101
|
Oláh J, Orosz F, Puskás L, Hackler, Jr L, Horányi M, Polgár L, Hollán S, Ovádi J. Triosephosphate isomerase deficiency: consequences of an inherited mutation at mRNA, protein and metabolic levels. Biochem J 2006; 392:675-83. [PMID: 16086671 PMCID: PMC1316309 DOI: 10.1042/bj20050993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Triosephosphate isomerase (TPI) deficiency is a unique glycolytic enzymopathy coupled with neurodegeneration. Two Hungarian compound heterozygote brothers inherited the same TPI mutations (F240L and E145Stop), but only the younger one suffers from neurodegeneration. In the present study, we determined the kinetic parameters of key glycolytic enzymes including the mutant TPI for rational modelling of erythrocyte glycolysis. We found that a low TPI activity in the mutant cells (lower than predicted from the protein level and specific activity of the purified recombinant enzyme) is coupled with an increase in the activities of glycolytic kinases. The modelling rendered it possible to establish the steady-state flux of the glycolysis and metabolite concentrations, which was not possible experimentally due to the inactivation of the mutant TPI and other enzymes during the pre-steady state. Our results showed that the flux was 2.5-fold higher and the concentration of DHAP (dihydroxyacetone phosphate) and fructose 1,6-bisphosphate increased 40- and 5-fold respectively in the erythrocytes of the patient compared with the control. Although the rapid equilibration of triosephosphates is not achieved, the energy state of the cells is not 'sick' due to the activation of key regulatory enzymes. In lymphocytes of the two brothers, the TPI activity was also lower (20%) than that of controls; however, the remaining activity was high enough to maintain the rapid equilibration of triosephosphates; consequently, no accumulation of DHAP occurs, as judged by our experimental and computational data. Interestingly, we found significant differences in the mRNA levels of the brothers for TPI and some other, apparently unrelated, proteins. One of them is the prolyl oligopeptidase, the activity decrease of which has been reported in well-characterized neurodegenerative diseases. We found that the peptidase activity of the affected brother was reduced by 30% compared with that of his neurologically intact brother.
Collapse
Affiliation(s)
- Judit Oláh
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518, P.O. Box 7, Budapest, Hungary
| | - Ferenc Orosz
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518, P.O. Box 7, Budapest, Hungary
| | - László G. Puskás
- †Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, H-6701, P.O. Box 521, Szeged, Hungary
| | - László Hackler, Jr
- †Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, H-6701, P.O. Box 521, Szeged, Hungary
| | - Margit Horányi
- ‡National Institute of Blood Transfusion, Budapest, Hungary
| | - László Polgár
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518, P.O. Box 7, Budapest, Hungary
| | - Susan Hollán
- ‡National Institute of Blood Transfusion, Budapest, Hungary
| | - Judit Ovádi
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518, P.O. Box 7, Budapest, Hungary
- To whom correspondence should be addressed (email )
| |
Collapse
|
102
|
Poon HF, Calabrese V, Calvani M, Butterfield DA. Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 2006; 8:381-94. [PMID: 16677085 DOI: 10.1089/ars.2006.8.381] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Impaired function of the central nervous system (CNS) in aged animals is associated with increased susceptibility to the development of many neurodegenerative diseases. Age-related functional deterioration in brain is consistent with the free radical theory of aging that predicts, among other things, that free radical reactions with and damage to biomolecules, such as proteins and membrane lipid bilayers, leads to loss of neurons and subsequently diminished cognition. These oxidatively modified biomolecules are believed to contribute to the decreased antioxidant content, mitochondrial dysfunction, and impaired plasticity in aged brains. Treatment of rodents with L-acetylcarnitine (LAC; gamma-trimethyl-beta-acetylbutyrobetaine) can improve these functional losses. Although it is well established that administration of LAC can decrease protein oxidation in aged brains, it is not clear which proteins are decreased in their level of oxidation in the brains of aged rats treated with LAC. The current study used a parallel redox proteomics approach to identify the proteins that are oxidized in aged rat cortex and hippocampus of aged rats. Moreover, those proteins that are reduced in oxidation status were identified in aged brains from rats treated in vivo with LAC. The findings are discussed in reference to brain aging and age-related cognitive impairment.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
