101
|
Valera AM, Binda F, Pawlowski SA, Dupont JL, Casella JF, Rothstein JD, Poulain B, Isope P. Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex. eLife 2016; 5:e09862. [PMID: 26982219 PMCID: PMC4805550 DOI: 10.7554/elife.09862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Motor coordination is supported by an array of highly organized heterogeneous modules in the cerebellum. How incoming sensorimotor information is channeled and communicated between these anatomical modules is still poorly understood. In this study, we used transgenic mice expressing GFP in specific subsets of Purkinje cells that allowed us to target a given set of cerebellar modules. Combining in vitro recordings and photostimulation, we identified stereotyped patterns of functional synaptic organization between the granule cell layer and its main targets, the Purkinje cells, Golgi cells and molecular layer interneurons. Each type of connection displayed position-specific patterns of granule cell synaptic inputs that do not strictly match with anatomical boundaries but connect distant cortical modules. Although these patterns can be adjusted by activity-dependent processes, they were found to be consistent and predictable between animals. Our results highlight the operational rules underlying communication between modules in the cerebellar cortex.
Collapse
Affiliation(s)
- Antoine M Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Francesca Binda
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Sophie A Pawlowski
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Dupont
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jean-François Casella
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, United States
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| |
Collapse
|
102
|
Chihabi K, Morielli AD, Green JT. Intracerebellar infusion of the protein kinase M zeta (PKMζ) inhibitor zeta-inhibitory peptide (ZIP) disrupts eyeblink classical conditioning. Behav Neurosci 2016; 130:563-571. [PMID: 26949968 DOI: 10.1037/bne0000140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase M zeta (PKM-ζ), a constitutively active N-terminal truncated form of PKC-ζ, has long been implicated in a cellular correlate of learning, long-term potentiation (LTP). Inhibition of PKM-ζ with zeta-inhibitory peptide (ZIP) has been shown in many brain structures to disrupt maintenance of AMPA receptors, irreversibly disrupting numerous forms of learning and memory that have been maintained for weeks. Delay eyeblink conditioning (EBC) is an established model for the assessment of cerebellar learning; here, we show that PKC-ζ and PKM-ζ are highly expressed in the cerebellar cortex, with highest expression found in Purkinje cell (PC) nuclei. Despite being highly expressed in the cerebellar cortex, no studies have examined how regulation of cerebellar PKM-ζ may affect cerebellar-dependent learning and memory. Given its disruption of learning in other brain structures, we hypothesized that ZIP would also disrupt delay EBC. We have shown that infusion of ZIP into the lobulus simplex of the rat cerebellar cortex can indeed significantly disrupt delay EBC. (PsycINFO Database Record
Collapse
|
103
|
Smeets CJLM, Verbeek DS. Climbing fibers in spinocerebellar ataxia: A mechanism for the loss of motor control. Neurobiol Dis 2016; 88:96-106. [PMID: 26792399 DOI: 10.1016/j.nbd.2016.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 11/26/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) form an ever-growing group of neurodegenerative disorders causing dysfunction of the cerebellum and loss of motor control in patients. Currently, 41 different genetic causes have been identified, with each mutation affecting a different gene. Interestingly, these diverse genetic causes all disrupt cerebellar function and produce similar symptoms in patients. In order to understand the disease better, and define possible therapeutic targets for multiple SCAs, the field has been searching for common ground among the SCAs. In this review, we discuss the physiology of climbing fibers and the possibility that climbing fiber dysfunction is a point of convergence for at least a subset of SCAs.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
104
|
Antonietti A, Casellato C, Garrido JA, Luque NR, Naveros F, Ros E, DAngelo E, Pedrocchi A. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms. IEEE Trans Biomed Eng 2016; 63:210-9. [DOI: 10.1109/tbme.2015.2485301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proc Natl Acad Sci U S A 2015; 112:15474-9. [PMID: 26621723 DOI: 10.1073/pnas.1512915112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.
Collapse
|
106
|
Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Rep 2015; 13:1977-88. [PMID: 26655909 PMCID: PMC4674627 DOI: 10.1016/j.celrep.2015.10.057] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Simple spike suppression correlates trial by trial to conditioned eyelid behavior Conditioned stimulus-related complex spikes relate to simple spikes and behavior Molecular layer interneuron (MLI) modulation correlates to behavior Transgenic deficits in MLI input result in partially impaired eyeblink conditioning
Collapse
|
107
|
Gaffield MA, Amat SB, Bito H, Christie JM. Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. J Neurophysiol 2015; 115:413-22. [PMID: 26561609 DOI: 10.1152/jn.00834.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/05/2015] [Indexed: 01/28/2023] Open
Abstract
Purkinje cells (PCs) are a major site of information integration and plasticity in the cerebellum, a brain region involved in motor task refinement. Thus PCs provide an ideal location for studying the mechanisms necessary for cerebellum-dependent motor learning. Increasingly, sophisticated behavior tasks, used in combination with genetic reporters and effectors of activity, have opened up the possibility of studying cerebellar circuits during voluntary movement at an unprecedented level of quantitation. However, current methods used to monitor PC activity do not take full advantage of these advances. For example, single-unit or multiunit electrode recordings, which provide excellent temporal information regarding electrical activity, only monitor a small population of cells and can be quite invasive. Bolus loading of cell-permeant calcium (Ca(2+)) indicators is short-lived, requiring same-day imaging immediately after surgery and/or indicator injection. Genetically encoded Ca(2+) indicators (GECIs) overcome many of these limits and have garnered considerable use in many neuron types but only limited use in PCs. Here we employed these indicators to monitor Ca(2+) activity in PCs over several weeks. We could repeatedly image from the same cerebellar regions across multiple days and observed stable activity. We used chronic imaging to monitor PC activity in crus II, an area previously linked to licking behavior, and identified a region of increased activity at the onset of licking. We then monitored this same region after training tasks to initiate voluntary licking behavior in response to different sensory stimuli. In all cases, PC Ca(2+) activity increased at the onset of rhythmic licking.
