101
|
Qiu Z, Kala S, Guo J, Xian Q, Zhu J, Zhu T, Hou X, Wong KF, Yang M, Wang H, Sun L. Targeted Neurostimulation in Mouse Brains with Non-invasive Ultrasound. Cell Rep 2021; 32:108033. [PMID: 32814040 DOI: 10.1016/j.celrep.2020.108033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
Recently developed brain stimulation techniques have significantly advanced our ability to manipulate the brain's function. However, stimulating specific neurons in a desired region without significant surgical invasion remains a challenge. Here, we demonstrate a neuron-specific and region-targeted neural excitation strategy using non-invasive ultrasound through activation of heterologously expressed mechanosensitive ion channels (MscL-G22S). Low-intensity ultrasound is significantly better at inducing Ca2+ influx and neuron activation in vitro and at evoking electromyogram (EMG) responses in vivo in targeted cells expressing MscL-G22S. Neurons in the cerebral cortex or dorsomedial striatum of mice are made to express MscL-G22S and stimulated ultrasonically. We find significant upregulation of c-Fos in neuron nuclei only in the regions expressing MscL-G22S compared with the non-MscL controls, as well as in various other regions in the same brain. Thus, we detail an effective approach for activating specific regions and cell types in intact mouse brains by sensitizing them to ultrasound using a mechanosensitive ion channel.
Collapse
Affiliation(s)
- Zhihai Qiu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Shashwati Kala
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Jinghui Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Ting Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Minyi Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Haoru Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077.
| |
Collapse
|
102
|
Park C, Chen M, Kim T. Implication of auditory confounding in interpreting somatosensory and motor responses in low-intensity focused transcranial ultrasound stimulation. J Neurophysiol 2021; 125:2356-2360. [PMID: 33978511 DOI: 10.1152/jn.00701.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (LI-tFUS) stimulation is a noninvasive neuromodulation tool that demonstrates high target localization accuracy and depth penetration. It has been shown to modulate activities in the primary motor and somatosensory cortex. Previous studies in animals as well as in humans, illustrated in the recently published paper in Brain Stimulation by Braun et al. [Braun V, Blackmore J, Cleveland RO, Butler CR. Brain Stimul 13: 1527-1534, 2020], acknowledged the possibility of indirect stimulation of the peripheral auditory pathway that could confound the somatosensory and motor responses observed with LI-tFUS stimulation. Here, we discuss the implications and interpretations of auditory confounding in the context of neuromodulation.
Collapse
Affiliation(s)
- Christine Park
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Mengyue Chen
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Taewon Kim
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
103
|
Li X, Xiong H, Rommelfanger N, Xu X, Youn J, Slesinger PA, Hong G, Qin Z. Nanotransducers for Wireless Neuromodulation. MATTER 2021; 4:1484-1510. [PMID: 33997768 PMCID: PMC8117115 DOI: 10.1016/j.matt.2021.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nicholas Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonghae Youn
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY,10029, USA
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
- The Center for Advanced Pain Studies, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
| |
Collapse
|
104
|
Asan AS, Kang Q, Oralkan Ö, Sahin M. Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimul 2021; 14:598-606. [PMID: 33774207 PMCID: PMC8164992 DOI: 10.1016/j.brs.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Focused ultrasound (FUS) has excellent characteristics over other non-invasive stimulation methods in terms of spatial resolution and steering capability of the target. FUS has not been tested in the cerebellar cortex and cellular effects of FUS are not fully understood. OBJECTIVE/HYPOTHESIS To investigate how the activity of cerebellar Purkinje cells (PCs) is modulated by FUS with varying pulse durations and pulse repetition frequencies. METHODS A glass microelectrode was inserted into the cerebellar vermis lobule 6 from the dorsal side to extracellularly record single unit activity of the PCs in anesthetized rats. Ultrasonic stimulation (500 kHz) was applied through a coupling cone, filled with degassed water, from the posterior side to target the recording area with varying pulse durations and frequencies. RESULTS Simple spike (SS) activity of PCs was entrained by the FUS pattern where the probability of spike occurrences peaked at around 1 ms following the onset of the stimulus regardless of its duration (0.5, 1, or 2 ms). The level of entrainment was stronger with shorter pulse durations at 50-Hz pulse repetition frequency (PRF), however, peri-event histograms spread wider and the peaks delayed slightly at 100-Hz PRF, suggesting involvement of a long-lasting inhibitory mechanism. There was no significant difference between the average firing rates in the baseline and stimulation periods. CONCLUSION FUS can entrain spiking activity of single cells on a spike-by-spike basis as demonstrated here in the rat cerebellar cortex. The observed modulation potentially results from the aggregate of excitatory and inhibitory effects of FUS on the entire cortical network rather than on the PCs alone.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Qi Kang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
105
|
Liu Y, Wang G, Cao C, Zhang G, Tanzi EB, Zhang Y, Zhou W, Li Y. Neuromodulation Effect of Very Low Intensity Transcranial Ultrasound Stimulation on Multiple Nuclei in Rat Brain. Front Aging Neurosci 2021; 13:656430. [PMID: 33935688 PMCID: PMC8081960 DOI: 10.3389/fnagi.2021.656430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Low-intensity transcranial ultrasound stimulation (TUS) is a non-invasive neuromodulation technique with high spatial resolution and feasible penetration depth. To date, the mechanisms of TUS modulated neural oscillations are not fully understood. This study designed a very low acoustic intensity (AI) TUS system that produces considerably reduced AI Ultrasound pulses (ISPTA < 0.5 W/cm2) when compared to previous methods used to measure regional neural oscillation patterns under different TUS parameters. Methods We recorded the local field potential (LFP) of five brain nuclei under TUS with three groups of simulating parameters. Spectrum estimation, time-frequency analysis (TFA), and relative power analysis methods have been applied to investigate neural oscillation patterns under different stimulation parameters. Results Under PRF, 500 Hz and 1 kHz TUS, high-amplitude LFP activity with the auto-rhythmic pattern appeared in selected nuclei when ISPTA exceeded 12 mW/cm2. With TFA, high-frequency energy (slow gamma and high gamma) was significantly increased during the auto-rhythmic patterns. We observed an initial plateau in nuclei response when ISPTA reached 16.4 mW/cm2 for RPF 500 Hz and 20.8 mW/cm2 for RPF 1 kHz. The number of responding nuclei started decreasing while ISPTA continued increasing. Under 1.5 kHz TUS, no auto-rhythmic patterns have been observed, but slow frequency power was increased during TUS. TUS inhibited most of the frequency band and generated obvious slow waves (theta and delta band) when stimulated at RPF = 1.5 kHz, ISPTA = 8.8 mW/cm2. Conclusion These results demonstrate that very low intensity Transcranial Ultrasound Stimulation (VLTUS) exerts significant neuromodulator effects under specific parameters in rat models and may be a valid tool to study neuronal physiology.