| | | | | | | |
Collapse
|
103
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
104
|
Wang J, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 2006; 96:825-32. [PMID: 16405502 DOI: 10.1111/j.1471-4159.2005.03615.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence suggests that oxidative damage is associated with normal aging and several neurodegenerative diseases. Mild cognitive impairment (MCI), the phase between normal aging and early dementia, is a common problem in the elderly with many subjects going on to develop Alzheimer's disease (AD). Although increased DNA oxidation is observed in the AD brain, it is unclear when the oxidative damage begins. To determine if DNA oxidation occurs in the brain of subjects with MCI, we quantified multiple oxidized bases in nuclear and mitochondrial DNA isolated from frontal, parietal and temporal lobes and cerebellum of short post-mortem interval autopsies of eight amnestic patients with MCI and six age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring. We found statistically significant elevations (p < 0.05) of 8-hydroxyguanine, a widely studied biomarker of DNA damage, in MCI nuclear DNA from frontal and temporal lobe and in mitochondrial DNA from the temporal lobe compared with age-matched control subjects. Levels of 8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine were significantly elevated in nuclear DNA from all three neocortical regions in MCI. Statistically significant elevations of 4,6-diamino-5-formamidopyrimidine were also observed in mitochondrial DNA of MCI temporal, frontal and parietal lobes. These results suggest that oxidative damage to nuclear and mitochondrial DNA occurs in the earliest detectable phase of AD and may play a meaningful role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Jianquan Wang
- Department of Chemistry, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
105
|
Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 2005; 22:76-87. [PMID: 16378731 DOI: 10.1016/j.nbd.2005.10.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) has been implicated in the pathophysiology of a number of neurodegenerative diseases including Alzheimer's disease (AD). In the present study, using a proteomics approach, we identified enolase, glyceraldehyde-3-phosphate dehydrogenase, ATP synthase alpha chain, carbonic anhydrase-II, and voltage-dependent anion channel-protein as the targets of nitration in AD hippocampus, a region that shows a extensive deposition of amyloid beta-peptide, compared with the age-matched control brains. Immunoprecipitation and Western blotting techniques were used to validate the correct identification of these proteins. Our results are discussed in context of the role of oxidative stress as one of the important mechanisms of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 2005; 27:1564-76. [PMID: 16271804 DOI: 10.1016/j.neurobiolaging.2005.09.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles, senile plaques and loss of synapses. There is accumulating evidence that oxidative stress plays an important role in AD pathophysiology. Previous redox proteomics studies from our laboratory on AD inferior parietal lobule led to the identification of oxidatively modified proteins that were consistent with biochemical or pathological alterations in AD. The present study was focused on the identification of specific targets of protein oxidation in AD and control hippocampus and cerebellum using a redox proteomics approach. In AD hippocampus, peptidyl prolyl cis-trans isomerase, phosphoglycerate mutase 1, ubiquitin carboxyl terminal hydrolase 1, dihydropyrimidinase related protein-2 (DRP-2), carbonic anhydrase II, triose phosphate isomerase, alpha-enolase, and gamma-SNAP were identified as significantly oxidized protein with reduced enzyme activities relative to control hippocampus. In addition, no significant excessively oxidized protein spots were identified in cerebellum compared to control, consistent with the lack of pathology in this brain region in AD. The identification of oxidatively modified proteins in AD hippocampus was verified by immunochemical means. The identification of common oxidized proteins in different brain regions of AD brain suggests a potential role for these oxidized proteins and thereby oxidative stress in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Trougakos IP, Saridaki A, Panayotou G, Gonos ES. Identification of differentially expressed proteins in senescent human embryonic fibroblasts. Mech Ageing Dev 2005; 127:88-92. [PMID: 16213575 DOI: 10.1016/j.mad.2005.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022]