Collapse
Affiliation(s)
| | - Samantha B Amat
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| |
Collapse
|
108
|
Bruinsma CF, Schonewille M, Gao Z, Aronica EM, Judson MC, Philpot BD, Hoebeek FE, van Woerden GM, De Zeeuw CI, Elgersma Y. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. J Clin Invest 2015; 125:4305-15. [PMID: 26485287 PMCID: PMC4639977 DOI: 10.1172/jci83541] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS.
Collapse
Affiliation(s)
- Caroline F. Bruinsma
- Department of Neuroscience and
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | - Matthew C. Judson
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Benjamin D. Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Geeske M. van Woerden
- Department of Neuroscience and
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience and
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience and
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
109
|
Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, Schruers K. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neurosci Biobehav Rev 2015; 59:83-91. [PMID: 26441374 DOI: 10.1016/j.neubiorev.2015.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Recent neuro-imaging studies have implicated the cerebellum in several higher-order functions. Its role in human fear conditioning has, however, received limited attention. The current meta-analysis examines the loci of cerebellar contributions to fear conditioning in healthy subjects, thus mapping, for the first time, the neural response to conditioned aversive stimuli onto the cerebellum. By using the activation likelihood estimation (ALE) technique for analyses, we identified several distinct regions in the cerebellum that activate in response to the presentation of the conditioned stimulus: the cerebellar tonsils, lobules HIV-VI, and the culmen. These regions have separately been implicated in fear acquisition, consolidation of fear memories and expression of conditioned fear responses. Their specific role in these processes may be attributed to the general contribution of cerebellar cortical networks to timing and prediction. Our meta-analysis highlights the potential role of the cerebellum in human cognition and emotion in general, and addresses the possibility how deficits in associative cerebellar learning may play a role in the pathogenesis of anxiety disorders. Future studies are needed to further clarify the mechanistic role of the cerebellum in higher order functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Iris Lange
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Liesbet Goossens
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Nicole Leibold
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Chris I De Zeeuw
- Royal Dutch Academy of Arts and Sciences, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands
| | - Therese van Amelsvoort
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Koen Schruers
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands; University of Leuven, Faculty of Psychology, Center for Experimental and Learning Psychology, Leuven, Belgium
| |
Collapse
|
110
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
111
|
Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci 2015; 35:8882-95. [PMID: 26063920 DOI: 10.1523/jneurosci.0891-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.1 channel, which is detected specifically in cytosolic and nuclear fractions in SCA6 patients, is associated with the SCA6 pathogenesis. To test this hypothesis, we expressed P/Q-type channel protein fragments from two different human CT splice variants, as predicted from SCA6 patients, in PCs of mice using viral and transgenic approaches. These splice variants represent a short (CT-short without polyQs) and a long (CT-long with 27 polyQs) CT fragment. Our results show that the different splice variants of the CTs differentially distribute within PCs, i.e., the short CTs reveal predominantly nuclear inclusions, whereas the long CTs prominently reveal both nuclear and cytoplasmic aggregates. Postnatal expression of CTs in PCs in mice reveals that only CT-long causes SCA6-like symptoms, i.e., deficits in eyeblink conditioning (EBC), ataxia, and PC degeneration. The physiological phenotypes associated specifically with the long CT fragment can be explained by an impairment of LTD and LTP at the parallel fiber-to-PC synapse and alteration in spontaneous PC activity. Thus, our results suggest that the polyQ carrying the CT fragment of the P/Q-type channel is sufficient to cause SCA6 pathogenesis in mice and identifies EBC as a new diagnostic strategy to evaluate Ca(2+) channel-mediated human diseases.
Collapse
|
112
|
Kloth AD, Badura A, Li A, Cherskov A, Connolly SG, Giovannucci A, Bangash MA, Grasselli G, Peñagarikano O, Piochon C, Tsai PT, Geschwind DH, Hansel C, Sahin M, Takumi T, Worley PF, Wang SSH. Cerebellar associative sensory learning defects in five mouse autism models. eLife 2015; 4:e06085. [PMID: 26158416 PMCID: PMC4512177 DOI: 10.7554/elife.06085] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/03/2015] [Indexed: 12/17/2022] Open
Abstract
Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2(R308/Y), Cntnap2-/-, L7-Tsc1 (L7/Pcp2(Cre)::Tsc1(flox/+)), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2(Cre)::Tsc1(flox/+), which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2(Cre)::Tsc1(flox/+) as well as Shank3+/ΔC and Mecp2(R308/Y), which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2(R308/Y) also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models.
