101
|
Teo A, Mantalaris A, Lim M. Hydrodynamics and bioprocess considerations in designing bioreactors for cardiac tissue engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-1218-1-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
102
|
Gonzalez MA, Bernad A. Characteristics of adult stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 741:103-20. [PMID: 22457106 DOI: 10.1007/978-1-4614-2098-9_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stem cells are characterized by their unlimited ability to divide specifically; a stem cell is capable of making an immense number of copies of itself, maintaining the same characteristics. Moreover, these cells are able to generate several of the cell lineages which make up the body, including cells from the heart, liver, kidney, neurons, and muscles. Investigation of the mechanisms through which this differentiation occurs, the genes involved and the possibility of increasing the efficiency with which stem cells can be isolated and/or characterized are currently among the most important fields in biology and biomedicine.To date, stems cells have been identified from four different sources: Embryonic stem cells (ESC), germinal stem cells, and those derived from embryonic carcinomas (teratocarcinomas) and from somatic tissues (somatic stem cells). The latter are called adult stem cells (ASC) when they are found in postnatal tissues. We now know that there is a great diversity among ASC, with some tissues, such as the bone marrow, containing more than one type of ASC. Adult stem cells have several characteristics that make them to be the main players in current regenerative medicine and are being investigated as potential therapeutic agents for a wide variety of diseases. Specifically, HSC and MSC are being assessed in increasing numbers of clinical trials.
Collapse
Affiliation(s)
- Manuel A Gonzalez
- Department of Regenerative Cardiology, Spanish National Centre for Cardiovascular Research, Madrid, Spain
| | | |
Collapse
|
103
|
From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:109-37. [PMID: 22917228 DOI: 10.1016/b978-0-12-398459-3.00005-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.
Collapse
|
104
|
Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials 2011; 32:9271-81. [DOI: 10.1016/j.biomaterials.2011.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/16/2011] [Indexed: 01/12/2023]
|
105
|
He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A, Bolli R. Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS One 2011; 6:e27719. [PMID: 22140461 PMCID: PMC3225366 DOI: 10.1371/journal.pone.0027719] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/23/2011] [Indexed: 12/15/2022] Open
Abstract
The in vivo studies of myocardial infarct using c-kit+/Lin− cardiac stem cells (CSCs) are still in the early stage with margin or no beneficial effects for cardiac function. One of the potential reasons may be related to the absence of fully understanding the properties of these cells both in vitro and in vivo. In the present study, we aimed to systematically examine how CSCs adapted to in vitro cell processes and whether there is any cell contamination after long-term culture. Human CSCs were enzymatically isolated from the atrial appendages of patients. The fixed tissue sections, freshly isolated or cultured CSCs were then used for identification of c-kit+/Lin− cells, detection of cell contamination, or differentiation of cardiac lineages. By specific antibody staining, we demonstrated that tissue sections from atrial appendages contained less than 0.036% c-kit+/Lin− cells. For the first time, we noted that without magnetic activated cell sorting (MACS), the percentages of c-kit+/Lin− cells gradually increased up to ∼40% during continuously culture between passage 2 to 8, but could not exceed >80% unless c-kit MACS was carried out. The resulting c-kit+/Lin− cells were negative for CD34, CD45, CD133, and Lin markers, but positive for KDR and CD31 in few patients after c-kit MACS. Lin depletion seemed unnecessary for enrichment of c-kit+/Lin− cell population. Following induced differentiation, c-kit+/Lin− CSCs demonstrated strong differentiation towards cardiomyocytes but less towards smooth and endothelial cells. We concluded that by using an enzymatic dissociation method, a large number, or higher percentage, of relative pure human CSCs with stable expression of c-kit+ could be obtained from atrial appendage specimens within ∼4 weeks following c-kit MACS without Lin depletion. This simple but cost-effective approach can be used to obtain enough numbers of stably-expressed c-kit+/Lin− cells for clinical trials in repairing myocardial infarction.
Collapse
Affiliation(s)
- Jia-Qiang He
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Duc Minh Vu
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Greg Hunt
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Atul Chugh
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Aruni Bhatnagar
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
106
|
Nascimento DS, Valente M, Esteves T, de Pina MDF, Guedes JG, Freire A, Quelhas P, Pinto-do-Ó P. MIQuant--semi-automation of infarct size assessment in models of cardiac ischemic injury. PLoS One 2011; 6:e25045. [PMID: 21980376 PMCID: PMC3184116 DOI: 10.1371/journal.pone.0025045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application. METHODOLOGY/PRINCIPAL FINDINGS Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r(midline length) = 0.981; r(area) = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement. CONCLUSIONS We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies.