Abstract
Normal human fibroblasts undergo a limited number of divisions in culture, a process known as replicative senescence (RS). Although several senescence-specific genes have been identified, analysis at the level of protein expression can provide additional insights into the mechanisms that regulate RS. We have performed a proteomic comparison between young and replicative senescent human embryonic WI-38 fibroblasts and we have identified 13 proteins, which are differentially expressed in senescent cells. Some of the identified proteins are components of the cellular cytoskeleton, while others are implicated in key cellular functions including metabolism and energy production, Ca(2+) signalling, nucleo-cytoplasmic trafficking and telomerase activity regulation. In summary, our analysis contributes to the list of senescence-associated proteins by identifying new biomarkers and provides novel information on functional protein networks that are perturbed during replicative senescence of human fibroblast cultures.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Ageing, Institute of Biological Research & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | | | | | | |
Collapse
|
108
|
Poon HF, Vaishnav RA, Butterfield DA, Getchell ML, Getchell TV. Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J Neurochem 2005; 94:380-92. [PMID: 15998289 DOI: 10.1111/j.1471-4159.2005.03215.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Decline in olfactory ability has been associated with aging as well as neurodegenerative disorders. The aim of this study was to gain fundamental insight into molecular events associated with the aging olfactory system. We report a comparative proteomic analysis of the olfactory epithelium (OE) and olfactory bulb (OB) of old (80-week old) and young (6-week old) mice with further analysis of age-related differences in differentially expressed proteins at the mRNA level using real-time RT-PCR. Nine proteins in the OE and 20 in the OB were differentially expressed in old and young mice; of these, aldolase 1, peptidyl prolyl isomerase A, mitochondrial aconitase 2, mitochondrial aldehyde dehydrogenase 2 and albumin 1 were identified in the OE; and ATP synthase isoform 1, enolase 1, ferritin heavy chain, malate dehydrogenase 1, tropomyosin alpha 3 chain and dynamin 1 were identified in the OB. At the transcriptional level, aconitase 2 in the OE and ferritin heavy chain 1 in the OB were differentially expressed with aging, in concordance with the proteomic data. Our results demonstrate an altered proteomic profile of the aged murine olfactory system. The identified proteins fall into three broadly defined functional categories: (i) metabolism, (ii) transport/motility and (iii) stress response. Our transcriptional analysis provides insight into possible mechanisms by which protein expression may be regulated in the OE and OB. The results are discussed in relation to the decrement in olfactory sensitivity with aging.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
109
|
Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, Butterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005; 39:453-62. [PMID: 16043017 DOI: 10.1016/j.freeradbiomed.2005.03.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 12/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Poon HF, Farr SA, Banks WA, Pierce WM, Klein JB, Morley JE, Butterfield DA. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Aβ region of amyloid precursor protein. ACTA ACUST UNITED AC 2005; 138:8-16. [PMID: 15932783 DOI: 10.1016/j.molbrainres.2005.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/01/2005] [Accepted: 02/13/2005] [Indexed: 11/17/2022]
Abstract
Amyloid beta-peptide (Abeta) is the major constituent of senile plaques, a pathological hallmark of Alzheimer's disease (AD) brain. It is generally accepted that Abeta plays a central role in the pathophysiology of AD. Abeta is released from cells under entirely normal cellular conditions during the internalization and endosomal processing of amyloid precursor protein (APP). However, accumulation of Abeta can induce neurotoxicity. Our previous reports showed that decreasing the production of Abeta by giving an intracerebroventricular injection of a 42-mer phosphorothiolated antisense oligonucleotide (AO) directed at the Abeta region of the APP gene reduces lipid peroxidation and protein oxidation and improves cognitive deficits in aged senescence-accelerated mice prone 8 (SAMP8) mice. In order to investigate how Abeta level reduction