Collapse
Affiliation(s)
- Alexander D Kloth
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Aleksandra Badura
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Amy Li
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Adriana Cherskov
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Sara G Connolly
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Andrea Giovannucci
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - M Ali Bangash
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Olga Peñagarikano
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Peter T Tsai
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
| | | | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Samuel S-H Wang
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
113
|
Hannon E, Chand AN, Evans MD, Wong CCY, Grubb MS, Mill J. A role for Ca V1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation. ACTA ACUST UNITED AC 2015; 3:1-6. [PMID: 26702400 PMCID: PMC4659419 DOI: 10.1016/j.nepig.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm), although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506) to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.
Collapse
Affiliation(s)
- Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Annisa N Chand
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Mark D Evans
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Chloe C Y Wong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London UK
| | - Matthew S Grubb
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK ; MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London UK
| |
Collapse
|
114
|
Bing YH, Wu MC, Chu CP, Qiu DL. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice. Front Cell Neurosci 2015; 9:214. [PMID: 26106296 PMCID: PMC4460530 DOI: 10.3389/fncel.2015.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC), parallel fiber–molecular layer interneurons (PF–MLI) and mossy fiber–granule cell (MF–GC) synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD) of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1) receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1) antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA) receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB)-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.
Collapse
Affiliation(s)
- Yan-Hua Bing
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| | - Mao-Cheng Wu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Osteology, Affiliated Hospital of Yanbian University Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| |
Collapse
|
115
|
Abstract
Long-term depression (LTD) at parallel fiber-Purkinje neuron synapses has been regarded as a primary cellular mechanism for motor learning. However, this hypothesis has been challenged. Demonstration of normal motor learning under LTD-suppressed conditions suggested that motor learning can occur without LTD. Synaptic plasticity mechanisms other than LTD have been found at various synapses in the cerebellum. Animals may achieve motor learning using several types of synaptic plasticity in the cerebellum including LTD.
Collapse
|
116
|
Grasselli G, Hansel C. Cerebellar long-term potentiation: cellular mechanisms and role in learning. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 117:39-51. [PMID: 25172628 DOI: 10.1016/b978-0-12-420247-4.00003-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Activity-dependent long-term plasticity of synaptic transmission, such as in long-term potentiation (LTP) and long-term depression (LTD), provides a cellular correlate of experience-driven learning. While at excitatory synapses in the hippocampus and neocortex LTP is seen as the primary learning mechanism, it has been widely assumed that cerebellar motor learning is mediated by LTD at parallel fiber (PF)-Purkinje cell synapses instead. However, recent work on mouse mutants with deficits in AMPA receptor internalization has demonstrated that motor learning can occur in the absence of LTD, suggesting that LTD is not essential. Another recent study has shifted attention toward LTP at PF synapses, showing that blockade of LTP severely affects motor learning. Here, we review the cellular and molecular events that are involved in LTP induction and discuss whether LTP might indeed play a more significant role in cerebellar learning than previously anticipated.
Collapse
Affiliation(s)
- Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
117
|
Blazquez PM, Yakusheva TA. GABA-A Inhibition Shapes the Spatial and Temporal Response Properties of Purkinje Cells in the Macaque Cerebellum. Cell Rep 2015; 11:1043-53. [PMID: 25959822 DOI: 10.1016/j.celrep.2015.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
Data from in vitro and anesthetized preparations indicate that inhibition plays a major role in cerebellar cortex function. We investigated the role of GABA-A inhibition in the macaque cerebellar ventral-paraflocculus while animals performed oculomotor behaviors that are known to engage the circuit. We recorded Purkinje cell responses to these behaviors with and without application of gabazine, a GABA-A receptor antagonist, near the recorded neuron. Gabazine increased the neuronal responsiveness to saccades in all directions and the neuronal gain to VOR cancellation and pursuit, most significantly the eye and head velocity sensitivity. L-glutamate application indicated that these changes were not the consequence of increases in baseline firing rate. Importantly, gabazine did not affect behavior or efference copy, suggesting that only local computations were disrupted. Our data, collected while the cerebellum performs behaviorally relevant computations, indicate that inhibition is a potent regulatory mechanism for the control of input-output gain and spatial tuning in the cerebellar cortex.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | - Tatyana A Yakusheva
- Department of Otolaryngology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
118
|
Mapelli L, Pagani M, Garrido JA, D'Angelo E. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 2015; 9:169. [PMID: 25999817 PMCID: PMC4419603 DOI: 10.3389/fncel.2015.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Museo Storico Della Fisica e Centro Studi e Ricerche Enrico Fermi Rome, Italy
| | - Martina Pagani
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Jesus A Garrido
- Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy ; Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy
| |
Collapse
|
119
|
Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc Natl Acad Sci U S A 2015; 112:3541-6. [PMID: 25737547 DOI: 10.1073/pnas.1413798112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Long-term depression (LTD) at parallel fiber-Purkinje cell (PF-PC) synapses is thought to underlie memory formation in cerebellar motor learning. Recent experimental results, however, suggest that multiple plasticity mechanisms in the cerebellar cortex and cerebellar/vestibular nuclei participate in memory formation. To examine this possibility, we formulated a simple model of the cerebellum with a minimal number of components based on its known anatomy and physiology, implementing both LTD and long-term potentiation (LTP) at PF-PC synapses and mossy fiber-vestibular nuclear neuron (MF-VN) synapses. With this model, we conducted a simulation study of the gain adaptation of optokinetic response (OKR) eye movement. Our model reproduced several important aspects of previously reported experimental results in wild-type and cerebellum-related gene-manipulated mice. First, each 1-h training led to the formation of short-term memory of learned OKR gain at PF-PC synapses, which diminished throughout the day. Second, daily repetition of the training gradually formed long-term memory that was maintained for days at MF-VN synapses. We reproduced such memory formation under various learning conditions. Third, long-term memory formation occurred after training but not during training, indicating that the memory consolidation occurred during posttraining periods. Fourth, spaced training outperformed massed training in long-term memory formation. Finally, we reproduced OKR gain changes consistent with the changes in the vestibuloocular reflex (VOR) previously reported in some gene-manipulated mice.