Collapse
Affiliation(s)
- Diana S. Nascimento
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mariana Valente
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tiago Esteves
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Maria de Fátima de Pina
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Joana G. Guedes
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Ana Freire
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Pedro Quelhas
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
107
|
Abstract
Repair of damaged myocardium with pluripotent stem cell derived cardiomyocytes is becoming increasingly more feasible. Developments in stem cell research emphasize the need to address the foreseeable problem of immune rejection following transplantation. Pluripotent stem cell (PSC) derived cardiomyocytes have unique immune characteristics, some of which are not advantageous for transplantation. Here we review the possible mechanisms of PSC-derived cardiomyocytes rejection, summarize the current knowledge pertaining to immunogenicity of such cells and describe the existing controversies. Myocardial graft rejection can be reduced by modifying PSCs prior to their differentiation into cardiomyocytes. Overall, this approach facilitates the development of universal donor stem cells suitable for the regeneration of many different tissue types.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | | | | |
Collapse
|
108
|
Rodrigues CO, Shehadeh LA, Hoosien M, Otero V, Chopra I, Tsinoremas NF, Bishopric NH. Heterogeneity in SDF-1 expression defines the vasculogenic potential of adult cardiac progenitor cells. PLoS One 2011; 6:e24013. [PMID: 21887363 PMCID: PMC3161114 DOI: 10.1371/journal.pone.0024013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/01/2011] [Indexed: 02/01/2023] Open
Abstract
Rationale The adult myocardium has been reported to harbor several classes of multipotent progenitor cells (CPCs) with tri-lineage differentiation potential. It is not clear whether c-kit+CPCs represent a uniform precursor population or a more complex mixture of cell types. Objective To characterize and understand vasculogenic heterogeneity within c-kit+presumptive cardiac progenitor cell populations. Methods and Results c-kit+, sca-1+ CPCs obtained from adult mouse left ventricle expressed stem cell-associated genes, including Oct-4 and Myc, and were self-renewing, pluripotent and clonogenic. Detailed single cell clonal analysis of 17 clones revealed that most (14/17) exhibited trilineage differentiation potential. However, striking morphological differences were observed among clones that were heritable and stable in long-term culture. 3 major groups were identified: round (7/17), flat or spindle-shaped (5/17) and stellate (5/17). Stellate morphology was predictive of vasculogenic differentiation in Matrigel. Genome-wide expression studies and bioinformatic analysis revealed clonally stable, heritable differences in stromal cell-derived factor-1 (SDF-1) expression that correlated strongly with stellate morphology and vasculogenic capacity. Endogenous SDF-1 production contributed directly to vasculogenic differentiation: both shRNA-mediated knockdown of SDF-1 and AMD3100, an antagonist of the SDF-1 receptor CXC chemokine Receptor-4 (CXCR4), reduced tube-forming capacity, while exogenous SDF-1 induced tube formation by 2 non-vasculogenic clones. CPCs producing SDF-1 were able to vascularize Matrigel dermal implants in vivo, while CPCs with low SDF-1 production were not. Conclusions Clonogenic c-kit+, sca-1+ CPCs are heterogeneous in morphology, gene expression patterns and differentiation potential. Clone-specific levels of SDF-1 expression both predict and promote development of a vasculogenic phenotype via a previously unreported autocrine mechanism.
Collapse
Affiliation(s)
- Claudia O. Rodrigues
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Michael Hoosien
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Valerie Otero
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ines Chopra
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nicholas F. Tsinoremas
- Center for Computational Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nanette H. Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
109
|
Abstract
The fields of regenerative medicine and cellular therapy have been the subject of tremendous hype and hope. In particular, the perceived usage of somatic cells like mesenchymal stromal cells (MSCs) has captured the imagination of many. MSCs are a rare population of cells found in multiple regions within the body that can be readily expanded ex vivo and utilized clinically. Originally, it was hypothesized that transplantation of MSCs to sites of injury would lead to de novo tissue-specific differentiation and thereby replace damaged tissue. Now, it is generally agreed that MSC home to sites of injury and direct positive remodeling via the secretion of paracrine factors. Consequently, their clinical utilization has largely revolved around their abilities to promote neovascularization for ischemic disorders and modulate overly exuberant inflammatory responses for autoimmune and alloimmune conditions. One of the major issues surrounding the development of somatic cell therapies like MSCs is that despite evoking a positive response, long-term engraftment and persistence of these cells is rare. Consequently, very large cell doses need be administered for raising production, delivery, and efficacy issues. In this review, we will outline the field of MSC in the context of ischemia and discuss causes for their lack of persistence. In addition, some of the methodologies be used to enhance their therapeutic potential will be highlighted.
