101
|
Kataria H, Wadhwa R, Kaul SC, Kaur G. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 2012; 7:e37080. [PMID: 22606332 PMCID: PMC3351387 DOI: 10.1371/journal.pone.0037080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/13/2012] [Indexed: 01/09/2023] Open
Abstract
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- * E-mail: (GK) (RW); (RW) (GK)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- * E-mail: (GK) (RW); (RW) (GK)
| |
Collapse
|
102
|
Ryu EY, Park AJ, Park SY, Park SH, Eom HW, Kim YH, Park G, Lee SJ. Inhibitory Effects of Ginkgo biloba Extract on Inflammatory Mediator Production by Porphyromonas gingivalis Lipopolysaccharide in Murine Macrophages via Nrf-2 Mediated Heme Oxygenase-1 Signaling Pathways. Inflammation 2012; 35:1477-86. [DOI: 10.1007/s10753-012-9461-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
103
|
Zhang F, Wang S, Zhang M, Weng Z, Li P, Gan Y, Zhang L, Cao G, Gao Y, Leak RK, Sporn MB, Chen J. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke 2012; 43:1390-7. [PMID: 22461332 DOI: 10.1161/strokeaha.111.647420] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Heme oxygenase-1 (HO-1) is an inducible Phase 2 enzyme that degrades toxic heme; its role in cerebral ischemia is not fully understood. We hypothesize that chemically induced HO-1 upregulation with the novel triterpenoid CDDO-Im (2-cyano-3,12 dioxooleana-1,9 dien-28-oyl imidazoline), a robust inducer of Phase 2 genes, protects neurons against ischemic injury. METHODS Using 3 different models of ischemia, including oxygen-glucose deprivation in neuronal cultures, global ischemia in rats, and focal ischemia in mice, we determined (1) whether CDDO-Im induces HO-1 expression and protects against ischemic injury; and (2) whether HO-1 inhibition disrupts the neuroprotective effect of CDDO-Im. RESULTS CDDO-Im treatment (50-300 nmol/L) resulted in 8-fold HO-1 upregulation in cultured neurons and protected against oxygen-glucose deprivation. The protection was abolished when the cultures were transfected with nuclear factor (erythroid-derived 2) like-2-shRNA or coincubated with tin protoporphyrin IX, a specific HO-1 inhibitor. In the rat model of global ischemia, intracerebroventricular infusion of CDDO-Im (0.5-1.5 μg) augmented HO-1 expression in hippocampal neurons and resulted in significant increases in CA1 neuronal survival after global ischemia. To further strengthen the clinical relevance of the CDDO-Im treatment, we tested its effects in the mouse model of temporary focal ischemia (60 minutes). Postischemic intraperitoneal injection of CDDO-Im (10-100 μg) enhanced HO-1 expression and significantly reduced neurological dysfunction and infarct volume. Intracerebroventricular infusion of tin protoporphyrin IX reduced the neuroprotective effect of CDDO-Im against global and focal ischemia. CONCLUSIONS CDDO-Im confers neuroprotection against ischemic injury by upregulating HO-1, suggesting that enhance of HO-1 expression may be a legitimate strategy for therapeutic intervention of stroke.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y, Dore S, Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 2012; 52:928-36. [PMID: 22226832 PMCID: PMC6010182 DOI: 10.1016/j.freeradbiomed.2011.12.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/13/2022]
Abstract
Interest in histone deacetylase (HDAC)-based therapeutics as a potential treatment for stroke has grown dramatically. The neuroprotection of HDAC inhibition may involve multiple mechanisms, including modulation of transcription factor acetylation independent of histones. The transcription factor Nrf2 has been shown to be protective in stroke as a key regulator of antioxidant-responsive genes. Here, we hypothesized that HDAC inhibition might provide neuroprotection against mouse cerebral ischemia by activating the Nrf2 pathway. We determined that the classic HDAC inhibitor trichostatin A increased neuronal cell viability after oxygen-glucose deprivation (from an OD value of 0.10±0.01 to 0.25±0.08) and reduced infarct volume in wild-type mice with stroke (from 49.1±3.8 to 21.3±4.6%). In vitro studies showed that HDAC inhibition reduced Nrf2 suppressor Keap1 expression, induced Keap1/Nrf2 dissociation, Nrf2 nuclear translocation, and Nrf2 binding to antioxidant response elements in heme oxygenase 1 (HO1), and caused HO1 transcription. Furthermore, we demonstrated that HDAC inhibition upregulated proteins downstream of Nrf2, including HO1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit in neuron cultures and brain tissue. Finally, unlike wild-type mice, Nrf2-deficient mice were not protected by pharmacologic inhibition of HDAC after cerebral ischemia. Our studies suggest that activation of Nrf2 might be an important mechanism by which HDAC inhibition provides neuroprotection.