Collapse
|
120
|
Kotajima H, Sakai K, Hashikawa T, Yanagihara D. Effects of inferior olive lesion on fear-conditioned bradycardia. Neuroreport 2015; 25:556-61. [PMID: 24784584 PMCID: PMC4004639 DOI: 10.1097/wnr.0000000000000135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia.
Collapse
Affiliation(s)
- Hiroko Kotajima
- aDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo bCore Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo cLaboratory for Neuronal Architecture, RIKEN, Brain Science Institute, Saitama, Japan
| | | | | | | |
Collapse
|
121
|
van Beugen BJ, Qiao X, Simmons DH, De Zeeuw CI, Hansel C. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation. ACTA ACUST UNITED AC 2014; 21:662-7. [PMID: 25403454 PMCID: PMC4236409 DOI: 10.1101/lm.035220.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar parallel fiber (PF) to Purkinje cell synapses, thus resembling CX546 effects described at hippocampal synapses. Using the fluorescent calcium indicator dye Oregon Green BAPTA-2 and an ultra-high-speed CCD camera, we also monitored calcium transients in Purkinje cell dendrites. In the presence of CX546 in the bath, PF-evoked calcium transients were enhanced and prolonged, suggesting that CX546 not only enhances synaptic transmission, but also boosts dendritic calcium signaling at cerebellar synapses. In contrast to previous observations in the hippocampus, however, CX546 applied during cerebellar recordings facilitates long-term depression (LTD) rather than LTP at PF synapses. These findings show that ampakines selectively modify the LTP–LTD balance depending on the brain area and type of synapse, and may provide tools for the targeted regulation of synaptic memories.
Collapse
Affiliation(s)
- Boeke J van Beugen
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | - Xin Qiao
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Christian Hansel
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
122
|
Fuchs JR, Robinson GM, Dean AM, Schoenberg HE, Williams MR, Morielli AD, Green JT. Cerebellar secretin modulates eyeblink classical conditioning. ACTA ACUST UNITED AC 2014; 21:668-75. [PMID: 25403455 PMCID: PMC4236411 DOI: 10.1101/lm.035766.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received intracerebellar infusions of the secretin receptor antagonist 5-27 secretin or vehicle into the lobulus simplex of cerebellar cortex immediately prior to sessions 1-3 of acquisition. Antagonist-infused rats showed a reduction in the percentage of eyeblink CRs compared with vehicle-infused rats. In Experiment 2, rats received intracerebellar infusions of secretin or vehicle immediately prior to sessions 1-2 of extinction. Secretin did not significantly affect extinction performance. In Experiment 3, rats received intracerebellar infusions of 5-27 secretin or vehicle immediately prior to sessions 1-2 of extinction. The secretin antagonist did not significantly affect extinction performance. Together, our current and previous results indicate that both exogenous and endogenous cerebellar secretin modulate acquisition, but not extinction, of EBC. We have previously shown that (1) secretin reduces surface expression of the voltage-gated potassium channel α-subunit Kv1.2 in cerebellar cortex and (2) intracerebellar infusions of a Kv1.2 blocker enhance EBC acquisition, much like secretin. Kv1.2 is almost exclusively expressed in cerebellar cortex at basket cell-Purkinje cell pinceaus and Purkinje cell dendrites; we propose that EBC-induced secretin release from PCs modulates EBC acquisition by reducing surface expression of Kv1.2 at one or both of these sites.
Collapse
Affiliation(s)
- Jason R Fuchs
- Department of Psychology, University of Vermont, Burlington, Vermont 05405, USA
| | - Gain M Robinson
- Department of Psychology, University of Vermont, Burlington, Vermont 05405, USA
| | - Aaron M Dean
- Department of Psychology, University of Vermont, Burlington, Vermont 05405, USA
| | - Heidi E Schoenberg
- Department of Psychology, University of Vermont, Burlington, Vermont 05405, USA
| | - Michael R Williams
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | - Anthony D Morielli
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | - John T Green
- Department of Psychology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
123
|
Abstract
The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: (1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and (2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
124
|
Magal A, Mintz M. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response. Eur J Neurosci 2014; 40:3548-55. [PMID: 25185877 DOI: 10.1111/ejn.12714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy.
Collapse
Affiliation(s)
- Ari Magal
- Psychobiology Research Unit, School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
125
|
Vinueza Veloz MF, Zhou K, Bosman LWJ, Potters JW, Negrello M, Seepers RM, Strydis C, Koekkoek SKE, De Zeeuw CI. Cerebellar control of gait and interlimb coordination. Brain Struct Funct 2014; 220:3513-36. [PMID: 25139623 PMCID: PMC4575700 DOI: 10.1007/s00429-014-0870-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022]
Abstract
Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Δγ2), and granule cell output (α6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Δγ2 and not significantly affected in α6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered front–hind and left–right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements.