Collapse
Affiliation(s)
- Yingjian Liu
- School of Microelectronics, Shandong University, Jinan, China
| | - Gang Wang
- School of Microelectronics, Shandong University, Jinan, China
| | - Chao Cao
- School of Microelectronics, Shandong University, Jinan, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.,School of Medical Imaging, Weifang Medical University, Weifang, China
| | | | - Yang Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan, China
| | - Yi Li
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
106
|
Kim T, Park C, Chhatbar PY, Feld J, Mac Grory B, Nam CS, Wang P, Chen M, Jiang X, Feng W. Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Front Neurosci 2021; 15:620863. [PMID: 33935626 PMCID: PMC8079725 DOI: 10.3389/fnins.2021.620863] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Although low-intensity transcranial ultrasound stimulation (LI-TUS) has received more recognition for its neuromodulation potential, there remains a crucial knowledge gap regarding the neuromodulatory effects of LI-TUS and its potential for translation as a therapeutic tool in humans. Objective: In this review, we summarized the findings reported by recently published studies regarding the effect of LI-TUS on neuromodulation in both animals and humans. We also aim to identify challenges and opportunities for the translation process. Methods: A literature search of PubMed, Medline, EMBASE, and Web of Science was performed from January 2019 to June 2020 with the following keywords and Boolean operators: [transcranial ultrasound OR transcranial focused ultrasound OR ultrasound stimulation] AND [neuromodulation]. The methodological quality of the animal studies was assessed by the SYRCLE's risk of bias tool, and the quality of human studies was evaluated by the PEDro score and the NIH quality assessment tool. Results: After applying the inclusion and exclusion criteria, a total of 26 manuscripts (24 animal studies and two human studies) out of 508 reports were included in this systematic review. Although both inhibitory (10 studies) and excitatory (16 studies) effects of LI-TUS were observed in animal studies, only inhibitory effects have been reported in primates (five studies) and human subjects (two studies). The ultrasonic parameters used in animal and human studies are different. The SYRCLE quality score ranged from 25 to 43%, with a majority of the low scores related to performance and detection bias. The two human studies received high PEDro scores (9/10). Conclusion: LI-TUS appears to be capable of targeting both superficial and deep cerebral structures to modulate cognitive or motor behavior in both animals and humans. Further human studies are needed to more precisely define the effective modulation parameters and thereby translate this brain modulatory tool into the clinic.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jody Feld
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Chang S Nam
- Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shengzhen, China
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
107
|
Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2021; 68:3375-3387. [PMID: 33830916 DOI: 10.1109/tbme.2021.3071807] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuroinflammation contributes to the development and progression of Parkinson's disease (PD). The aim of this study was to examine whether ultrasound (US) stimulation of the subthalamic nucleus (STN) could suppress the neuroinflammation in a chronic PD mouse model induced by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). METHODS A chronic PD mouse model was built by injections of 20mg/kg MPTP and 250 mg/kg probenecid at 3.5-day intervals for 5 weeks. Mice were randomized into control+sham, MPTP+sham and MPTP+STN+US group. For MPTP+STN+US group, ultrasound wave (3.8 MHz, 50% duty cycle, 1 kHz pulse repetition frequency, 30 min/day) was delivered to the STN the day after MPTP and probenecid injection (the early stage of PD progression). The rotarod test and pole test were performed to evaluate the behavioral changes after ultrasound treatment. Then, the activity of microglia and astrocyte were measured to evaluate the inflammation level in the brain. RESULTS Ultrasound stimulation improved the latency to falls in the rotarod test (p = 0.033) and decreased the climbing time in the pole test (p = 0.016) compared with MPTP+sham group. Moreover, ultrasound stimulation reduced the chronic inflammation response as shown in microglia (p = 0.007) and astrocyte (p = 0.032) activation. In addition, HE, Nissl and Tunel staining showed that no brain tissue injury was induced by US. CONCLUSION These findings demonstrated that ultrasound stimulation could suppress neuroinflammation in PD mice. SIGNIFICANCE Transcranial ultrasound neuromodulation offers a novel approach for Parkinson's disease intervention, potentially through its anti-neuroinflammation functions.
Collapse
|
108
|
Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast 2021; 2021:8855055. [PMID: 33883994 PMCID: PMC8041518 DOI: 10.1155/2021/8855055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.
Collapse
|
109
|
Aurup C, Kamimura HAS, Konofagou EE. High-Resolution Focused Ultrasound Neuromodulation Induces Limb-Specific Motor Responses in Mice in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:998-1013. [PMID: 33455808 PMCID: PMC7927571 DOI: 10.1016/j.ultrasmedbio.2020.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Ultrasound can modulate activity in the central nervous system, including the induction of motor responses in rodents. Recent studies investigating ultrasound-induced motor movements have described mostly bilateral limb responses, but quantitative evaluations have failed to reveal lateralization or differences in response characteristics between separate limbs or how specific brain targets dictate distinct limb responses. This study uses high-resolution focused ultrasound (FUS) to elicit motor responses in anesthetized mice in vivo and four-limb electromyography (EMG) to evaluate the latency, duration and power of paired motor responses (n = 1768). The results indicate that FUS generates target-specific differences in electromyographic characteristics and that brain targets separated by as little as 1 mm can modulate the responses in individual limbs differentially. Exploiting these differences may provide a tool for quantifying the susceptibility of underlying neural volumes to FUS, understanding the functioning of the targeted neuroanatomy and aiding in mechanistic studies of this non-invasive neuromodulation technique.
Collapse
Affiliation(s)
- Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York.
| |
Collapse
|
110
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
111
|
Collins MN, Legon W, Mesce KA. The Inhibitory Thermal Effects of Focused Ultrasound on an Identified, Single Motoneuron. eNeuro 2021; 8:ENEURO.0514-20.2021. [PMID: 33853851 PMCID: PMC8174046 DOI: 10.1523/eneuro.0514-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022] Open
Abstract
Focused ultrasound (US) is an emerging neuromodulation technology that has gained much attention because of its ability to modulate, noninvasively, neuronal activity in a variety of animals, including humans. However, there has been considerable debate about exactly which types of neurons can be influenced and what underlying mechanisms are in play. Are US-evoked motor changes driven indirectly by activated mechanosensory inputs, or more directly via central interneurons or motoneurons? Although it has been shown that US can mechanically depolarize mechanosensory neurons, there are no studies that have yet tested how identified motoneurons respond directly to US and what the underlying mechanism might be. Here, we examined the effects of US on a single, identified motoneuron within a well-studied and tractable invertebrate preparation, the medicinal leech, Hirudo verbana Our approach aimed to clarify single neuronal responses to US, which may be obscured in other studies whereby US is applied across a diverse population of cells. We found that US has the ability to inhibit tonic spiking activity through a predominately thermal mechanism. US-evoked effects persisted after blocking synaptic inputs, indicating that its actions were direct. Experiments also revealed that US-comparable heating blocked the axonal conduction of spontaneous action potentials. Finally, we found no evidence that US had significant mechanical effects on the neurons tested, a finding counter to prevailing views. We conclude that a non-sensory neuron can be directly inhibited via a thermal mechanism, a finding that holds promise for clinical neuromodulatory applications.
Collapse
Affiliation(s)
- Morgan N Collins
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
| | - Wynn Legon
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22901
| | - Karen A Mesce
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
- Departments of Entomology and Neuroscience, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
112
|
Lowe KA, Zinke W, Phipps MA, Cosman J, Maddox M, Schall JD, Caskey CF. Visuomotor Transformations Are Modulated by Focused Ultrasound over Frontal Eye Field. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:679-692. [PMID: 33341303 DOI: 10.1016/j.ultrasmedbio.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Neuromodulation with focused ultrasound (FUS) is being widely explored as a non-invasive tool to stimulate focal brain regions because of its superior spatial resolution and coverage compared with other neuromodulation methods. The precise effects of FUS stimulation on specific regions of the brain are not yet fully understood. Here, we characterized the behavioral effects of FUS stimulation directly applied through a craniotomy over the macaque frontal eye field (FEF). In macaque monkeys making directed eye movements to perform visual search tasks with direct or arbitrary responses, focused ultrasound was applied through a craniotomy over the FEF. Saccade response times (RTs) and error rates were determined for trials without or with FUS stimulation with pulses at a peak negative pressure of either 250 or 425 kPa. Both RTs and error rates were affected by FUS. Responses toward a target located contralateral to the FUS stimulation were approximately 3 ms slower in the presence of FUS in both monkeys studied, while only one exhibited a slowing of responses for ipsilateral targets. Error rates were lower in one monkey in this study. In another search task requiring making eye movements toward a target (pro-saccades) or in the opposite direction (anti-saccades), the RT for pro-saccades increased in the presence of FUS stimulation. Our results indicate the effectiveness of FUS to modulate saccadic responses when stimulating FEF in awake, behaving non-human primates.
Collapse
Affiliation(s)
- Kaleb A Lowe
- Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wolf Zinke
- Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - M Anthony Phipps
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Institute of Imaging Science, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Josh Cosman
- Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Micala Maddox
- Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey D Schall
- Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles F Caskey
- Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA; Institute of Imaging Science, Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
113
|
Abstract
Ultrasound modulates the electrical activity of excitable cells and offers advantages over other neuromodulatory techniques; for example, it can be noninvasively transmitted through the skull and focused to deep brain regions. However, the fundamental cellular, molecular, and mechanistic bases of ultrasonic neuromodulation are largely unknown. Here, we demonstrate ultrasound activation of the mechanosensitive K+ channel TRAAK with submillisecond kinetics to an extent comparable to canonical mechanical activation. Single-channel recordings reveal a common basis for ultrasonic and mechanical activation with stimulus-graded destabilization of long-duration closures and promotion of full conductance openings. Ultrasonic energy is transduced to TRAAK through the membrane in the absence of other cellular components, likely increasing membrane tension to promote channel opening. We further demonstrate ultrasonic modulation of neuronally expressed TRAAK. These results suggest mechanosensitive channels underlie physiological responses to ultrasound and could serve as sonogenetic actuators for acoustic neuromodulation of genetically targeted cells.
