and selected by using a single-cell clonogenic assay. Whereas the majority of PAECs (approximately 60%) were fully differentiated, the majority of PMVECs (approximately 75%) divided, with approximately 50% of the single cells giving rise to large colonies (>2,000 cells/colony). These highly proliferative cells exhibited the capacity to reconstitute the entire proliferative hierarchy of PMVECs, unveiling the existence of resident microvascular endothelial progenitor cells (RMEPCs). RMEPCs expressed endothelial cell markers (CD31, CD144, endothelial nitric oxide synthase, and von Willenbrand factor) and progenitor cell antigens (CD34 and CD309) but did not express the leukocyte marker CD45. Consistent with their origin, RMEPCs interacted with Griffonia simplicifolia and displayed restrictive barrier properties. In vitro and in vivo Matrigel assays revealed that RMEPCs possess vasculogenic capacity, forming ultrastructurally normal de novo vessels. Thus the pulmonary microcirculation is enriched with EPCs that display vasculogenic competence while maintaining functional endothelial microvascular specificity.
Collapse
Affiliation(s)
- Diego F Alvarez
- Department of Pharmacology, Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | |
Collapse
|
149
|
Solodushko V, Parker JC, Fouty B. Pulmonary microvascular endothelial cells form a tighter monolayer when grown in chronic hypoxia. Am J Respir Cell Mol Biol 2007; 38:491-7. [PMID: 18048805 DOI: 10.1165/rcmb.2007-0127oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Unique among the vascular beds, loss of endothelial integrity in the pulmonary microcirculation due to injury can lead to rapidly fatal hypoxemia. The ability to regain confluence and re-establish barrier function is central to restoring proper gas exchange. The adult respiratory distress syndrome (ARDS) is a heterogeneous disease, however, meaning that endothelial cells within different regions of the lung do not likely see the same oxygen tension as they attempt to proliferate and re-establish an intact endothelial monolayer; the effect of hypoxia on the integrity of this newly formed endothelial monolayer is not clear. Immortalized human pulmonary microvascular endothelial cells (PMVEC) (ST1.6R cells) were sparsely plated and grown to confluence over 4 days in either normoxia (21% oxygen) or hypoxia (5% oxygen). Confluence attained in a hypoxic environment resulted in a tighter, less permeable endothelial monolayer (as determined by an increase in transendothelial electrical resistance, decreased permeability to fluorescently labeled macromolecules, and decreased hydraulic conductance). PMVEC grown to confluence under hypoxia had decreased RhoA activity; consistent with this finding, inhibition of Rho kinase, a well-described downstream target of RhoA, markedly increased electrical resistance in normoxic, but not hypoxic, PMVEC. These results were confirmed in primary human and rat PMVEC. These data suggest that PMVEC grown to confluence under hypoxia form a tighter monolayer than similar cells grown under normoxia. This tighter barrier appears to be due, in part, to the inhibition of RhoA activity in hypoxic cells.
Collapse
Affiliation(s)
- Victor Solodushko
- Center for Lung Biology; Department of Pharmacology; University of South Alabama School of Medicine, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
150
|
Song Y, Zhao C, Dong L, Fu M, Xue L, Huang Z, Tong T, Zhou Z, Chen A, Yang Z, Lu N, Zhan Q. Overexpression of cyclin B1 in human esophageal squamous cell carcinoma cells induces tumor cell invasive growth and metastasis. Carcinogenesis 2007; 29:307-15. [PMID: 18048386 DOI: 10.1093/carcin/bgm269] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cyclin B1, a key component in the control of cell cycle progression from G(2) to M phase, has been implicated in tumorigenesis and the development of malignancy. However, the underlying mechanism by which cyclin B1 acts as an important oncogenic molecule remains largely unknown. Here we show that ectopic expression of cyclin B1 promotes cell proliferation, enhances cell motility and migration and results in increased ability of cells extravasating through the capillary endothelium. Interestingly, isogenic esophageal squamous cell carcinoma (ESCC) cells overexpressing cyclin B1 reveal strong invasive growth and high potential of metastasis to lung in xenograft mice. Suppression of cyclin B1 expression via small interfering RNA approach in high-metastatic esophagus carcinoma cells specifically inhibits their ability to metastasize from the primary ESCC to lung. Notably, altered expression of epithelial markers and mesenchymal markers were observed in the cells overexpressing cyclin B1, suggesting that cyclin B1 contributes to metastasis probably by promoting an epithelial-mesenchymal transition. These results establish a mechanistic link between cyclin B1 and ESCC metastasis and provide novel insight into understanding of cyclin B1 in the development of ESCC malignancy.
Collapse
Affiliation(s)
- Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|