Collapse
Affiliation(s)
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jan-Willem Potters
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Robert M Seepers
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
126
|
Guan X, Duan Y, Zeng Q, Pan H, Qian Y, Li D, Cao X, Liu M. Lgr4 protein deficiency induces ataxia-like phenotype in mice and impairs long term depression at cerebellar parallel fiber-Purkinje cell synapses. J Biol Chem 2014; 289:26492-26504. [PMID: 25063812 DOI: 10.1074/jbc.m114.564138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4(-/-) mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4(-/-) mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4(-/-) PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4(-/-) cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia.
Collapse
Affiliation(s)
- Xin Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, and East China Normal University, Shanghai 200241, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200241, China, and
| | - Qingwen Zeng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200241, China, and
| | - Hongjie Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, and East China Normal University, Shanghai 200241, China
| | - Yu Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, and East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, and East China Normal University, Shanghai 200241, China.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200241, China, and.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, and East China Normal University, Shanghai 200241, China; Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030.
| |
Collapse
|
127
|
He X, Ishizeki M, Mita N, Wada S, Araki Y, Ogura H, Abe M, Yamazaki M, Sakimura K, Mikoshiba K, Inoue T, Ohshima T. Cdk5/p35 is required for motor coordination and cerebellar plasticity. J Neurochem 2014; 131:53-64. [PMID: 24802945 DOI: 10.1111/jnc.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/30/2014] [Indexed: 12/24/2022]
Abstract
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell-specific conditional Cdk5/p35 knockout (L7-p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota-rod test, and performed electrophysiological recordings to assess long-term synaptic plasticity. Our analyses showed that Purkinje cell-specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long-term synaptic plasticity was observed at the parallel fiber-Purkinje cell synapse in L7-p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long-term synaptic plasticity.
Collapse
Affiliation(s)
- Xiaojuan He
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Clopath C, Badura A, De Zeeuw CI, Brunel N. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 2014; 34:7203-15. [PMID: 24849355 PMCID: PMC6608186 DOI: 10.1523/jneurosci.2791-13.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022] Open
Abstract
Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions.
Collapse
Affiliation(s)
- Claudia Clopath
- UMR 8118, CNRS and Université Paris Descartes, 75006 Paris, France, Center for Theoretical Neuroscience, Columbia University, New York, New York, 10032, Department of Bioengineering, Imperial College London, SW7 2AZ London, United Kingdom
| | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences, 1000 GC Amsterdam, The Netherlands, Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands, Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, and
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences, 1000 GC Amsterdam, The Netherlands, Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands,
| | - Nicolas Brunel
- UMR 8118, CNRS and Université Paris Descartes, 75006 Paris, France, Departments of Statistics and Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
129
|
Feng SS, Lin R, Gauck V, Jaeger D. Gain control of synaptic response function in cerebellar nuclear neurons by a calcium-activated potassium conductance. THE CEREBELLUM 2014; 12:692-706. [PMID: 23605187 DOI: 10.1007/s12311-013-0476-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small conductance Ca(2+)-activated potassium (SK) current provides an important modulator of excitatory synaptic transmission, which undergoes plastic regulation via multiple mechanisms. We examined whether inhibitory input processing is also dependent on SK current in the cerebellar nuclei (CN) where inhibition provides the only route of information transfer from the cerebellar cortical Purkinje cells. We employed dynamic clamping in conjunction with computer simulations to address this question. We found that SK current plays a critical role in the inhibitory synaptic control of spiking output. Specifically, regulation of SK current density resulted in a gain control of spiking output, such that low SK current promoted large output signaling for large inhibitory cell input fluctuations due to Purkinje cell synchronization. In contrast, smaller nonsynchronized Purkinje cell input fluctuations were not amplified. Regulation of SK density in the CN therefore would likely lead to important consequences for the transmission of synchronized Purkinje cell activity to the motor system.
Collapse
Affiliation(s)
- Steven Si Feng
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
130
|
Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 2014; 34:2355-64. [PMID: 24501374 DOI: 10.1523/jneurosci.4064-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long-term depression (LTD) and long-term potentiation (LTP) at cerebellar parallel fiber-Purkinje cell (PF-PC) synapses play critical roles in motor learning. The 1 Hz stimulation at PF-PC synapses induces a postsynaptically expressed LTP that requires a postsynaptic Ca(2+) transient, phosphatases, and nitric oxide (NO). However, the mechanism underlying 1 Hz PF-LTP remains unclear because none of the known events is related to each other. Here, we demonstrated that 1 Hz PF-LTP requires postsynaptic cytosolic phospholipase A2 α (cPLA2α)/arachidonic acid (AA) signaling and presynaptic endocannabinoid receptors. Using patch-clamp recording in cerebellar slices, we found that 1 Hz PF-LTP was abolished in cPLA2α-knock-out mice. This deficit was effectively rescued by the conjunction of 1 Hz PF stimulation and the local application of AA. 2-Arachidonoylglycerol and the retrograde activation of cannabinoid receptor 1 (CB1R) were also involved in 1 Hz LTP because it was blocked by the hydrolysis of 2-AG or by inhibiting CB1Rs. The amount of NO released was detected using an NO electrode in cultured granule cells and PF terminals. Our results showed that the activation of CB1Rs at PF terminals activated NO synthetase and promoted NO production. The 1 Hz PF-stimuli evoked limited NO, but 100 Hz PF stimulation generated a large amount. Therefore, 1 Hz PF-LTP, distinct from classical postsynaptically expressed plasticity, requires concurrent presynaptic and postsynaptic activity. In addition, NO of sufficient amplitude decides between the weakening and strengthening of PF-PC synapses.