Collapse
Affiliation(s)
- Bing Wang
- Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Ginkgo biloba: an adjuvant therapy for progressive normal and high tension glaucoma. Mol Vis 2012; 18:390-402. [PMID: 22355250 PMCID: PMC3283204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/06/2012] [Indexed: 11/20/2022] Open
Abstract
Gingko biloba has been used for hundreds of years to treat various disorders such as asthma, vertigo, fatigue and, tinnitus or circulatory problems. Two of the main extracts are EGb761 and LI 1370. Most pharmacological, toxicological and clinical studies have focused on the neuroprotective value of these two main extracts. Neuroprotection is a rapidly expanding area of research. This area is of particular interest due to the fact that it represents a new avenue of therapy for a frustrating disease that may progress despite optimal treatment. One such disease is glaucoma.Glaucoma leads to the loss of retinal ganglion cells and their axons but also to tissue remodelling which involves both the optic nerve head and the retina. In the retina the astrocytes get activated. In addition, the optic nerve gets thinner and the cells of the lateral geniculate ganglion disappear partially. On average, ocular blood flow (OBF) is reduced in glaucoma patients in various tissues of the eye. Increased intraocular pressure (IOP) is a major risk factor for glaucomatous damage. Nevertheless, there is little doubt that other risk factors besides IOP are involved. One such risk factor is a primary vascular dysregulation (PVD) occurring in patients with a disturbed autoregulation, another risk factor is oxidative stress.
Collapse
|
106
|
Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 2012; 46:180-9. [PMID: 22297164 DOI: 10.1016/j.nbd.2012.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/05/2012] [Accepted: 01/14/2012] [Indexed: 11/18/2022] Open
Abstract
Ginkgo biloba/EGb 761® (EGb 761) is a popular and standardized natural extract used worldwide for the treatment of many ailments. Although EGb 761 is purported to have a plethora of benefits, here, we were interested to study the neuroprotective properties of EGb 761 and its components and determine whether nuclear factor E2 (Nrf2)/heme oxygenase 1 (HO1) induction of the collapsin response mediator protein 2 (CRMP2) pathway contributes to neuroprotection. Mice were pretreated with EGb 761 or one of its constituents (bilobalide, ginkgolide A, ginkgolide B, and terpene free material [TFM]) for 7days and then subjected to transient middle cerebral artery occlusion (tMCAO) and 48 h of reperfusion. All components except TFM significantly reduced infarct volumes and neurologic deficits. Next, we examined the antioxidant and neuritogenic properties of EGb 761 in primary neurons. Compared with vehicle-treated cells, pretreatment with EGb 761 significantly enhanced the survival of neurons exposed to tertiary butylhydroperoxide (t-BuOOH), hydrogen peroxide (H2O2), and N-methyl-D-aspartate (NMDA). Bilobalide and ginkgolide A also protected cells against NMDA-induced excitotoxicity. Immunofluorescence and Western blot analysis showed that EGb 761 pretreatment significantly increased the protein expression levels of Nrf2, HO1, GAPDH, β-actin, CRMP2, and histone H3 during t-BuOOH-induced oxidative stress. These findings suggest that EGb 761 not only has antioxidant activity but also neuritogenic potential. Demonstrating such effects for possible drug discovery may prove beneficial in stroke and ischemic brain injury.