Collapse
Affiliation(s)
- Ian B Copland
- Department of Hematology and Medical Oncology, Emory University; School of Medicine, Emory University, Druid Hills, Georgia, USA
| |
Collapse
|
110
|
Tan J, Carr CA, Stuckey DJ, Ellison GM, Messina E, Giacomello A, Clarke K. Isolation and Expansion of Cardiosphere‐Derived Stem Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/9780470151808.sc02c03s16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun‐Jie Tan
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Daniel J. Stuckey
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Georgina M. Ellison
- Stem Cell and Molecular Physiology Laboratory, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University Liverpool United Kingdom
| | - Elisa Messina
- Department of Experimental Medicine, Cenci‐Bolognetti Foundation, Pasteur Institute University of Rome ‘Sapienza,’ Rome Italy
| | - Alessandro Giacomello
- Department of Experimental Medicine, Cenci‐Bolognetti Foundation, Pasteur Institute University of Rome ‘Sapienza,’ Rome Italy
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
| |
Collapse
|
111
|
Burmeister D, Aboushwareb T, Tan J, Link K, Andersson KE, Christ G. Early stages of in situ bladder regeneration in a rodent model. Tissue Eng Part A 2011; 16:2541-51. [PMID: 20235833 DOI: 10.1089/ten.tea.2009.0697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Surgical removal of approximately 70% of the bladder (subtotal cystectomy [STC]) was used as a model system to gain insight into the normal regenerative process in adult mammals in vivo. Female F344 rats underwent STC, and at 2, 4, and 8 weeks post-STC, bladder regeneration was monitored via microcomputed tomography scans, urodynamic (bladder function studies) pharmacologic studies, and immunohistochemistry. Computed tomography imaging revealed a time-dependent increase in bladder size at 2, 4, and 8 weeks post-STC, which positively correlated with restoration of bladder function. Bladders emptied completely at all time points studied. The maximal contractile response to pharmacological activation and electrical field stimulation increased over time in isolated tissue strips from regenerating bladders, but remained lower at all time points compared with strips from age-matched control bladders. Immunostaining of the bladder wall of STC rats suggested a role for progenitor cells and cellular proliferation in the regenerative response. Immunostaining and the presence of electrical field stimulation-induced contractile responses verified innervation of the regenerated bladder. These initial studies establish the utility of the present model system for studying de novo tissue regeneration in vivo and may provide guidance with respect to optimization of intrinsic regenerative capacity for clinical applications.
Collapse
Affiliation(s)
- David Burmeister
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina 27101, USA
| | | | | | | | | | | |
Collapse
|
112
|
Pagliari S, Vilela-Silva AC, Forte G, Pagliari F, Mandoli C, Vozzi G, Pietronave S, Prat M, Licoccia S, Ahluwalia A, Traversa E, Minieri M, Di Nardo P. Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:514-8. [PMID: 21254254 DOI: 10.1002/adma.201003479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 05/23/2023]
Affiliation(s)
- Stefania Pagliari
- Department of Internal Medicine, University of Rome "Tor Vergata", Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kammili RK, Taylor DG, Xia J, Osuala K, Thompson K, Menick DR, Ebert SN. Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo. Stem Cells Dev 2011; 19:1437-48. [PMID: 20109065 DOI: 10.1089/scd.2009.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapies offer the potential for repair and regeneration of cardiac tissue. To facilitate evaluation of stem cell activity in vivo, we created novel dual-reporter mouse embryonic stem (mES) cell lines that express the firefly luciferase (LUC) reporter gene under the control of the cardiac sodium-calcium exchanger-1 (Ncx-1) promoter in the background of the 7AC5-EYFP mES cell line that constitutively expresses the enhanced yellow fluorescent protein (EYFP). We compared the ability of recombinant clonal cell lines to express LUC before and after induction of cardiac differentiation in vitro. In particular, one of the clonal cell lines (Ncx-1-43LUC mES cells) showed markedly enhanced LUC expression (45-fold increase) upon induction of cardiac differentiation in vitro. Further, cardiac differentiation in these cells was perpetuated over a period of 2-4 weeks after transplantation in a neonatal mouse heart model, as monitored by noninvasive bioluminescence imaging (BLI) and confirmed via postmortem immunofluorescence and histological assessments. In contrast, transplantation of undifferentiated pluripotent Ncx-1-43LUC mES cells in neonatal hearts did not result in detectable levels of cardiac differentiation in these cells in vivo. These results suggest that prior induction of cardiac differentiation in vitro enhances development and maintenance of a cardiomyocyte-like phenotype for mES cells following transplantation into neonatal mouse hearts in vivo. We conclude that the Ncx-1-43LUC mES cell line is a novel tool for monitoring early cardiac differentiation in vivo using noninvasive BLI.
Collapse
Affiliation(s)
- Ramana K Kammili
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
de Carvalho ACC, Carvalho AB, Goldenberg RCS. Cell-based therapy in Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:49-63. [PMID: 21820551 DOI: 10.1016/b978-0-12-385863-4.00003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chagas disease was first described one century ago, yet the mechanisms underlying chagasic cardiomyopathy remain elusive. Disease progression often leads to heart failure and patients with this infectious cardiomyopathy have a poor prognosis. Treatment options for heart failure due to Chagas disease are not different from standard therapy. Over the past decade, cell-based therapies have emerged as a new alternative in the treatment of this disease, not only because of the possibility of replacing lost vessels and cardiomyocytes but also because these cells could potentially influence the microenvironmental changes that perpetuate the disease. In this chapter, we will review current knowledge on cell-based therapies for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro and National Cardiology Institute, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
115
|