Collapse
|
114
|
Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2674692. [PMID: 33954291 PMCID: PMC8059556 DOI: 10.34133/2021/2674692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
Evidence in animals suggests that deep brain stimulation or optogenetics can be used for recovery from disorders of consciousness (DOC). However, these treatments require invasive procedures. This report presents a noninvasive strategy to stimulate central nervous system neurons selectively for recovery from DOC in mice. Through the delivery of ultrasound energy to the ventral tegmental area, mice were aroused from an unconscious, anaesthetized state in this study, and this process was controlled by adjusting the ultrasound parameters. The mice in the sham group under isoflurane-induced, continuous, steady-state general anaesthesia did not regain their righting reflex. On insonation, the emergence time from inhaled isoflurane anaesthesia decreased (sham: 13.63 ± 0.53 min, ultrasound: 1.5 ± 0.19 min, p < 0.001). Further, the induction time (sham: 12.0 ± 0.6 min, ultrasound: 17.88 ± 0.64 min, p < 0.001) and the concentration for 50% of the maximal effect (EC50) of isoflurane (sham: 0.6%, ultrasound: 0.7%) increased. In addition, ultrasound stimulation reduced the recovery time in mice with traumatic brain injury (sham: 30.38 ± 1.9 min, ultrasound: 7.38 ± 1.02 min, p < 0.01). This noninvasive strategy could be used on demand to promote emergence from DOC and may be a potential treatment for such disorders.
Collapse
Affiliation(s)
- Tianyuan Bian
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Wen Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Meihong Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhigang Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Junjie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Yibo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China 200030
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| |
Collapse
|
115
|
Lu G, Qian X, Castillo J, Li R, Jiang L, Lu H, Kirk Shung K, Humayun MS, Thomas BB, Zhou Q. Transcranial Focused Ultrasound for Noninvasive Neuromodulation of the Visual Cortex. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:21-28. [PMID: 32746196 PMCID: PMC8153235 DOI: 10.1109/tuffc.2020.3005670] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Currently, blindness cannot be cured and patients' living quality can be compromised severely. Ultrasonic (US) neuromodulation is a promising technology for the development of noninvasive cortical visual prosthesis. We investigated the feasibility of transcranial focused ultrasound (tFUS) for noninvasive stimulation of the visual cortex (VC) to develop improved visual prosthesis. tFUS was used to successfully evoke neural activities in the VC of both normal and retinal degenerate (RD) blind rats. Our results showed that blind rats showed more robust responses to ultrasound stimulation when compared with normal rats. ( , two-sample t-test). Three different types of ultrasound waveforms were used in the three experimental groups. Different types of cortical activities were observed when different US waveforms were used. In all rats, when stimulated with continuous ultrasound waves, only short-duration responses were observed at "US on and off" time points. In comparison, pulsed waves (PWs) evoked longer low-frequency responses. Testing different parameters of PWs showed that a pulse repetition frequency higher than 100 Hz is required to obtain the low-frequency responses. Based on the observed cortical activities, we inferred that acoustic radiation force (ARF) is the predominant physical mechanism of ultrasound neuromodulation.
Collapse
|
116
|
Lee SA, Kamimura HAS, Burgess MT, Konofagou EE. Displacement Imaging for Focused Ultrasound Peripheral Nerve Neuromodulation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3391-3402. [PMID: 32406828 PMCID: PMC7717066 DOI: 10.1109/tmi.2020.2992498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) is an emerging technique for neuromodulation due to its noninvasive application and high depth penetration. Recent studies have reported success in modulation of brain circuits, peripheral nerves, ion channels, and organ structures. In particular, neuromodulation of peripheral nerves and the underlying mechanisms remain comparatively unexplored in vivo. Lack of methodologies for FUS targeting and monitoring impede further research in in vivo studies. Thus, we developed a method that non-invasively measures nerve engagement, via tissue displacement, during FUS neuromodulation of in vivo nerves using simultaneous high frame-rate ultrasound imaging. Using this system, we can validate, in real-time, FUS targeting of the nerve and characterize subsequent compound muscle action potentials (CMAPs) elicited from sciatic nerve activation in mice using 0.5 to 5 ms pulse durations and 22 - 28 MPa peak positive stimulus pressures at 4 MHz. Interestingly, successful motor excitation from FUS neuromodulation required a minimum interframe nerve displacement of 18 μm without any displacement incurred at the skin or muscle levels. Moreover, CMAPs detected in mice monotonically increased with interframe nerve displacements within the range of 18 to 300 μm . Thus, correlation between nerve displacement and motor activation constitutes strong evidence FUS neuromodulation is driven by a mechanical effect given that tissue deflection is a result of highly focused acoustic radiation force.
Collapse
|
117
|
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020; 17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Focused ultrasound (FUS) is a disruptive medical technology, and its implementation in the clinic represents the culmination of decades of research. Lying at the convergence of physics, engineering, imaging, biology and neuroscience, FUS offers the ability to non-invasively and precisely intervene in key circuits that drive common and challenging brain conditions. The actions of FUS in the brain take many forms, ranging from transient blood-brain barrier opening and neuromodulation to permanent thermoablation. Over the past 5 years, we have seen a dramatic expansion of indications for and experience with FUS in humans, with a resultant exponential increase in academic and public interest in the technology. Applications now span the clinical spectrum in neurological and psychiatric diseases, with insights still emerging from preclinical models and human trials. In this Review, we provide a comprehensive overview of therapeutic ultrasound and its current and emerging indications in the brain. We examine the potential impact of FUS on the landscape of brain therapies as well as the challenges facing further advancement and broader adoption of this promising minimally invasive therapeutic alternative.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
118
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul 2020; 13:1805-1812. [PMID: 33127579 PMCID: PMC7888561 DOI: 10.1016/j.brs.2020.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Transcranial focused ultrasound (tFUS) is a noninvasive brain stimulation method that may modulate deep brain structures. This study investigates whether sonication of the right anterior thalamus would modulate thermal pain thresholds in healthy individuals. Methods: We enrolled 19 healthy individuals in this three-visit, double-blind, sham-controlled, crossover trial. Participants first underwent a structural MRI scan used solely for tFUS targeting. They then attended two identical experimental tFUS visits (counterbalanced by condition) at least one week apart. Within the MRI scanner, participants received two, 10-min sessions of either active or sham tFUS spread 10 min apart targeting the right anterior thalamus [fundamental frequency: 650 kHz, Pulse repetition frequency: 10 Hz, Pulse Width: 5 ms, Duty Cycle: 5%, Sonication Duration: 30s, Inter-Sonication Interval: 30 s, Number of Sonications: 10, ISPTA.0 995 mW/cm2, ISPTA.3 719 mW/cm2, Peak rarefactional pressure 0.72 MPa]. The primary outcome measure was quantitative sensory thresholding (QST), measuring sensory, pain, and tolerance thresholds to a thermal stimulus applied to the left forearm before and after right anterior thalamic tFUS. Results: The right anterior thalamus was accurately sonicated in 17 of the 19 subjects. Thermal pain sensitivity was significantly attenuated after active tFUS. The pre-post x active-sham interaction was significant (F(1,245.95) = 4.03, p = .046). This interaction indicates that in the sham stimulation condition, thermal pain thresholds decreased 1.08 °C (SE = 0.28) pre-post session, but only decreased .51 °C (SE = 0.30) pre-post session in the active stimulation group. Conclusions: Two 10-min sessions of anterior thalamic tFUS induces antinociceptive effects in healthy individuals. Future studies should optimize the parameter space, dose and duration of this effect which may lead to multi-session tFUS interventions for pain disorders.
Collapse
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Kevin A Caulfield
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sasha Stomberg-Firestein
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Philipp M Summers
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Matt Savoca
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xingbao Li
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Austelle
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Baron Short
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Norman Spivak
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mark S George
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
119
|
Meneghetti N, Dedola F, Gavryusev V, Sancataldo G, Turrini L, de Vito G, Tiso N, Vanzi F, Carpaneto J, Cutrone A, Pavone FS, Micera S, Mazzoni A. Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. J Neural Eng 2020; 17:056033. [DOI: 10.1088/1741-2552/abae8b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
120
|
Manuel TJ, Kusunose J, Zhan X, Lv X, Kang E, Yang A, Xiang Z, Caskey CF. Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of TTX. Sci Rep 2020; 10:15347. [PMID: 32948791 PMCID: PMC7501284 DOI: 10.1038/s41598-020-72189-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Ultrasound is gaining traction as a neuromodulation method due to its ability to remotely and non-invasively modulate neuronal activity with millimeter precision. However, there is little consensus about optimal ultrasound parameters required to elicit neuromodulation and how specific parameters drive mechanisms that underlie ultrasound neuromodulation. We address these questions in this work by performing a study to determine effective ultrasound parameters in a transgenic mouse brain slice model that enables calcium imaging as a quantitative readout of neuronal activity for ultrasound neuromodulation. We report that (1) calcium signaling increases with the application of ultrasound; (2) the neuronal response rate to ultrasound is dependent on pulse repetition frequency (PRF); and (3) ultrasound can reversibly alter the inhibitory effects of tetrodotoxin (TTX) in pharmacological studies. This study offers mechanistic insight into the PRF dependence of ultrasound neuromodulation and the nature of ultrasound/ion channel interaction.