Collapse
|
131
|
Hawkes R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front Syst Neurosci 2014; 8:41. [PMID: 24734006 PMCID: PMC3975104 DOI: 10.3389/fnsys.2014.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology and Anatomy, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Genes and Development Research Group, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
132
|
Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, Korwitz A, Vinueza-Veloz MF, Zhou K, Schonewille M, Zhou H, Velazquez-Perez L, Rodriguez-Labrada R, Villegas A, Ferrer I, Lopera F, Langer T, De Zeeuw CI, Glatzel M. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 2014; 124:1552-67. [PMID: 24569455 DOI: 10.1172/jci66407] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/19/2013] [Indexed: 12/24/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A-associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration.
Collapse
|
133
|
Rahmati N, Owens CB, Bosman LWJ, Spanke JK, Lindeman S, Gong W, Potters JW, Romano V, Voges K, Moscato L, Koekkoek SKE, Negrello M, De Zeeuw CI. Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J Neurosci 2014; 34:1949-62. [PMID: 24478374 PMCID: PMC6827592 DOI: 10.1523/jneurosci.2966-13.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/24/2013] [Accepted: 12/29/2013] [Indexed: 11/21/2022] Open
Abstract
Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Cullen B. Owens
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Jochen K. Spanke
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Wei Gong
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Jan-Willem Potters
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Kai Voges
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Letizia Moscato
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | | | - Mario Negrello
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands, and
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
134
|
Abstract
Long-term depression (LTD) here concerned is persistent attenuation of transmission efficiency from a bundle of parallel fibers to a Purkinje cell. Uniquely, LTD is induced by conjunctive activation of the parallel fibers and the climbing fiber that innervates that Purkinje cell. Cellular and molecular processes underlying LTD occur postsynaptically. In the 1960s, LTD was conceived as a theoretical possibility and in the 1980s, substantiated experimentally. Through further investigations using various pharmacological or genetic manipulations of LTD, a concept was formed that LTD plays a major role in learning capability of the cerebellum (referred to as "Marr-Albus-Ito hypothesis"). In this chapter, following a historical overview, recent intensive investigations of LTD are reviewed. Complex signal transduction and receptor recycling processes underlying LTD are analyzed, and roles of LTD in reflexes and voluntary movements are defined. The significance of LTD is considered from viewpoints of neural network modeling. Finally, the controversy arising from the recent finding in a few studies that whereas LTD is blocked pharmacologically or genetically, motor learning in awake behaving animals remains seemingly unchanged is examined. We conjecture how this mismatch arises, either from a methodological problem or from a network nature, and how it might be resolved.
Collapse
|
135
|
D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control. PROGRESS IN BRAIN RESEARCH 2014; 210:31-58. [PMID: 24916288 DOI: 10.1016/b978-0-444-63356-9.00002-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| |
Collapse
|
136
|
Abstract
The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine.
Collapse
Affiliation(s)
- Elisa Galliano
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
137
|
Decorrelation learning in the cerebellum: computational analysis and experimental questions. PROGRESS IN BRAIN RESEARCH 2014; 210:157-92. [PMID: 24916293 DOI: 10.1016/b978-0-444-63356-9.00007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many cerebellar models use a form of synaptic plasticity that implements decorrelation learning. Parallel fibers carrying signals positively correlated with climbing-fiber input have their synapses weakened (long-term depression), whereas those carrying signals negatively correlated with climbing input have their synapses strengthened (long-term potentiation). Learning therefore ceases when all parallel-fiber signals have been decorrelated from climbing-fiber input. This is a computationally powerful rule for supervised learning and can be cast in a spike-timing dependent plasticity form for comparison with experimental evidence. Decorrelation learning is particularly well suited to sensory prediction, for example, in the reafference problem where external sensory signals are interfered with by reafferent signals from the organism's own movements, and the required circuit appears similar to the one found to mediate classical eye blink conditioning. However, for certain stimuli, avoidance is a much better option than simple prediction, and decorrelation learning can also be used to acquire appropriate avoidance movements. One example of a stimulus to be avoided is retinal slip that degrades visual processing, and decorrelation learning appears to play a role in the vestibulo-ocular reflex that stabilizes gaze in the face of unpredicted head movements. Decorrelation learning is thus suitable for both sensory prediction and motor control. It may also be well suited for generic spatial and temporal coordination, because of its ability to remove the unwanted side effects of movement. Finally, because it can be used with any kind of time-varying signal, the cerebellum could play a role in cognitive processing.
Collapse
|
138
|
Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci 2013; 33:17897-907. [PMID: 24198378 DOI: 10.1523/jneurosci.0511-13.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plastic changes in the efficacy of synapses are widely regarded to represent mechanisms underlying memory formation. So far, evidence for learning-dependent, new neuronal wiring is limited. In this study, we demonstrate that pavlovian eyeblink conditioning in adult mice can induce robust axonal growth and synapse formation in the cerebellar nuclei. This de novo wiring is both condition specific and region specific because it does not occur in pseudoconditioned animals and is particularly observed in those parts of the cerebellar nuclei that have been implicated to be involved in this form of motor learning. Moreover, the number of new mossy fiber varicosities in these parts of the cerebellar nuclei is positively correlated with the amplitude of conditioned eyelid responses. These results indicate that outgrowth of axons and concomitant occurrence of new terminals may, in addition to plasticity of synaptic efficacy, contribute to the formation of memory.