Kawaguchi N. Adult cardiac-derived stem cells: differentiation and survival regulators. VITAMINS AND HORMONES 2011; 87:111-25. [PMID: 22127240 DOI: 10.1016/b978-0-12-386015-6.00041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, heart failure is one of the most concerning diseases worldwide. To develop efficient treatments, it is necessary to gain a better understanding of the biological characteristics of stem cells in the heart. We recently established and characterized c-kit-positive cardiac stem cells obtained from adult rats. Moreover, we established left atrium-derived pluripotent cells that can differentiate either into skeletal/cardiac myocytes or adipocytes in a methylcellulose-based Methocult medium with almost 100% purity. Microarray and signaling pathway analyses showed that transforming growth factor (TGF)-β is a key molecule in the regulation of the differentiation switch. Indeed, TGF-β1 simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with the developmental stage, dosage, and timing of the treatment.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Patriotic Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
116
|
Madonna R, De Caterina R, Willerson JT, Geng YJ. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. Eur Heart J 2010; 32:1190-6. [PMID: 21148539 DOI: 10.1093/eurheartj/ehq450] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres comprise long tracts of double-stranded TTAGGG repeats that extend for 9-15 kb in humans. Telomere length is maintained by telomerase, a specialized ribonucleoprotein that prevents the natural ends of linear chromosomes from undergoing inappropriate repair, which could otherwise lead to deleterious chromosomal fusions. During the development of cardiovascular tissues, telomerase activity is strong but diminishes with age in adult hearts. Dysfunction of telomerase is associated with the impairment of tissue repair or regeneration in several pathologic conditions, including heart failure and infarction. Under both physiologic and pathophysiologic conditions, telomerase interacts with promyogenic nuclear transcription factors (e.g. myocardin, serum response factor) to augment the potency of cardiovascular cells during growth, survival, and differentiation. We review recent findings on the biologic function of telomerase and its potential for clinical application in cardiovascular development and repair. Understanding the roles of telomerase and its associated proteins in the functional regulation of cardiovascular cells and their progenitors may lead to new strategies for cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
117
|
Eitan Y, Sarig U, Dahan N, Machluf M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 2010; 16:671-83. [PMID: 19780649 DOI: 10.1089/ten.tec.2009.0111] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have developed an efficient decellularization process for the isolation of extracellular matrix (ECM) from native cardiac tissue. The isolated ECM exhibited desirable mechanical properties in terms of elasticity, strength and durability-properties required from scaffolds used for cardiac tissue repair. This study further investigates the potential use of this scaffold for cardiac tissue engineering in terms of interactions with seeded cells and biocompatibility. We used the commonly studied fibroblasts, cardiomyocytes, and mesenchymal stem cells, which were isolated and seeded onto the scaffold. Cell density and distribution were followed by 3,3'-dioctadecyloxacarbocyanine perchlorate staining, and their proliferation and viability were assessed by AlamarBlue assay and fluorecein-diacetate/propidium iodide staining. Fibroblast-seeded scaffolds shrank to 1-2 mm(3) spheroids, and their glycosaminoglycans significantly increased by 23%. The expression of ECM remodeling-related mRNAs of collagens I and III, matrix metalloproteinase 2, and type 1 tissue inhibitor of metalloproteinases was quantified by real-time polymerase chain reaction, and was found significantly elevated in fibroblast-seeded scaffold, compared with the control cells on plates. Fibroblast-seeded scaffolds lost some flexibility, yet gained strength compared with the acellular scaffolds, as shown by mechanical testing. Scaffold seeded with cardiomyocyte began to beat in concert few days after seeding, and the myocytes expressed typical functional cardiac markers such as alpha-actinin, troponin I, and connexin43. The cells revealed aligned elongated morphology, as presented by immunofluorescent staining and scanning electron microscopy. Mesenchymal stem cell-seeded scaffolds maintained viability over 24 days in culture. These findings further strengthen the potential use of acellular cardiac ECM as a biomaterial for heart regeneration.
Collapse
Affiliation(s)
- Yuval Eitan
- The Laboratory of Cancer Drug Delivery and Mammalian Cell Technology, Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
118
|
Schittini AV, Celedon PF, Stimamiglio MA, Krieger M, Hansen P, da Costa FDA, Goldenberg S, Dallagiovanna B, Correa A. Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. Exp Biol Med (Maywood) 2010; 235:1015-24. [PMID: 20660100 DOI: 10.1258/ebm.2010.010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of conditioned medium (CM) from human cardiac explants (HCEs) as a potential source of paracrine factors for adult stem cell signaling has never been evaluated. We hypothesized that HCEs might provide a source of soluble factors triggering the differentiation of mesenchymal stem cells (MSCs) into cardiomyocyte-like cells. By using two-dimensional electrophoresis (2-DE) gels/mass spectrometry and antibody macroarray assays, we found that HCEs release macromolecules, including cytokines, growth factors and myocardial and metabolism-related proteins into the culture medium. We identified a total of 20 proteins in the HCE-CM. However, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-DE, these 20 proteins account for only a fraction of the total number of proteins present in the HCE-CM. We also found that CM increased the proliferation of bone marrow-derived-MSCs (BM-MSCs) in vitro. Unlike the other effects, this effect was most evident after 48 h of culture. Moreover, we examined the effect of HCE-CM on levels of mRNA and protein for specific cardiac markers. We showed that a surprisingly big fraction of BM-MSCs (3.4-5.0%) treated in vitro with HCE-CM became elongated and began to express cardiac markers, consistent with their possible differentiation into cardiomyocyte-like cells. Our in vitro model may be useful not only per se, but also for studies of the mechanisms of action of soluble factors involved in cell differentiation, paving the way for possible new protein-based treatments in the future.