Collapse
Affiliation(s)
- Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xiaohui Lv
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Ellison Kang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Aaron Yang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
121
|
Braun V, Blackmore J, Cleveland RO, Butler CR. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul 2020; 13:1527-1534. [PMID: 32891872 PMCID: PMC7710976 DOI: 10.1016/j.brs.2020.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background Transcranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. Recent animal work suggests, however, that TUS effects may be confounded by indirect stimulation of early auditory pathways. Objective We aimed to investigate in human participants whether TUS elicits audible sounds and if these can be masked by an audio signal. Methods In 18 healthy participants, T1-weighted magnetic resonance brain imaging was acquired for 3D ultrasound simulations to determine optimal transducer placements and source amplitudes. Thermal simulations ensured that temperature rises were <0.5 °C at the target and <3 °C in the skull. To test for non-specific auditory activation, TUS (500 kHz, 300 ms burst, modulated at 1 kHz with 50% duty cycle) was applied to primary visual cortex and participants were asked to distinguish stimulation from non-stimulation trials. EEG was recorded throughout the task. Furthermore, ex-vivo skull experiments tested for the presence of skull vibrations during TUS. Results We found that participants can hear sound during TUS and can distinguish between stimulation and non-stimulation trials. This was corroborated by EEG recordings indicating auditory activation associated with TUS. Delivering an audio waveform to participants through earphones while TUS was applied reduced detection rates to chance level and abolished the TUS-induced auditory EEG signal. Ex vivo skull experiments demonstrated that sound is conducted through the skull at the pulse repetition frequency of the ultrasound. Conclusion Future studies using TUS in humans need to take this auditory confound into account and mask stimulation appropriately. Transcranial ultrasound stimulation elicits auditory signals in humans. Healthy human participants can distinguish stimulation from non-stimulation trials. Auditory masking reduces detection rates. Skull vibrations are present during transcranial ultrasound stimulation. The auditory signal is likely due to bone conduction at the pulse repetition frequency.
Collapse
Affiliation(s)
- Verena Braun
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | | | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Brain Sciences, Imperial College London, UK; Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
122
|
Tripathi K, Zhang T, McDannold N, Zhang YZ, Ehnholm G, Okada Y. Direct Activation of Cortical Neurons in the Primary Somatosensory Cortex of the Rat in Vivo Using Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2349-2360. [PMID: 32620386 PMCID: PMC7431189 DOI: 10.1016/j.ultrasmedbio.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We address the recent controversy over whether focused ultrasound (FUS) activates cortical neurons directly or indirectly by initially activating auditory pathways. We obtained two types of evidence that FUS can directly activate cortical neurons. The depth profile of the local field potential (LFP) in the barrel cortex of the rat in vivo indicated a generator was located within the cortical gray matter. The onset and peak latencies of the initial component p1 were 3.2 ± 0.25 ms (mean ± standard error of the mean) and 7.6 ± 0.12 ms, respectively, for the direct cortical response (DCR), 6.8 ± 0.40 and 14.3 ± 0.54 ms for the FUS-evoked LFP (4 MHz, 3.2 MPa, 50 or 300 µs/pulse, 1-20 pulses at 1 kHz) and 6.9 ± 0.51 and 15.8 ± 0.94 ms for the LFP evoked by 1-ms deflection of the C2 whisker projecting to the same area. The peak latency of the FUS p1 was statistically (t-test) longer than the DCR, but shorter than the whisker p1 at p < 0.005.
Collapse
Affiliation(s)
- Kush Tripathi
- Division of Newborn Medicine, Dept. Pediatrics, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA; Indian Institute of Technology, Madras, India
| | - Tongsheng Zhang
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Nathan McDannold
- Focused Ultrasound Laboratory, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Yong-Zhi Zhang
- Focused Ultrasound Laboratory, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gösta Ehnholm
- Department of Neurosciences and Biomedical Engineering, Aalto University, Otaniemi, Finland
| | - Yoshio Okada
- Division of Newborn Medicine, Dept. Pediatrics, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
123
|
Collins MN, Mesce KA. Focused Ultrasound Neuromodulation and the Confounds of Intracellular Electrophysiological Investigation. eNeuro 2020; 7:ENEURO.0213-20.2020. [PMID: 32737179 PMCID: PMC7452732 DOI: 10.1523/eneuro.0213-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/16/2023] Open
Abstract
Focused ultrasound (US) can modulate neuronal activity noninvasively with high spatial specificity. In intact nervous systems, however, efforts to determine its enigmatic mode of efficacy have been confounded by the indirect effects of US on mechanosensitive sensory cells and the inability to target equivalent populations of cells with precision across preparations. Single-cell approaches, either via cultured mammalian neurons or tractable invertebrate neural systems, hold great promise for elucidating the cellular mechanisms underlying the actions of US. Here, we present evidence from the medicinal leech, Hirudo verbana, that researchers should apply caution when using US in conjunction with single-cell electrophysiological recording techniques, including sharp-electrode intracellular recording. Although we found that US could elicit depolarization of the resting membrane potential of single neurons, a finding with precedent, we determined that this effect and others could be reliably mimicked via subtle manual displacement of the recording electrode. Because focused US is known to induce resonance of recording electrodes, we aimed to determine how similarly US-induced depolarizations matched those produced by micro movements of a sharp glass electrode, a phenomenon we believe can account for purported depolarizations measured in this manner. Furthermore, we show that when clonally related homologous neurons, which are essentially isopotential, are impaled before the application of focused US, they show a statistically significant change in their membrane potential as compared with the homologous cells that received US with no initial impalement. Future investigations into US's cellular effects should attempt to control for potential electrode resonance or use alternative recording strategies.
Collapse
Affiliation(s)
- Morgan N Collins
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
| | - Karen A Mesce
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
- Departments of Entomology and Neuroscience, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
124
|
Salahshoor H, Shapiro MG, Ortiz M. Transcranial focused ultrasound generates skull-conducted shear waves: Computational model and implications for neuromodulation. APPLIED PHYSICS LETTERS 2020; 117:033702. [PMID: 32741976 PMCID: PMC7386437 DOI: 10.1063/5.0011837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 05/12/2023]
Abstract
Focused ultrasound (FUS) is an established technique for non-invasive surgery and has recently attracted considerable attention as a potential method for non-invasive neuromodulation. While the pressure waves in FUS procedures have been extensively studied in this context, the accompanying shear waves are often neglected due to the relatively high shear compliance of soft tissues. However, in bony structures such as the skull, acoustic pressure can also induce significant shear waves that could propagate outside the ultrasound focus. Here, we investigate wave propagation in the human cranium by means of a finite-element model that accounts for the anatomy, elasticity, and viscoelasticity of the skull and brain. We show that, when a region on the scalp is subjected to FUS, the skull acts as a waveguide for shear waves that propagate with a speed close to 1500 m/s, reaching off-target structures such as the cochlea. In particular, when a sharp onset of FUS is introduced in a zone proximal to the intersection of the parietal and temporal cranium, the bone-propagated shear waves reach the inner ear in about 40 μ s , leading to cumulative displacements of about 1 μ m . We further quantify the effect of ramped and sharp application of FUS on the cumulative displacements in the inner ear. Our results help explain the off-target auditory responses observed during neuromodulation experiments and inform the development of mitigation and sham control strategies.