improves learning and memory performance of SAMP8 mice through reduction of oxidative stress in brains, we used proteomics to identify the proteins that are less oxidized in 12-month-old SAMP8 mice brains treated with AO against the Abeta region of APP (12 mA) compared to that of the age-control SAMP8 mice. We found that the specific protein carbonyl levels of aldoase 3 (Aldo3), coronin 1a (Coro1a) and peroxiredoxin 2 (Prdx2) are significantly decreased in the brains of 12 mA SAMP8 mice compared to the age-controlled SAMP8 treated with random AO (12 mR). We also found that the expression level of alpha-ATP synthase (Atp5a1) was significantly decreased, whereas the expression of profilin 2 (Pro-2) was significantly increased in brains from 12 mA SAMP8 mice. Our results suggest that decreasing Abeta levels in aged brain in aged accelerated mice may contribute to the mechanism of restoring the learning and memory improvement in aged SAMP8 mice and may provide insight into the role of Abeta in the memory and cognitive deficits in AD.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, Center of Membrane Sciences, and Sander-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Raghothama C, Harsha HC, Prasad CK, Pandey A. Bioinformatics and Proteomics Approaches for Aging Research. Biogerontology 2005; 6:227-32. [PMID: 16333756 DOI: 10.1007/s10522-005-2617-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/29/2005] [Indexed: 01/30/2023]
Abstract
Aging is a natural phenomenon that affects the entire physiology of an organism. Elucidating the molecular mechanisms underlying this complex process remains a major challenge today. Humans make poor models for research into aging because of their long life span. Thus, most of the current knowledge is through studies conducted in lower organisms. Large differences in life spans make it difficult to extrapolate the results of experiments carried out in model organisms to humans. Recent advances in genomic and proteomic technologies now permit generation of data pertaining to aging on a large-scale. In addition, several web-based community resources and databases are available that provide easy access to the available data. Use of bioinformatics and systems biology type of approaches provide a framework to start dissecting this complex biological phenomenon. Here, we discuss various genomic, transcriptomic and proteomic approaches that have the potential to provide a comprehensive mechanistic insight into the aging process.
Collapse
Affiliation(s)
- Chaerkady Raghothama
- Institute of Bioinformatics, International Tech Park Ltd., 560066, Bangalore, India
| | | | | | | |
Collapse
|
112
|
Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, Butterfield DA. Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 2005; 4:1849-61. [PMID: 15968004 DOI: 10.1074/mcp.m500090-mcp200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is a hereditary neurodegenerative disorder characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin on chromosome 4, has been unambiguously identified. On the other hand, the mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in energy metabolism of affected cells may cause oxidative damage, which has been proposed as one of the underlying molecular mechanisms that participate in the etiology of the disease. In our effort to investigate the extent of oxidative damage occurring at the protein level, we used a parallel proteomic approach to identify proteins potentially involved in processes upstream or downstream of the disease-causing huntingtin in a well established HD mouse model (R6/2 transgenic mice). We have demonstrated that the expression levels of dihydrolipoamide S-succinyltransferase and aspartate aminotransferase increase consistently over the course of disease (10-week-old mice). In contrast, pyruvate dehydrogenase expression levels were found to be decreased in 10-week-old HD transgenic mice compared with young (4-week-old) mice. Our experimental approach also led to the identification of oxidatively modified proteins. Six proteins were found to be significantly oxidized in old R6/2 transgenic mice compared with either young transgenic mice or non-transgenic mice. These proteins are alpha-enolase, gamma-enolase (neuron-specific enolase), aconitase, the voltage-dependent anion channel 1, heat shock protein 90, and creatine kinase. Because oxidative damage has proved to play an important role in the pathogenesis and the progression of Huntington disease, our results for the first time identify specific oxidatively modified proteins that potentially contribute to the pathogenesis of Huntington disease.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice--a model of familial Parkinson's disease. Neurobiol Dis 2005; 18:492-8. [PMID: 15755676 DOI: 10.1016/j.nbd.2004.12.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 12/16/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P alpha-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Eno1), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