Collapse
|
119
|
Wu J. Stem cell cardiac repair and arrhythmias. Heart Rhythm 2010; 7:1860-1. [PMID: 20884381 DOI: 10.1016/j.hrthm.2010.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Indexed: 11/27/2022]
|
120
|
Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylvén C, Grinnemo KH. Islet-1 Cells Are Cardiac Progenitors Present During the Entire Lifespan: From the Embryonic Stage to Adulthood. Stem Cells Dev 2010; 19:1601-15. [DOI: 10.1089/scd.2009.0483] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rami Genead
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christian Danielsson
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta B. Andersson
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matthias Corbascio
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Sylvén
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
121
|
Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marbán E. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 2010; 5:e12559. [PMID: 20838637 PMCID: PMC2933247 DOI: 10.1371/journal.pone.0012559] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/05/2010] [Indexed: 01/22/2023] Open
Abstract
Background It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle. Methodology/Principal Findings Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1) cardiomyocyte purification from rat hearts, and 2) genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs), while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP) continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit+. Conclusions/Significance Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness, including the expression of c-kit and the capacity for multipotency.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Tao-Sheng Li
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Shuo-Tsan Lee
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kolja A. Wawrowsky
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ke Cheng
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Giselle Galang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Konstantinos Malliaras
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - M. Roselle Abraham
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Charles Wang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
122
|
Marr RA, Thomas RM, Peterson DA. Insights into neurogenesis and aging: potential therapy for degenerative disease? FUTURE NEUROLOGY 2010; 5:527-541. [PMID: 20806052 PMCID: PMC2929019 DOI: 10.2217/fnl.10.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenesis is the process by which new neural cells are generated from a small population of multipotent stem cells in the adult CNS. This natural generation of new cells is limited in its regenerative capabilities and also declines with age. The use of stem cells in the treatment of neurodegenerative disease may hold great potential; however, the age-related incidence of many CNS diseases coincides with reduced neurogenesis. This review concisely summarizes current knowledge related to adult neurogenesis and its alteration with aging and examines the feasibility of using stem cell and gene therapies to combat diseases of the CNS with advancing age.
Collapse
Affiliation(s)
- Robert A Marr
- Department of Neuroscience, Center for Stem Cell & Regenerative Medicine, Rosalind Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Rosanne M Thomas
- Department of Physical Therapy, Center for Stem Cell & Regenerative Medicine
| | - Daniel A Peterson
- Department of Neuroscience, Center for Stem Cell & Regenerative Medicine, Rosalind Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
123
|
Carvalho AB, de Carvalho ACC. Heart regeneration: Past, present and future. World J Cardiol 2010; 2:107-11. [PMID: 21160711 PMCID: PMC2999050 DOI: 10.4330/wjc.v2.i5.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023] Open
Abstract
The heart has been considered a post-mitotic organ without regenerative capacity for most of the last century. We review the evidence that led to this hypothesis in the early 1900s and how it was progressively modified, culminating with the report that we renew 50% of our cardiomyocytes during our lifetime. The future of cardiac regenerative therapies is discussed, presenting the difficulties to overcome before repair of the diseased heart can come into clinical practice.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Adriana Bastos Carvalho, Antonio Carlos Campos de Carvalho, National Institute of Cardiology, Rio de Janeiro, RJ, CEP 22240-006, Brazil; Carlos Chagas Filho Institute of Biophysics and Institute for Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | | |
Collapse
|
124
|
Endogenous retinoic acid regulates cardiac progenitor differentiation. Proc Natl Acad Sci U S A 2010; 107:9234-9. [PMID: 20439714 DOI: 10.1073/pnas.0910430107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid (RA) has several established functions during cardiac development, including actions in the fetal epicardium required for myocardial growth. An open question is if retinoid effects are limited to growth factor stimulation pathway(s) or if additional actions on uncommitted progenitor/stem populations might drive cardiac differentiation. Here we report the dual effects of RA deficiency on cardiac growth factor signaling and progenitor/stem biology using the mouse retinaldehyde dehydrogenase 2 (Raldh2) knockout model. Although early heart defects in Raldh2(-/-) embryos result from second-heart-field abnormalities, it is unclear whether this role is transient or whether RA has sustained effects on cardiac progenitors. To address this, we used transient maternal RA supplementation to overcome early Raldh2(-/-) lethality. By embryonic day 11.5-14.5, Raldh2(-/-) hearts exhibited reduced venticular compact layer outgrowth and altered coronary vessel development. Although reductions in Fgf2 and target pERK levels occurred, no alterations in Wnt/beta-catenin expression were observed. Cell proliferation is increased in compact zone myocardium, whereas cardiomyocyte differentiation is reduced, alterations that suggest progenitor defects. We report that the fetal heart contains a reservoir of stem/progenitor cells, which can be isolated by their ability to efflux a fluorescent dye and that retinoid signaling acts on this fetal cardiac side population (SP). Raldh2(-/-) hearts display increased SP cell numbers, with selective increases in expression of cardiac progenitor cell markers and reduced differentiation marker levels. Hence, although lack of RA signaling increases cardiac SP numbers, simultaneous reductions in Fgf signaling reduce cardiomyocyte differentiation, possibly accounting for long-term defects in myocardial growth.