Collapse
Affiliation(s)
- Hossein Salahshoor
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael Ortiz
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
125
|
Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D, Jiang H. Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Front Physiol 2020; 11:787. [PMID: 32765294 PMCID: PMC7378787 DOI: 10.3389/fphys.2020.00787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive ultrasonic neural modulation (UNM), a non-invasive technique with enhanced spatial focus compared to conventional electrical neural modulation, has attracted much attention in recent decades and might become the mainstream regimen for neurological disorders. However, as ultrasonic bioeffects and its adjustments are still unclear, it remains difficult to be extensively applied for therapeutic purpose, much less in the setting of human skull. Hence to comprehensively understand the way ultrasound exerts bioeffects, we explored UNM from a basic perspective by illustrating the parameter settings and the underlying mechanisms. In addition, although the spatial resolution and precision of UNM are considerable, UNM is relatively non-specific to tissue or cell type and shows very low specificity at the molecular level. Surprisingly, Ibsen et al. (2015) first proposed the concept of sonogenetics, which combined UNM and mechanosensitive (MS) channel protein. This emerging approach is a valuable improvement, as it may markedly increase the precision and spatial resolution of UNM. It seemed to be an inspiring tool with high accuracy and specificity, however, little information about sonogenetics is currently available. Thus, in order to provide an overview of sonogenetics and prompt the researches on UNM, we summarized the potential mechanisms from a molecular level.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weilun Meng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Medical Department, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Ren
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Medical Department, Soochow University Medical College, Suzhou, China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tongjian Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
126
|
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. FRONTIERS IN PHYSICS 2020; 8:150. [PMID: 32509757 PMCID: PMC7274478 DOI: 10.3389/fphy.2020.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can interact with cell membranes and mechanosensitive ion channels, causing changes in neuronal activity. However, the thorough understanding of the mechanisms involved in these interactions are hindered by different experimental conditions for a variety of animal scales and models. While the lack of complete understanding of FUS neuromodulation mechanisms does not impede benefiting from the current known advantages and potential of this technique, a precise characterization of its mechanisms of action and their dependence on experimental setup (e.g., tuning acoustic parameters and characterizing safety ranges) has the potential to exponentially improve its efficacy as well as spatial and functional selectivity. This could potentially reach the cell type specificity typical of other, more invasive techniques e.g., opto- and chemogenetics or at least orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the mechanisms and their potential overlap are reviewed along with discussions on the potential insights into mechanisms that magnetic resonance imaging sequences along with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and mechanical stimuli can provide.
Collapse
Affiliation(s)
- Hermes A. S. Kamimura
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Elisa E. Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| |
Collapse
|
127
|
Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region-specific control of choice behavior with ultrasonic waves. SCIENCE ADVANCES 2020; 6:eaaz4193. [PMID: 32671207 PMCID: PMC7314556 DOI: 10.1126/sciadv.aaz4193] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
The ability to modulate neural activity in specific brain circuits remotely and systematically could revolutionize studies of brain function and treatments of brain disorders. Sound waves of high frequencies (ultrasound) have shown promise in this respect, combining the ability to modulate neuronal activity with sharp spatial focus. Here, we show that the approach can have potent effects on choice behavior. Brief, low-intensity ultrasound pulses delivered noninvasively into specific brain regions of macaque monkeys influenced their decisions regarding which target to choose. The effects were substantial, leading to around a 2:1 bias in choices compared to the default balanced proportion. The effect presence and polarity was controlled by the specific target region. These results represent a critical step towards the ability to influence choice behavior noninvasively, enabling systematic investigations and treatments of brain circuits underlying disorders of choice.
Collapse
Affiliation(s)
- Jan Kubanek
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Julian Brown
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - Patrick Ye
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - William Newsome
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
128
|
Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, Bian T, Yuan T, Niu L, Guo Y, Zheng H. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 2020; 10:5514-5526. [PMID: 32373225 PMCID: PMC7196311 DOI: 10.7150/thno.40520] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity pulsed ultrasound has been employed for direct neuro-modulation. However, its range and effectiveness for different neurological disorders have not been fully elucidated. Methods: We used multiple approaches of electrophysiology, immunohistochemistry, and behavioral tests as potential epilepsy treatments in non-human primate model of epilepsy and human epileptic tissues. Low-intensity pulsed ultrasound with a frequency of 750 kHz and acoustic pressure of 0.35 MPa (the spatial peak pulse average intensity, ISPPA = 2.02 W/cm2) were delivered to the epileptogenic foci in five penicillin-induced epileptic monkey models. An ultrasound neuro-modulation system with a frequency of 28 MHz and acoustic pressure of 0.13 MPa (ISPPA = 465 mW/cm2) compatible with patch-clamp systems was used to stimulate the brain slices prepared from fifteen patients with epilepsy. Results: After 30 min of low-intensity pulsed ultrasound treatment, total seizure count for 16 hours (sham group: 107.7 ± 1.2, ultrasound group: 66.0 ± 7.9, P < 0.01) and seizure frequency per hour (sham group: 15.6 ± 1.2, ultrasound group: 9.6 ± 1.5, P < 0.05) were significantly reduced. The therapeutic efficacy and underlying potential mechanism of low-intensity pulsed ultrasound treatment were studied in biopsy specimens from epileptic patients in vitro. Ultrasound stimulation could inhibit epileptiform activities with an efficiency exceeding 65%, potentially due to adjusting the balance of excitatory-inhibitory (E/I) synaptic inputs by the increased activity of local inhibitory neurons. Conclusion: Herein, we demonstrated for the first time that low-intensity pulsed ultrasound improves electrophysiological activities and behavioral outcomes in a non-human primate model of epilepsy and suppresses epileptiform activities of neurons from human epileptic slices. The study provides evidence for the potential clinical use of non-invasive low-intensity pulsed ultrasound stimulation for epilepsy treatment.
Collapse
|
129
|
Bobola MS, Chen L, Ezeokeke CK, Olmstead TA, Nguyen C, Sahota A, Williams RG, Mourad PD. Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely and reduces Aβ load chronically, as demonstrated in vivo. Brain Stimul 2020; 13:1014-1023. [PMID: 32388044 DOI: 10.1016/j.brs.2020.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Iaccarino et al. (2016) [1] exposed 1 h of light flickering at 40 Hz to awake 5XFAD Alzheimer's Disease (AD) mouse models, generating action potentials at 40 Hz, activating ∼54% of microglia to colocalize with Aβ plaque, acutely, and clearing ∼ 50% of Aβ plaque after seven days, but only in the visual cortex. HYPOTHESIS Transcranially delivered, focused ultrasound (tFUS) can replicate the results of Iaccarino et al. (2016) [1] but throughout its area of application. METHODS We exposed sedated 5XFAD mice to tFUS (2.0 MHz carrier frequency, 40 Hz pulse repetition frequency, 400 μs-long pulses, spatial peak pulse average value of 190 W/cm2). Acute studies targeted tFUS into one hemisphere of brain centered on its hippocampus for 1 h. Chronic studies targeted comparable brain in each hemisphere for 1 h/day for five days. RESULTS Acute application of tFUS activated more microglia that colocalized with Aβ plaque relative to sham ultrasound (36.0 ± 4.6% versus 14.2 ± 2.6% [mean ± standard error], z = 2.45, p < 0.014) and relative to the contralateral hemisphere of treated brain (36.0 ± 4.6% versus 14.3 ± 4.0%, z = 2.61, p < 0.009). Chronic application over five days reduced their Aβ plaque burden by nearly half relative to paired sham animals (47.4 ± 5.8%, z = - 2.79, p < 0.005). CONCLUSION Our results compare to those of Iaccarino et al. (2016) [1] but throughout the area of ultrasound-exposed brain. Our results also compare to those achieved by medications that target Aβ, but over a substantially shorter period of time. The proximity of our ultrasound protocol to those shown safe for non-human primates and humans may motivate its rapid translation to human studies.
Collapse
Affiliation(s)
- M S Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - L Chen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - C K Ezeokeke
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - T A Olmstead
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - C Nguyen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - A Sahota
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - R G Williams
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - P D Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Division of Engineering and Mathematics, University of Washington, Bothell, WA, USA.
| |
Collapse
|
130
|
Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, Mueller JK, Meekins G, Gillick BT. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep 2020; 10:5573. [PMID: 32221350 PMCID: PMC7101402 DOI: 10.1038/s41598-020-62265-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Low intensity transcranial focused ultrasound (LIFU) is a promising method of non-invasive neuromodulation that uses mechanical energy to affect neuronal excitability. LIFU confers high spatial resolution and adjustable focal lengths for precise neuromodulation of discrete regions in the human brain. Before the full potential of low intensity ultrasound for research and clinical application can be investigated, data on the safety of this technique is indicated. Here, we provide an evaluation of the safety of LIFU for human neuromodulation through participant report and neurological assessment with a comparison of symptomology to other forms of non-invasive brain stimulation. Participants (N = 120) that were enrolled in one of seven human ultrasound neuromodulation studies in one laboratory at the University of Minnesota (2015–2017) were queried to complete a follow-up Participant Report of Symptoms questionnaire assessing their self-reported experience and tolerance to participation in LIFU research (Isppa 11.56–17.12 W/cm2) and the perceived relation of symptoms to LIFU. A total of 64/120 participant (53%) responded to follow-up requests to complete the Participant Report of Symptoms questionnaire. None of the participants experienced serious adverse effects. From the post-hoc assessment of safety using the questionnaire, 7/64 reported mild to moderate symptoms, that were perceived as ‘possibly’ or ‘probably’ related to participation in LIFU experiments. These reports included neck pain, problems with attention, muscle twitches and anxiety. The most common unrelated symptoms included sleepiness and neck pain. There were initial transient reports of mild neck pain, scalp tingling and headache that were extinguished upon follow-up. No new symptoms were reported upon follow up out to 1 month. The profile and incidence of symptoms looks to be similar to other forms of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Wynn Legon
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA. .,Department of Neurological Surgery, School of Medicine, University of Virginia, VA, Charlottesville, USA.