Collapse
|
139
|
Abstract
Cerebellar motor learning is suggested to be caused by long-term plasticity of excitatory parallel fiber-Purkinje cell (PF-PC) synapses associated with changes in the number of synaptic AMPA-type glutamate receptors (AMPARs). However, whether the AMPARs decrease or increase in individual PF-PC synapses occurs in physiological motor learning and accounts for memory that lasts over days remains elusive. We combined quantitative SDS-digested freeze-fracture replica labeling for AMPAR and physical dissector electron microscopy with a simple model of cerebellar motor learning, adaptation of horizontal optokinetic response (HOKR) in mouse. After 1-h training of HOKR, short-term adaptation (STA) was accompanied with transient decrease in AMPARs by 28% in target PF-PC synapses. STA was well correlated with AMPAR decrease in individual animals and both STA and AMPAR decrease recovered to basal levels within 24 h. Surprisingly, long-term adaptation (LTA) after five consecutive daily trainings of 1-h HOKR did not alter the number of AMPARs in PF-PC synapses but caused gradual and persistent synapse elimination by 45%, with corresponding PC spine loss by the fifth training day. Furthermore, recovery of LTA after 2 wk was well correlated with increase of PF-PC synapses to the control level. Our findings indicate that the AMPARs decrease in PF-PC synapses and the elimination of these synapses are in vivo engrams in short- and long-term motor learning, respectively, showing a unique type of synaptic plasticity that may contribute to memory consolidation.
Collapse
|
140
|
Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. Proc Natl Acad Sci U S A 2013; 111:E194-202. [PMID: 24367076 DOI: 10.1073/pnas.1303317110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-lasting memories are formed when the stimulus is temporally distributed (spacing effect). However, the synaptic mechanisms underlying this robust phenomenon and the precise time course of the synaptic modifications that occur during learning remain unclear. Here we examined the adaptation of horizontal optokinetic response in mice that underwent 1 h of massed and spaced training at varying intervals. Despite similar acquisition by all training protocols, 1 h of spacing produced the highest memory retention at 24 h, which lasted for 1 mo. The distinct kinetics of memory are strongly correlated with the reduction of floccular parallel fiber-Purkinje cell synapses but not with AMPA receptor (AMPAR) number and synapse size. After the spaced training, we observed 25%, 23%, and 12% reduction in AMPAR density, synapse size, and synapse number, respectively. Four hours after the spaced training, half of the synapses and Purkinje cell spines had been eliminated, whereas AMPAR density and synapse size were recovered in remaining synapses. Surprisingly, massed training also produced long-term memory and halving of synapses; however, this occurred slowly over days, and the memory lasted for only 1 wk. This distinct kinetics of structural plasticity may serve as a basis for unique temporal profiles in the formation and decay of memory with or without intervals.
Collapse
|
141
|
Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex. J Neurosci 2013; 33:17209-20. [PMID: 24155325 DOI: 10.1523/jneurosci.0793-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity in the cerebellum is thought to contribute to motor learning. In particular, long-term depression (LTD) at parallel fiber (PF) to Purkinje neuron (PN) excitatory synapses has attracted much attention of neuroscientists as a primary cellular mechanism for motor learning. In contrast, roles of plasticity at cerebellar inhibitory synapses in vivo remain unknown. Here, we have investigated the roles of long-lasting enhancement of transmission at GABAergic synapses on a PN that is known as rebound potentiation (RP). Previous studies demonstrated that binding of GABAA receptor with GABAA receptor-associated protein (GABARAP) is required for RP, and that a peptide that blocks this binding suppresses RP induction. To address the functional roles of RP, we generated transgenic mice that express this peptide fused to a fluorescent protein selectively in PNs using the PN-specific L7 promoter. These mice failed to show RP, although they showed no changes in the basal amplitude or frequency of miniature IPSCs. The transgenic mice also showed no abnormality in gross cerebellar morphology, LTD, or other excitatory synaptic properties, or intrinsic excitability of PNs. Next, we attempted to evaluate their motor control and learning ability by examining reflex eye movements. The basal dynamic properties of the vestibulo-ocular reflex and optokinetic response, and adaptation of the latter, were normal in the transgenic mice. In contrast, the transgenic mice showed defects in the adaptation of vestibulo-ocular reflex, a model paradigm of cerebellum-dependent motor learning. These results together suggest that RP contributes to a certain type of motor learning.