Collapse
|
125
|
Maxeiner H, Krehbiehl N, Müller A, Woitasky N, Akintürk H, Müller M, Weigand MA, Abdallah Y, Kasseckert S, Schreckenberg R, Schlüter KD, Wenzel S. New insights into paracrine mechanisms of human cardiac progenitor cells. Eur J Heart Fail 2010; 12:730-7. [PMID: 20406797 DOI: 10.1093/eurjhf/hfq063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Cardiac progenitor cells (CPCs) have been shown to promote cardiac regeneration in vivo. Understanding the function of CPCs is essential for further implementation of these cells in the treatment of cardiac diseases. The present study tested the hypothesis that adult CPC exert paracrine effects that lead to an improvement in the functional characteristics of cardiomyocytes. This study also investigated whether aging (we included patients aged between 4 months and 81 years) has any effect on the paracrine mechanisms of CPC. METHODS AND RESULTS The supernatant of CPC generated both from human and rat hearts-so called 'conditioned cardiosphere medium' improved the contractile behaviour of isolated adult cardiomyocytes in a concentration-dependent manner after incubation for 24 h and increased the SERCA/NCX ratio. The observed positive effects on contractile behaviour were independent of the CPC donors' age. Conditioned cardiosphere media also normalized angiotensin II-induced contractile dysfunction. Cytokines released by CPC into the media were detected by cytokine arrays. CONCLUSION The observed diversity of cytokines released by CPC needs to be further elucidated in detail. Nevertheless, CPC are a promising therapeutic approach in the field of cardiac disease. The methods described allow investigation of the underlying paracrine mechanisms in a standardized in vitro situation.
Collapse
Affiliation(s)
- Hagen Maxeiner
- Department of Anaesthesiology, University Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Str 7, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, Minev B, Ramos F, Woods EJ, Murphy MP, Alexandrescu DT, Patel AN, Riordan NH. Combination stem cell therapy for heart failure. Int Arch Med 2010; 3:5. [PMID: 20398245 PMCID: PMC3003238 DOI: 10.1186/1755-7682-3-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/14/2010] [Indexed: 02/07/2023] Open
Abstract
Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells.
Collapse
|
127
|
Yamashita JK. ES and iPS cell research for cardiovascular regeneration. Exp Cell Res 2010; 316:2555-9. [PMID: 20385126 DOI: 10.1016/j.yexcr.2010.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/04/2010] [Indexed: 01/08/2023]
Abstract
Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, which are ES-like stem cells induced from adult tissues, are twin stem cells with currently (with the exception of fertilized eggs) the broadest differentiation potentials. These two stem cells show various similarities in appearance, maintenance methods, growth and differentiation potentials, i.e. theoretically, those cells can give rise to all kinds of cells including germ-line cells. Generation of human ES and iPS cells is further facilitating the researches towards the realization of regenerative medicine. The following three issues are important purposes of ES and iPS cell researches for regenerative medicine: (1) dissection of differentiation mechanisms, (2) application to cell transplantation, and (3) drug discovery. In this review, the current status of cardiovascular regenerative trials using ES and iPS cells is briefly discussed.
Collapse
Affiliation(s)
- Jun K Yamashita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan.
| |
Collapse
|
128
|
Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med 2010; 14:871-7. [PMID: 20367663 PMCID: PMC3823118 DOI: 10.1111/j.1582-4934.2010.01060.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A highly heterogeneous population of stem and progenitor cells has been described by light immunohistochemistry in the mammalian adult heart, but the ultrastructural identity of cardiac stem cells remains unknown. Using electron microscopy, we demonstrate the presence of cells with stem features in the adult mouse heart. These putative cardiac stem cells are small (6-10 microm), round cells, with an irregular shaped nucleus, large nucleolus, few endoplasmic reticulum cisternae and mitochondria, but numerous ribosomes. Stem cells located in the epicardial stem cell niche undergo mitosis and apoptosis. Cells with intermediate features between stem cells and cardiomyocyte progenitors have also been seen. Moreover, electron microscopy showed that cardiomyocyte progenitors were added to the peripheral working cardiomyocytes. Telocytes make a supportive interstitial network for stem cells and progenitors in the stem cell niche. This study enhances the hypothesis of a unique type of cardiac stem cell and progenitors in different stages of differentiation. In our opinion, stem cells, cardiomyocyte progenitors and telocytes sustain a continuous cardiac renewal process in the adult mammalian heart.
Collapse
|
129
|
Han Y, Chen JD, Liu ZM, Zhou Y, Xia JH, Du XL, Jin MW. Functional ion channels in mouse cardiac c-kit(+) cells. Am J Physiol Cell Physiol 2010; 298:C1109-17. [PMID: 20130208 DOI: 10.1152/ajpcell.00207.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac c-kit(+) cells are generally believed to be the major population of stem/progenitor cells in the heart and can be used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not understood in this type of cells. The present study was designed to investigate functional ion channels in undifferentiated mouse cardiac c-kit(+) cells using approaches of whole cell patch voltage clamp, RT-PCR, and cell proliferation assay. It was found that three types of ionic currents were present in mouse cardiac c-kit(+) cells, including a delayed rectifier K(+) current (IK(DR)) inhibited by 4-aminopyridine (4-AP), an inward rectifier K(+) current (I(Kir)) decreased by Ba(2+), and a volume-sensitive chloride current (I(Cl.vol)) inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB). RT-PCR revealed that the corresponding ion channel genes, Kv1.1, Kv1.2, and Kv1.6 (for IK(DR)), Kir.1.1, Kir2.1, and Kir2.2 (likely responsible for I(Kir)), and Clcn3 (for I(Cl.vol)), were significant in mouse cardiac c-kit(+) cells. The inhibition of I(Cl.vol) with NPPB and niflumic acid, but not IK(DR) with 4-AP and tetraethylammonium, reduced cell proliferation and accumulated the cell progression at G(0)/G(1) phase in mouse cardiac c-kit(+) cells. Our results demonstrate that three types of functional ion channel currents (i.e., IK(DR), I(Kir), and I(Cl.vol)) are present in mouse cardiac c-kit(+) cells, and I(Cl.vol) participates in regulating cell proliferation.