| | - Sarah Adams
- Department of Neurological Surgery, School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Priya Bansal
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Parantap D Patel
- School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Landon Hobbs
- School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Leo Ai
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Jerel K Mueller
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Gregg Meekins
- Department of Neurology, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Bernadette T Gillick
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| |
Collapse
|
131
|
Niu L, Guo Y, Lin Z, Shi Z, Bian T, Qi L, Meng L, Grace AA, Zheng H, Yuan TF. Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1328-1336. [PMID: 32180109 DOI: 10.1007/s11427-019-1616-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 01/03/2023]
Abstract
Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens (NAc) in freely moving mice. Our results show that an acute ultrasound stimulation on the NAc, rather than the visual cortex or auditory cortex, led to a pronounced avoidance behavior, while repeated NAc ultrasound stimulation resulted in an obvious conditioned place aversion with changes in synaptic protein (GluA1/2 subunit) expression. Notably, NAc ultrasound stimulation suppressed the morphine-induced conditioned place preference. The results provide evidence that NAc ultrasound stimulation can be applied as a potential noninvasive therapeutic option in treating psychiatric disorders.
Collapse
Affiliation(s)
- Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanchen Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhe Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tianyuan Bian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110016, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
132
|
Cao J, Grover P. STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference. IEEE Trans Biomed Eng 2020; 67:726-737. [DOI: 10.1109/tbme.2019.2919912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
133
|
Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CMW, Tyler WJ, Allen JJB. Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Front Hum Neurosci 2020; 14:52. [PMID: 32184714 PMCID: PMC7058635 DOI: 10.3389/fnhum.2020.00052] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/04/2020] [Indexed: 01/21/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is an emerging method for non-invasive neuromodulation akin to transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). tFUS offers several advantages over electromagnetic methods including high spatial resolution and the ability to reach deep brain targets. Here we describe two experiments assessing whether tFUS could modulate mood in healthy human volunteers by targeting the right inferior frontal gyrus (rIFG), an area implicated in mood and emotional regulation. In a randomized, placebo-controlled, double-blind study, participants received 30 s of 500 kHz tFUS or a placebo control. Visual Analog Mood Scales (VAMS) assessed mood four times within an hour (baseline and three times after tFUS). Participants who received tFUS reported an overall increase in Global Affect (GA), an aggregate score from the VAMS scale, indicating a positive shift in mood. Experiment 2 examined resting-state functional (FC) connectivity using functional magnetic resonance imaging (fMRI) following 2 min of 500 kHz tFUS at the rIFG. As in Experiment 1, tFUS enhanced self-reported mood states and also decreased FC in resting state networks related to emotion and mood regulation. These results suggest that tFUS can be used to modulate mood and emotional regulation networks in the prefrontal cortex.
Collapse
Affiliation(s)
- Joseph L Sanguinetti
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Stuart Hameroff
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States.,Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
| | - Ezra E Smith
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,New York State Psychiatric Institute, New York, NY, United States
| | - Tomokazu Sato
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Chris M W Daft
- River Sonic Solutions LLC, San Francisco, CA, United States
| | - William J Tyler
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - John J B Allen
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
134
|
Wu CY, Fan CH, Chiu NH, Ho YJ, Lin YC, Yeh CK. Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain. Am J Cancer Res 2020; 10:3546-3561. [PMID: 32206107 PMCID: PMC7069068 DOI: 10.7150/thno.39786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/08/2020] [Indexed: 12/26/2022] Open
Abstract
Sonogenetics is a promising approach for in vivo neuromodulation using ultrasound (US) to non-invasively stimulate cells in deep tissue. However, sonogenetics requires accurate transduction of US-responsive proteins into target cells. Here, we introduce a non-invasive and non-viral approach for intracerebral gene delivery. This approach utilizes temporary ultrasonic disruption of the blood-brain barrier (BBB) to transfect neurons at specific sites in the brain via DNA that encodes engineered US-responsive protein (murine Prestin (N7T, N308S))-loaded microbubbles (pPrestin-MBs). Prestin is a transmembrane protein that exists in the mammalian auditory system and functions as an electromechanical transducer. We further improved the US sensitivity of Prestin by introducing specific amino acid substitutions that frequently occur in sonar species into the mouse Prestin protein. We demonstrated this concept in mice using US with pPrestin-MBs to non-invasively modify and activate neurons within the brain for spatiotemporal neuromodulation. Method: MBs composed of cationic phospholipid and C3F8 loaded with mouse Prestin plasmid (pPrestin) via electrostatic interactions. The mean concentration and size of the pPrestin-MBs were (16.0 ± 0.2) × 109 MBs/mL and 1.1 ± 0.2 μm, respectively. SH-SY5Y neuron-like cells and C57BL mice were used in this study. We evaluated the gene transfection efficiency and BBB-opening region resulting from pPrestin-MBs with 1-MHz US (pressure = 0.1-0.5 MPa, cycle = 50-10000, pulse repetition frequency (PRF): 0.5-5 Hz, sonication time = 60 s) using green fluorescence protein (Venus) and Evans blue staining. Results: The maximum pPrestin expression with the highest cell viability occurred at a pressure of 0.5 MPa, cycle number of 5000, and PRF of 1 Hz. The cellular transfection rate with pPrestin-MBs and US was 20.2 ± 2.5%, which was 1.5-fold higher than that of commercial transfection agents (LT-1). In vivo data suggested that the most profound expression of pPrestin occurred at 2 days after performing pPrestin-MBs with US (0.5 MPa, 240 s sonication time). In addition, no server erythrocyte extravasations and apoptosis cells were observed at US-sonicated region. We further found that with 0.5-MHz US stimulation, cells with Prestin expression were 6-fold more likely to exhibit c-Fos staining than cells without Prestin expression. Conclusion: Successful activation of Prestin-expressing neurons suggests that this technology provides non-invasive and spatially precise selective modulation of one or multiple specific brain regions.
Collapse
|
135
|
Optoacoustic brain stimulation at submillimeter spatial precision. Nat Commun 2020; 11:881. [PMID: 32060282 PMCID: PMC7021819 DOI: 10.1038/s41467-020-14706-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/17/2020] [Indexed: 02/08/2023] Open
Abstract
Low-intensity ultrasound is an emerging modality for neuromodulation. Yet, transcranial neuromodulation using low-frequency piezo-based transducers offers poor spatial confinement of excitation volume, often bigger than a few millimeters in diameter. In addition, the bulky size limits their implementation in a wearable setting and prevents integration with other experimental modalities. Here, we report spatially confined optoacoustic neural stimulation through a miniaturized Fiber-Optoacoustic Converter (FOC). The FOC has a diameter of 600 μm and generates omnidirectional ultrasound wave locally at the fiber tip through the optoacoustic effect. We show that the acoustic wave generated by FOC can directly activate individual cultured neurons and generate intracellular Ca2+ transients. The FOC activates neurons within a radius of 500 μm around the fiber tip, delivering superior spatial resolution over conventional piezo-based low-frequency transducers. Finally, we demonstrate direct and spatially confined neural stimulation of mouse brain and modulation of motor activity in vivo. Low-intensity ultrasound can be used for neuromodulation in vivo, but it has poor spatial confinement and can result in unwanted cochlear pathway activation. Here the authors use the optoacoustic effect to generate spatially confined ultrasound waves to activate neurons within a 500 μm radius in the mouse brain.