Collapse
Affiliation(s)
- Shadia E Nada
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
107
|
Lang D, Kiewert C, Mdzinarishvili A, Schwarzkopf TM, Sumbria R, Hartmann J, Klein J. Neuroprotective effects of bilobalide are accompanied by a reduction of ischemia-induced glutamate release in vivo. Brain Res 2011; 1425:155-63. [PMID: 22032877 PMCID: PMC3217178 DOI: 10.1016/j.brainres.2011.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022]
Abstract
Neuroprotective properties of bilobalide, a specific constituent of Ginkgo extracts, were tested in a mouse model of stroke. After 24h of middle cerebral artery occlusion (MCAO), bilobalide reduced infarct areas in the core region (striatum) by 40-50% when given at 10mg/kg 1h prior to MCAO. Neuroprotection was also observed at lower doses, or when the drug was given 1h past stroke induction. Sensorimotor function in mice was improved by bilobalide as shown by corner and chimney tests. When brain metabolism in situ was monitored by microdialysis, MCAO caused a rapid disappearance of extracellular glucose in the striatum which returned to baseline levels after reperfusion. Extracellular levels of glutamate were increased by more than ten-fold in striatal tissue, and by four- to fivefold in hippocampal tissue (penumbra). Bilobalide did not affect glucose levels but strongly attenuated glutamate release in both core and penumbra regions. Bilobalide was equally active when given locally via the microdialysis probe and also reduced ischemia-induced glutamate release in vitro in brain slices. We conclude that bilobalide is a strong neuroprotectant in vivo at doses that can be used therapeutically in humans. The mechanism of action evidently involves reduction of glutamate release, thereby reducing excitotoxicity.
Collapse
Affiliation(s)
- Dorothee Lang
- Department of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Cornelia Kiewert
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
| | - Alexander Mdzinarishvili
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
- Department of Pharmaceutical Sciences, Northeastern Ohio University School of Pharmacy, 4209 State Road 44, Rootstown, OH 44272, USA
| | - Tina Maria Schwarzkopf
- Department of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rachita Sumbria
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
| | - Joachim Hartmann
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
| | - Jochen Klein
- Department of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
| |
Collapse
|
108
|
Mancuso C, Siciliano R, Barone E, Preziosi P. Natural substances and Alzheimer's disease: from preclinical studies to evidence based medicine. Biochim Biophys Acta Mol Basis Dis 2011; 1822:616-24. [PMID: 21939756 DOI: 10.1016/j.bbadis.2011.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 12/14/2022]
Abstract
Over the last 10 years, the potential therapeutic effects of nutraceuticals to prevent or delay Alzheimer's disease were proposed. Among dietary antioxidants curcumin, Ginkgo biloba and carnitines were extensively studied for their neuroprotective effects. The rationale for this alternative therapeutic approach was based on several preclinical studies which suggested the neuroprotective effects for curcumin, Ginkgo biloba and acetyl-l-carnitine due to either a free radical scavenging activity or the inhibition of pro-inflammatory pathways or the potentiation of the cell stress response. However, although these are interesting premises, clinical studies were not able to demonstrate significant beneficial effects of curcumin, Ginkgo biloba and acetyl-l-carnitine in improving cognitive functions in Alzheimer's disease patients. The aim of this review is to summarize the main pharmacologic features of curcumin, Ginkgo biloba and carnitines as well as to underlie the main outcomes reached by clinical studies designed to demonstrate the efficacy of these natural substances in Alzheimer's disease patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo Francesco Vito, 1-00168 Rome, Italy.
| | | | | | | |
Collapse
|