Collapse
Affiliation(s)
- Yi Han
- Dept. of Pharmacology, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
130
|
Carter-Monroe N, Ladich E, Virmani R, Kolodgie FD. Histopathologic assessment of myocardial regeneration. Methods Mol Biol 2010; 660:125-48. [PMID: 20680817 DOI: 10.1007/978-1-60761-705-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiac regeneration in the form of cell-based therapy offers hope of becoming the breakthrough technology that transforms the state of cardiac medicine. Before attempting to develop the techniques to assess the effectiveness of myocardial regeneration in humans, researchers must have at least a basic understanding of the human heart in its embryonic, normal, and diseased states. To this end, we provide an overview of the histology of the heart, including the current theories on normal embryogenesis and the histology of normal and ischemic myocardium as visualized by pathologists. Knowledge of the cellular constituents, including the controversial existence of resident cardiac stem and/or progenitor cells, and their actions and interactions in the normal state and under the conditions of myocardial ischemia is also crucial before embarking on the quest for cardiac regeneration. Despite widespread optimism in the success of cell-based therapy, inherent difficulties remain in the identification of effective cell populations proposed for cell-based therapy in the human heart.
Collapse
|
131
|
Simpson D, Dudley SC. Lost in translation: what is limiting cardiomyoplasty and can tissue engineering help? Curr Stem Cell Res Ther 2009; 4:210-23. [PMID: 19492979 DOI: 10.2174/157488809789057437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/19/2009] [Indexed: 01/16/2023]
Abstract
Heart failure accounts for more deaths in the United States than any other detrimental human pathology. Recently, repairing the heart after seemingly irreversible injury leading to heart failure appears to have come within reach. Cellular cardiomyoplasty, transplanting viable cell alternatives into the diseased myocardium, has emerged as a promising possible solution. Translating this approach from the laboratory to the clinic, however, has been met with several challenges, leaving many questions unanswered. This review assesses the state of investigation of several progenitor cell sources, including induced pluripotent stem cells, embryonic stem cells, bone marrow stem cells, adipose-derived adult stem cells, amniotic fluid stem cells, skeletal muscle progenitors, induced pluripotent stem cells and cardiac progenitors. Several current roadblocks to maximum success are discussed. These include understanding the need for cardiomyocyte differentiation, appreciating the role of paracrine factors, and addressing the low engraftment rates using current techniques. Tissue engineering strategies to address these obstacles and to help maximize cellular cardiomyoplasty success are reviewed.
Collapse
Affiliation(s)
- David Simpson
- Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
132
|
Katayama R, Koike S, Sato S, Sugimoto Y, Tsuruo T, Fujita N. Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Sci 2009; 100:2060-8. [PMID: 19673889 PMCID: PMC11158120 DOI: 10.1111/j.1349-7006.2009.01288.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/02/2023] Open
Abstract
The ATP-binding cassette (ABC) transporters (ABC-T) actively efflux structurally and mechanistically unrelated anticancer drugs from cells. As a consequence, they can confer multidrug resistance (MDR) to cancer cells. ABC-T are also reported to be phenotypic markers and functional regulators of cancer stem/initiating cells (CSC) and believed to be associated with tumor initiation, progression, and relapse. Dofequidar fumarate, an orally active quinoline compound, has been reported to overcome MDR by inhibiting ABCB1/P-gp, ABCC1/MDR-associated protein 1, or both. Phase III clinical trials suggested that dofequidar had efficacy in patients who had not received prior therapy. Here we show that dofequidar inhibits the efflux of chemotherapeutic drugs and increases the sensitivity to anticancer drugs in CSC-like side population (SP) cells isolated from various cancer cell lines. Dofequidar treatment greatly reduced the cell number in the SP fraction. Estimation of ABC-T expression revealed that ABCG2/breast cancer resistance protein (BCRP) mRNA level, but not the ABCB1/P-gp or ABCC1/MDR-associated protein 1 mRNA level, in all the tested SP cells was higher than that in non-SP cells. The in vitro vesicle transporter assay clarified that dofequidar had the ability to suppress ABCG2/BCRP function. Dofequidar treatment sensitized SP cells to anticancer agents in vitro. We compared the antitumor efficacy of irinotecan (CPT-11) alone with that of CPT-11 plus dofequidar in xenografted SP cells. Although xenografted SP tumors showed resistance to CPT-11, treatment with CPT-11 plus dofequidar greatly reduced the SP-derived tumor growth in vivo. Our results suggest the possibility of selective eradication of CSC by inhibiting ABCG2/BCRP.