Collapse
|
136
|
Huang YS, Fan CH, Hsu N, Chiu NH, Wu CY, Chang CY, Wu BH, Hong SR, Chang YC, Yan-Tang Wu A, Guo V, Chiang YC, Hsu WC, Chen L, Pin-Kuang Lai C, Yeh CK, Lin YC. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. NANO LETTERS 2020; 20:1089-1100. [PMID: 31884787 DOI: 10.1021/acs.nanolett.9b04373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biomolecules that respond to different external stimuli enable the remote control of genetically modified cells. We report herein a sonogenetic approach that can manipulate target cell activities by focused ultrasound stimulation. This system requires an ultrasound-responsive protein derived from an engineered auditory-sensing protein prestin. Heterologous expression of mouse prestin containing two parallel amino acid substitutions, N7T and N308S, that frequently exist in prestins from echolocating species endowed transfected mammalian cells with the ability to sense ultrasound. An ultrasound pulse of low frequency and low pressure efficiently evoked cellular calcium responses after transfecting with prestin(N7T, N308S). Moreover, pulsed ultrasound can also noninvasively stimulate target neurons expressing prestin(N7T, N308S) in deep regions of mouse brains. Our study delineates how an engineered auditory-sensing protein can cause mammalian cells to sense ultrasound stimulation. Moreover, our sonogenetic tools will serve as new strategies for noninvasive therapy in deep tissues.
Collapse
Affiliation(s)
- Yao-Shen Huang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Nai-Hua Chiu
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Chun-Yao Wu
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Chu-Yuan Chang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Bing-Huan Wu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Anthony Yan-Tang Wu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program , Academia Sinica , Taipei 106 , Taiwan
- Department and Graduate Institute of Pharmacology , National Taiwan University , Taipei 106 , Taiwan
| | - Vanessa Guo
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Wei-Chia Hsu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Medical Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program , Academia Sinica , Taipei 106 , Taiwan
- Genome and Systems Biology Degree Program , National Taiwan University and Academia Sinica , Taipei 106 , Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Medical Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| |
Collapse
|
137
|
Yuan Y, Wang Z, Liu M, Shoham S. Cortical hemodynamic responses induced by low-intensity transcranial ultrasound stimulation of mouse cortex. Neuroimage 2020; 211:116597. [PMID: 32018004 DOI: 10.1016/j.neuroimage.2020.116597] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022] Open
Abstract
Ultrasound-mediated neuromodulation is emerging as a key technology for targeted noninvasive brain stimulation, but key insights into its effects and dose-response characteristics are still missing. The purpose of this study is to systematically evaluate the effect of low-intensity transcranial ultrasound stimulation (TUS) on complementary aspects of cerebral hemodynamic. We simultaneously record the EMG signal, local field potential (LFP) and cortical blood flow (CBF) using electrophysiological recording and laser speckle contrast imaging under ultrasound stimulation to simultaneously monitor motor responses, neural activities and hemodynamic changes during the application of low-intensity TUS in mouse motor cortex, using excitation pulses which caused whisker and tail movement. Our experimental results demonstrate interdependent TUS-induced motor, neural activity and hemodynamic responses that peak approximately 0.55s, 1.05s and 2.5s after TUS onset, respectively, and show a linear coupling relationship between their respective varying response amplitudes to repeated stimuli. We also found monotonic dose-response parametric relations of the CBF peak value increase as a function of stimulation intensity and duration, while stimulus duty-cycle had only a weak effect on peak responses. These findings demonstrate that TUS induces a change in cortical hemodynamics and LSCI provide a high temporal resolution view of these changes.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China; Departments of Ophthalmology, Departments of Neuroscience and Physiology, NYU Langone Health, New York, 10016, USA.
| | - Zhijie Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| | - Shy Shoham
- Departments of Ophthalmology, Departments of Neuroscience and Physiology, NYU Langone Health, New York, 10016, USA.
| |
Collapse
|
138
|
Abstract
Neuronal activity can be modulated by mechanical stimuli. To study this phenomenon quantitatively, we mechanically stimulated rat cortical neurons by shear stress and local indentation. Neurons show 2 distinct responses, classified as transient and sustained. Transient responses display fast kinetics, similar to spontaneous neuronal activity, whereas sustained responses last several minutes before returning to baseline. Local soma stimulations with micrometer-sized beads evoke transient responses at low forces of ∼220 nN and pressures of ∼5.6 kPa and sustained responses at higher forces of ∼360 nN and pressures of ∼9.2 kPa. Among the neuronal compartments, axons are highly susceptible to mechanical stimulation and predominantly show sustained responses, whereas the less susceptible dendrites predominantly respond transiently. Chemical perturbation experiments suggest that mechanically evoked responses require the influx of extracellular calcium through ion channels. We propose that subtraumatic forces/pressures applied to neurons evoke neuronal responses via nonspecific gating of ion channels.
Collapse
|
139
|
Choi T, Bae S, Suh M, Park J. A Soft Housing Needle Ultrasonic Transducer for Focal Stimulation to Small Animal Brain. Ann Biomed Eng 2019; 48:1157-1168. [PMID: 31834545 DOI: 10.1007/s10439-019-02431-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2019] [Indexed: 11/29/2022]
Abstract
Conventional acoustic brain stimulators that transmit low frequency (< 1 MHz) bursts in a pulse repetition frequency with large-sized transducers are barely compatible with small animal models because of broad beam width, possible stimulation of auditory pathways, and blocking of field-of-view for in vivo imaging of brain hemodynamics and neuronal activities. A miniaturized ultrasound stimulator with higher stimulation frequencies will enhance spatial specificity and enable simultaneous eliciting and monitoring brain activities. Moreover, the use of non-periodic pulse sequences may reduce unintended stimulations on auditory cortex, which might be caused by transmitting periodic bursting patterns. A platform for ultrasound brain stimulations for small animal models, including a soft housing 10 MHz needle transducer with a beam size of 680 μm, random transmission sequences, and optical imaging systems, was developed. The platform can deliver focal stimulations to the visual and barrel cortex of mice and monitor subsequent brain activities. The stimulated sites in both the visual and primary somatosensory cortices (S1) showed approximately two to three times higher neuronal calcium signal levels than those in peripheral regions. Activities in the auditory cortex were elicited by periodic sequence stimulation, while it was reduced by 67 and 35% for barrel and visual cortex stimulation with the random sequence, respectively.
Collapse
Affiliation(s)
- Taewon Choi
- Department of Biomedical Engineering in Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sungjun Bae
- Department of Biomedical Engineering in Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Minah Suh
- Department of Biomedical Engineering in Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea.