114
|
Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 2005; 280:21522-30. [PMID: 15799962 DOI: 10.1074/jbc.m502255200] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diverse oxidative pathways, such as direct oxidation of amino acids, glycoxidation, and lipoxidation could contribute to Alzheimer disease pathogenesis. A global survey for the amount of structurally characterized probes for these reactions is lacking and could overcome the lack of specificity derived from measurement of 2,4-dinitrophenylhydrazine reactive carbonyls. Consequently we analyzed (i) the presence and concentrations of glutamic and aminoadipic semialdehydes, N(epsilon)-(carboxymethyl)-lysine, N(epsilon)-(carboxyethyl)-lysine, and N(epsilon)-(malondialdehyde)-lysine by means of gas chromatography/mass spectrometry, (ii) the biological response through expression of the receptor for advanced glycation end products, (iii) the fatty acid composition in brain samples from Alzheimer disease patients and age-matched controls, and (iv) the targets of N(epsilon)-(malondialdehyde)-lysine formation in brain cortex by proteomic techniques. Alzheimer disease was associated with significant, although heterogeneous, increases in the concentrations of all evaluated markers. Alzheimer disease samples presented increases in expression of the receptor for advanced glycation end products with high molecular heterogeneity. Samples from Alzheimer disease patients also showed content of docosahexaenoic acid, which increased lipid peroxidizability. In accordance, N(epsilon)-(malondialdehyde)-lysine formation targeted important proteins for both glial and neuronal homeostasis such as neurofilament L, alpha-tubulin, glial fibrillary acidic protein, ubiquinol-cytochrome c reductase complex protein I, and the beta chain of ATP synthase. These data support an important role for lipid peroxidation-derived protein modifications in Alzheimer disease pathogenesis.
Collapse
Affiliation(s)
- Reinald Pamplona
- Metabolic Pathophysiology Research Group, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat de Lleida, c/Montserrat Roig,2. E-25008 Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
115
|
Poon HF, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, Butterfield DA. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int 2005; 46:159-68. [PMID: 15627516 DOI: 10.1016/j.neuint.2004.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 07/14/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial creatine kinase, lactate dehydrogenase B, and dihydropyrimidinase-like protein 2 in process associated with learning and memory of SAMP8 mice.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
117
|
Abstract
We reviewed here the formation of free radicals and its effect physiologically. Studies mentioned above have indicated that free radical/ROS/RNS involvement in brain aging is direct as well as correlative. Increasing evidence demonstrates that accumulation of oxidation of DNA, proteins, and lipids by free radicals are responsible for the functional decline in aged brains. Also, lipid peroxidation products, such as MDA, HNE, and acrolein, were reported to react with DNA and proteins to produce further damage in aged brains. Therefore, the impact of free radicals on brain aging is pronounced. It has been estimated that 10,000 oxidative interactions occur between DNA and endogenously generated free radicals per human cell per day, and at least one of every three proteins in the cell of older animals is dysfunctional as an enzyme or structural protein, due to oxidative modification. Although these estimated numbers reveal that free radical-mediated protein and DNA modification play significant roles in the deterioration of aging brain, they do not imply that free radical damages are the only cause of functional decline in aged brain. Nevertheless,although other factors may be involved in the cascade of damaging effects in the brain, the key role of free radicals in this process cannot be underestimated. This article has examined the role and formation of free radicals in brain aging. We propose that free radicals are critical to cell damage in aged brain and endogenous, and that exogenous antioxidants, therefore, may play effective roles in therapeutic strategies for age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|