101
|
Rosenling T, Stoop MP, Attali A, Aken HV, Suidgeest E, Christin C, Stingl C, Suits F, Horvatovich P, Hintzen RQ, Tuinstra T, Bischoff R, Luider TM. Profiling and Identification of Cerebrospinal Fluid Proteins in a Rat EAE Model of Multiple Sclerosis. J Proteome Res 2012; 11:2048-60. [DOI: 10.1021/pr201244t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Therese Rosenling
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marcel P. Stoop
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amos Attali
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | - Hans van Aken
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | | | - Christin Christin
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank Suits
- IBM TJ Watson Research Center, Yorktown Heights, New York, United States
| | - Peter Horvatovich
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rogier Q. Hintzen
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rainer Bischoff
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Theo M. Luider
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
102
|
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.
Collapse
|
103
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
104
|
|
105
|
Ferreira R, Gasperin B, Santos J, Rovani M, Santos RAS, Gutierrez K, Oliveira JF, Reis AM, Gonçalves PB. Angiotensin II profile and mRNA encoding RAS proteins during bovine follicular wave. J Renin Angiotensin Aldosterone Syst 2011; 12:475-82. [DOI: 10.1177/1470320311403786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Angiotensin II (AngII) has a role in ovarian follicle development, ovulation, and oocyte meiotic resumption. The objective of the present study was to characterise the AngII profile and the mRNA encoding RAS proteins in a bovine follicular wave. Cows were ovariectomised when the size between the largest (F1) and the second largest follicle (F2) was not statistically different (day 2), slightly different (day 3), or markedly different (day 4). AngII was measured in the follicular fluid and the mRNA abundance of genes encoding angiotensin-converting enzyme (ACE), (pro)renin receptor, and renin-binding protein (RnBP) was evaluated in the follicular cells from F1 and F2. The AngII levels increased at the expected time of the follicular deviation in F1 but did not change in F2. However, the expression of the genes encoding ACE, (pro)renin receptor, and RnBP was not regulated in F1 but was upregulated during or after the follicular deviation in F2. Moreover, RnBP gene expression increased when the F1 was treated with the oestrogen receptor-antagonist in vivo. In conclusion, the AngII concentration increased in the follicular fluid of the dominant follicle during and after deviation and further supports our finding that RAS is present in the ovary regulating follicular dominance.
Collapse
Affiliation(s)
- Rogério Ferreira
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - Bernardo Gasperin
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - Joabel Santos
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - Monique Rovani
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - Robson AS Santos
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Karina Gutierrez
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - João Francisco Oliveira
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| | - Adelina M Reis
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Paulo Bayard Gonçalves
- Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria, Brazil
| |
Collapse
|
106
|
Zhang X, Tan F, Brovkovych V, Zhang Y, Skidgel RA. Cross-talk between carboxypeptidase M and the kinin B1 receptor mediates a new mode of G protein-coupled receptor signaling. J Biol Chem 2011; 286:18547-61. [PMID: 21454694 DOI: 10.1074/jbc.m110.214940] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys(9)-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
107
|
Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 2010; 15:6598-618. [PMID: 20877247 PMCID: PMC6257767 DOI: 10.3390/molecules15096598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022] Open
Abstract
Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.
Collapse
|