| | - Jinhyoung Park
- Department of Biomedical Engineering in Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
140
|
Zhou X, Liu S, Wang Y, Yin T, Yang Z, Liu Z. High-Resolution Transcranial Electrical Simulation for Living Mice Based on Magneto-Acoustic Effect. Front Neurosci 2019; 13:1342. [PMID: 31920507 PMCID: PMC6923685 DOI: 10.3389/fnins.2019.01342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
Transcranial electrical stimulation is an important neuromodulation tool, which has been widely applied in the cognitive sciences and in the treatment of neurological and psychiatric diseases. In this work, a novel non-invasive method of transcranial electrical stimulation with high-resolution transcranial magneto-acoustic stimulation (TMAS) method has been tested experimentally in living mice for the first time. It can achieve spatial resolution of 2 mm in the cortex and even in the deep brain regions. The induced electrical field of TMAS was simulated and measured using a test sample. Then, an animal experimental system was built, and the healthy as well as Parkinson’s disease (PD) mice were simulated by TMAS in vivo. To investigate the effect of transcranial ultrasound stimulation (TUS) at the same time as TMAS, a TUS group was added in the experiments and its results compared with those of the TMAS group. The results not only demonstrate the high-resolution ability and safety of TMAS, but also show that both TMAS and TUS improved the synaptic plasticity of the PD mice and might improve the spatial learning and memory ability of the healthy mice and the PD mice, although the improvement performance of the TMAS group was superior to that of the TUS-group. Based on the in vivo TMAS studies, we propose that TMAS functions as a dual-mode stimulation combining the electric field of the magneto-acoustic effect and the mechanical force of TUS. Our results also provide an explanation of the mechanism of TMAS. This research suggests that future use of US stimulation in magnetic resonance imaging (MRI)-guided studies should involve careful consideration of the induced magneto-acoustic electrical field caused by the static magnetic field of MRI.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China
| | - Shikun Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China
| | - Yuexiang Wang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Tao Yin
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhipeng Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China
| |
Collapse
|
141
|
Wang Z, Yan J, Wang X, Yuan Y, Li X. Transcranial Ultrasound Stimulation Directly Influences the Cortical Excitability of the Motor Cortex in Parkinsonian Mice. Mov Disord 2019; 35:693-698. [PMID: 31829467 DOI: 10.1002/mds.27952] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound stimulation is a new noninvasive brain modulation method with high spatial resolution and high penetration depth. However, until now, it was unclear whether transcranial ultrasound stimulation has a significant effect on PD. OBJECTIVES In order to evaluate the effect of transcranial ultrasound stimulation on PD. METHODS We used transcranial ultrasound stimulation to modulate parkinsonian-related activity in mice administered MPTP and recorded local field potentials in the motor cortex before and after ultrasound stimulation. We analyzed neuronal oscillatory activity known to be relevant to the pathophysiology of PD. RESULTS After ultrasound stimulation, mean power intensity in the beta band (13-30 Hz) significantly decreased, and the phase-amplitude coupling strength between the beta and high gamma (55-100 Hz) bands and between the beta and ripple (100-200 Hz) bands also became significantly weaker. CONCLUSIONS This study demonstrates that ultrasonic neuromodulation can significantly decrease parkinsonian-related activity in mice administered MPTP. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhijie Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Xingrang Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China.,Institute of Brain and Cognitive Science, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
142
|
Darrow DP, O'Brien P, Richner TJ, Netoff TI, Ebbini ES. Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul 2019; 12:1439-1447. [PMID: 31377096 PMCID: PMC6851480 DOI: 10.1016/j.brs.2019.07.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) at low intensities has been reported to directly evoke responses and reversibly inhibit function in the central nervous system. While some doubt has been cast on the ability of ultrasound to directly evoke neuronal responses, spatially-restricted transcranial ultrasound has demonstrated consistent, inhibitory effects, but the underlying mechanism of reversible suppression in the central nervous system is not well understood. OBJECTIVE/HYPOTHESIS In this study, we sought to characterize the effect of transcranial, low-intensity, focused ultrasound on the thalamus during somatosensory evoked potentials (SSEP) and investigate the mechanism by modulating the parameters of ultrasound. METHODS TFUS was applied to the ventral posterolateral nucleus of the thalamus of a rodent while electrically stimulating the tibial nerve to induce an SSEP. Thermal changes were also induced through an optical fiber that was image-guided to the same target. RESULTS Focused ultrasound reversibly suppressed SSEPs in a spatially and intensity-dependent manner while remaining independent of duty cycle, peak pressure, or modulation frequency. Suppression was highly correlated and temporally consistent with in vivo temperature changes while producing no pathological changes on histology. Furthermore, stereotactically-guided delivery of thermal energy through an optical fiber produced similar thermal effects and suppression. CONCLUSION We confirm that tFUS predominantly causes neuroinhibition and conclude that the most primary biophysical mechanism is the thermal effect of focused ultrasound.
Collapse
Affiliation(s)
- David P Darrow
- Department of Neurosurgery, University of Minnesota, MMC 96, Room D-429, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Parker O'Brien
- Department of Electrical and Computer Engineering, University of Minnesota, 7-174 Keller Hall, 200 Union Street Se. Minneapolis, MN, 55455, USA.
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| | - Emad S Ebbini
- Department of Electrical and Computer Engineering, University of Minnesota, 7-174 Keller Hall, 200 Union Street Se. Minneapolis, MN, 55455, USA.
| |
Collapse
|
143
|
Wang H, Zhou X, Cui D, Liu R, Tan R, Wang X, Liu Z, Yin T. Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex. Front Behav Neurosci 2019; 13:241. [PMID: 31680896 PMCID: PMC6798265 DOI: 10.3389/fnbeh.2019.00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial ultrasound stimulation (TUS; f < 1 MHz) is a promising approach to non-invasive brain stimulation. Transcranial magneto-acoustic stimulation (TMAS) is a technique of neuromodulation for regulating neuroelectric-activity utilizing a magnetic-acoustic coupling electric field generated by low-intensity ultrasound and magnetic fields. However, both techniques use the physical means of low-intensity ultrasound and can induce the response of the motor cortex. Therefore, it is necessary to distinguish the difference between the two techniques in the regulation of neural activity. This study is the first to quantify the amplitude and response latency of motor cortical electromyography (EMG) in mice induced by TMAS and TUS. The amplitude of EMG (2.73 ± 0.32 mV) induced by TMAS was significantly greater than that induced by TUS (2.22 ± 0.33 mV), and the EMG response latency induced by TMAS (101.25 ± 88.4 ms) was significantly lower than that induced by TUS (181.25 ± 158.4 ms). This shows that TMAS can shorten the response time of nerve activity and enhance the neuromodulation effect of TUS on the motor cortex. This provides a theoretical basis for revealing the physiological mechanisms of TMAS and the treatment of neuropsychiatric diseases using it.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhipeng Liu
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Yin
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
144
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
145
|
Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies. Brain Stimul 2019; 12:1367-1380. [PMID: 31401074 DOI: 10.1016/j.brs.2019.07.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. OBJECTIVE To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. METHODS Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. RESULTS Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. CONCLUSION Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Collapse
Affiliation(s)
- Cristina Pasquinelli
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
146
|
Wang P, Zhang J, Yu J, Smith C, Feng W. Brain Modulatory Effects by Low-Intensity Transcranial Ultrasound Stimulation (TUS): A Systematic Review on Both Animal and Human Studies. Front Neurosci 2019; 13:696. [PMID: 31396029 PMCID: PMC6667677 DOI: 10.3389/fnins.2019.00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background and objective: Low Intensity Transcranial Ultrasound Stimulation (TUS) is a new form of non-invasive brain modulation with promising data; however, systematic reviews on the brain modulatory effects of TUS on both animals and humans have not been well-conducted. We aimed to conduct a systematic review on the studies using the TUS to modulate the brain functions and associated behavioral changes in both animals and humans. Methods: A literature search for published studies in the past 10 years was conducted. Two authors independently reviewed the relevant articles. Data were extracted and qualitatively summarized. Quality of studies was assessed by the SYRCLE's risk of bias tool for preclinical studies or the PEDro scale for clinical studies. Results: A total of 24 animal studies (506 animals) and 11 human studies (213 subjects) were included. Findings based on most animal studies demonstrated the excitatory or suppressive modulatory effects of ultrasonic stimulations on motor cortex, somatosensory cortex, thalamus, prefrontal cortex, auditory, and visual areas. Brain modulatory effects also were found among healthy human subjects in seven studies and two clinical studies suggested TUS may result in potential benefits on patients with disorder of consciousness or chronic pain. The safety concerns of TUS seem to be minor based on the human studies. Conclusions: TUS appears to be a viable technique in modulating the brain functions; however, research on TUS is still in its early stages, especially in human studies. Parameters need to be optimized before launching systematic investigations in humans.
Collapse
Affiliation(s)
- Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiadan Yu
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Colin Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
147
|
Abstract
Many neuroscientists are excited regarding the potential of ultrasound to yield spatiotemporally precise and noninvasive modulation of arbitrary brain regions. Here, Guo et al. (2018) and Sato et al. (2018) show that applying ultrasound to rodent brains activates acoustic responses more prominently than eliciting neuromodulation directly, suggesting potential confounds of ultrasound neuromodulation experiments.
Collapse
Affiliation(s)
- Raag D Airan
- Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
148
|
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1509-1536. [PMID: 31109842 PMCID: PMC6996285 DOI: 10.1016/j.ultrasmedbio.2018.12.015] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.
Collapse
Affiliation(s)
- Joseph Blackmore
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shamit Shrivastava
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Nueroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
149
|
Jo Y, Oh C, Lee HJ. Microelectromechanical Systems-Based Neurotools for Non-Invasive Ultrasound Brain Stimulation. ACTA ACUST UNITED AC 2019. [DOI: 10.33069/cim.2019.0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
150
|
di Biase L, Falato E, Di Lazzaro V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front Neurol 2019; 10:549. [PMID: 31244747 PMCID: PMC6579808 DOI: 10.3389/fneur.2019.00549] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023] Open
Abstract
Transcranial focused ultrasound is an emerging technique for non-invasive neurostimulation. Compared to magnetic or electric non-invasive brain stimulation, this technique has a higher spatial resolution and can reach deep structures. In addition, both animal and human studies suggest that, potentially, different sites of the central and peripheral nervous system can be targeted by this technique. Depending on stimulation parameters, transcranial focused ultrasound is able to determine a wide spectrum of effects, ranging from suppression or facilitation of neural activity to tissue ablation. The aim is to review the state of the art of the human transcranial focused ultrasound neuromodulation literature, including the theoretical principles which underlie the explanation of the bioeffects on neural tissues, and showing the stimulation techniques and parameters used and their outcomes in terms of clinical, neurophysiological or neuroimaging results and safety.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, School of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Emma Falato
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, School of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|