Collapse
|
142
|
T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci U S A 2013; 110:20302-7. [PMID: 24277825 DOI: 10.1073/pnas.1311686110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CaV3.1 T-type channels are abundant at the cerebellar synapse between parallel fibers and Purkinje cells where they contribute to synaptic depolarization. So far, no specific physiological function has been attributed to these channels neither as charge carriers nor more specifically as Ca(2+) carriers. Here we analyze their incidence on synaptic plasticity, motor behavior, and cerebellar motor learning, comparing WT animals and mice where T-type channel function has been abolished either by gene deletion or by acute pharmacological blockade. At the cellular level, we show that CaV3.1 channels are required for long-term potentiation at parallel fiber-Purkinje cell synapses. Moreover, basal simple spike discharge of the Purkinje cell in KO mice is modified. Acute or chronic T-type current blockade results in impaired motor performance in particular when a good body balance is required. Because motor behavior integrates reflexes and past memories of learned behavior, this suggests impaired learning. Indeed, subjecting the KO mice to a vestibulo-ocular reflex phase reversal test reveals impaired cerebellum-dependent motor learning. These data identify a role of low-voltage activated calcium channels in synaptic plasticity and establish a role for CaV3.1 channels in cerebellar learning.
Collapse
|
143
|
Emi K, Kakegawa W, Miura E, Ito-Ishida A, Kohda K, Yuzaki M. Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool. Front Neural Circuits 2013; 7:180. [PMID: 24298240 PMCID: PMC3828671 DOI: 10.3389/fncir.2013.00180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022] Open
Abstract
The delay eyeblink conditioning (EBC) is a cerebellum-dependent type of associative motor learning. However, the exact roles played by the various cerebellar synapses, as well as the underlying molecular mechanisms, remain to be determined. It is also unclear whether long-term potentiation (LTP) or long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is involved in EBC. In this study, to clarify the role of PF synapses in the delay EBC, we used mice in which a gene encoding Cbln1 was disrupted (cbln1-/- mice), which display severe reduction of PF–PC synapses. We showed that delay EBC was impaired in cbln1-/- mice. Although PF-LTD was impaired, PF-LTP was normally induced in cbln1-/- mice. A single recombinant Cbln1 injection to the cerebellar cortex in vivo completely, though transiently, restored the morphology and function of PF–PC synapses and delay EBC in cbln1-/- mice. Interestingly, the cbln1-/- mice retained the memory for at least 30 days, after the Cbln1 injection’s effect on PF synapses had abated. Furthermore, delay EBC memory could be extinguished even after the Cbln1 injection’s effect were lost. These results indicate that intact PF–PC synapses and PF-LTD, not PF-LTP, are necessary to acquire delay EBC in mice. In contrast, extracerebellar structures or remaining PF–PC synapses in cbln1-/- mice may be sufficient for the expression, maintenance, and extinction of its memory trace.
Collapse
Affiliation(s)
- Kyoichi Emi
- Department of Physiology, School of Medicine, Keio University Shinjuku-ku, Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation Kawaguchi, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Rinaldi A, Defterali C, Mialot A, Garden DLF, Beraneck M, Nolan MF. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition. J Physiol 2013; 591:5691-709. [PMID: 24000178 PMCID: PMC3853504 DOI: 10.1113/jphysiol.2013.259499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/30/2013] [Indexed: 01/22/2023] Open
Abstract
Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour.
Collapse
Affiliation(s)
- Arianna Rinaldi
- M. F. Nolan: Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | |
Collapse
|
145
|
Cheron G, Dan B, Márquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013; 2013:853654. [PMID: 24319600 PMCID: PMC3844268 DOI: 10.1155/2013/853654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Javier Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
146
|
Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. The neuronal code(s) of the cerebellum. J Neurosci 2013; 33:17603-9. [PMID: 24198351 PMCID: PMC3818542 DOI: 10.1523/jneurosci.2759-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/30/2023] Open
Abstract
Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context.
Collapse
Affiliation(s)
- Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Kamran Khodakhah
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Abigail L. Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
147
|
Abstract
Cerebellar learning requires context information from mossy fibers and a teaching signal through the climbing fibers from the inferior olive. Although the inferior olive fires in bursts, virtually all studies have used a teaching signal consisting of a single pulse. Following a number of failed attempts to induce cerebellar learning in decerebrate ferrets with a nonburst signal, we tested the effect of varying the number of pulses in the climbing fiber teaching signal. The results show that training with a single pulse in a conditioning paradigm in vivo does not result in learning, but rather causes extinction of a previously learned response.
Collapse
|
148
|
Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks. J Neurosci 2013; 33:12599-618. [PMID: 23904597 DOI: 10.1523/jneurosci.1642-13.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.
Collapse
|
149
|
Motor skill training induces coordinated strengthening and weakening between neighboring synapses. J Neurosci 2013; 33:9794-9. [PMID: 23739975 DOI: 10.1523/jneurosci.0848-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Motor skill training promotes the formation of parallel fiber multiple-synapse boutons (MSBs) contacting dendritic spine pairs of Purkinje cells in the rat cerebellum. However, the dendritic origin of such spine pairs is unknown. Here, we used three-dimensional electron microscopy reconstruction of synaptic connectivity to demonstrate that motor skill training selectively induced MSBs contacting two spines arising from the same dendrite, consistent with strengthening of local synaptic efficacy. However, excitatory synapses near MSBs were smaller in motor-trained animals, suggesting compensatory depression of MSB-neighbor synapses. Concerted strengthening and weakening of adjacent synapses may enhance synaptic weight differences for information encoding while maintaining stable overall activity levels within local dendritic segments.
Collapse
|
150
|
Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses. PLoS One 2013; 8:e70277. [PMID: 23922966 PMCID: PMC3726549 DOI: 10.1371/journal.pone.0070277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023] Open
Abstract
Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7–15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD) does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde) signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.
Collapse
|