Collapse
Affiliation(s)
- Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
133
|
Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges. Cardiol Young 2009; 19 Suppl 2:74-84. [PMID: 19857353 DOI: 10.1017/s104795110999165x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political issues. As of now, bone marrow derived stem cells have not been proven to differentiate reproducibly and reliably into cardiomyocytes. Skeletal myoblasts have created in vivo myotubes but have not electrically integrated with the myocardium. Cardiac stem cells and cardiac progenitor cells represent one of the most promising types of cellular therapy for children with cardiac failure.
Collapse
|
134
|
Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, Zhang L, Huang Y, Wan Y. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res 2009; 315:3521-31. [PMID: 19800880 DOI: 10.1016/j.yexcr.2009.09.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/16/2009] [Accepted: 09/28/2009] [Indexed: 12/13/2022]
Abstract
VEGF is a major inducer of angiogenesis. However, the homing role of VEGF for cardiac stem cells (CSCs) is unclear. In in vitro experiments, CSCs were isolated from the rat hearts, and a cellular migration assay was performed using a 24-well transwell system. VEGF induced CSC migration in a concentration-dependent manner, and SU5416 blocked this. Western blot analysis showed that the phosphorylated Akt was markedly increased in the VEGF-treated CSCs and that inhibition of pAkt activity significantly attenuated the VEGF-induced the migration of CSCs. In in vivo experiments, rat heart myocardial infarction (MI) was induced by left coronary artery ligation. One week after MI, the adenoviral vector expressing hVEGF165 and LacZ genes were injected separately into the infarcted myocardium at four sites before endomyocardial transplantation of 2x10(5) PKH26 labeled CSCs (50 muL) at atrioventricular groove. One week after CSC transplantation, RT-PCR, immunohistochemical staining, Western blot, and ELISA analysis were performed to detect the hVEGF mRNA and protein. The expression of hVEGF mRNA and protein was significantly increased in the infarcted and hVEGF165 transfected rat hearts, accompanied by an enhanced PI3K/Ak activity, a greater accumulation of CSCs in the infarcted region, and an improvement in cardiac function. The CSC accumulation was inhibited by either the VEGF receptor blocker SU5416 or the PI3K/Ak inhibitor wortmannin. VEGF signaling may mediate the migration of CSCs via activation of PI3K/Akt.
Collapse
Affiliation(s)
- Junming Tang
- Center for Medical Research and Department of Physiology, School of Basic Medical Sciences, Wuhan university, Hubei 430071, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
136
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
137
|
Kao RL, Browder W, Li C. Cellular cardiomyoplasty: what have we learned? Asian Cardiovasc Thorac Ann 2009; 17:89-101. [PMID: 19515892 DOI: 10.1177/0218492309104144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Restoring blood flow, improving perfusion, reducing clinical symptoms, and augmenting ventricular function are the goals after acute myocardial infarction. Other than cardiac transplantation, no standard clinical procedure is available to restore damaged myocardium. Since we first reported cellular cardiomyoplasty in 1989, successful outcomes have been confirmed by experimental and clinical studies, but definitive long-term efficacy requires large-scale placebo-controlled double-blind randomized trials. On meta-analysis, stem cell-treated groups had significantly improved left ventricular ejection fraction, reduced infarct scar size, and decreased left ventricular end-systolic volume. Fewer myocardial infarctions, deaths, readmissions for heart failure, and repeat revascularizations were additional benefits. Encouraging clinical findings have been reported using satellite or bone marrow stem cells, but understanding of the benefit mechanisms demands additional studies. Adult mammalian ventricular myocardium lacks adequate regeneration capability, and cellular cardiomyoplasty offers a new way to overcome this; the poor retention and engraftment rate and high apoptotic rate of the implanted stem cells limit outcomes. The ideal type and number of cells, optimal timing of cell therapy, and ideal cell delivery method depend on determining the beneficial mechanisms. Cellular cardiomyoplasty has progressed rapidly in the last decade. A critical review may help us to better plan the future direction.
Collapse
Affiliation(s)
- Race L Kao
- Department of Surgery, James H Quillen College of Medicine, East Tennessee State University, Johnson City.
| | | | | |
Collapse
|
138
|
Lau K, Paus R, Tiede S, Day P, Bayat A. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 2009; 18:921-33. [PMID: 19719838 DOI: 10.1111/j.1600-0625.2009.00942.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The skin offers a perfect model system for studying the wound healing cascade, which involves a finely tuned interplay between several cell types, pathways and processes. The dysregulation of these factors may lead to wound healing disorders resulting in chronic wounds, as well as abnormal scars such as hypertrophic and keloid scars. As the contribution of stem cells towards tissue regeneration and wound healing is increasingly appreciated, a rising number of stem cell therapies for cutaneous wounds are currently under development, encouraged by emerging preliminary findings in both animal models and human studies. However, we still lack an in-depth understanding of the underlying mechanisms through which stem cells contribute to cutaneous wound healing. The aim of this review is, therefore, to present a critical synthesis of our current understanding of the role of stem cells in normal cutaneous wound healing. In addition to summarizing wound healing principles and related key molecular and cellular players, we discuss the potential participation of different cutaneous stem cell populations in wound healing, and list corresponding stem cells markers. In summary, this review delineates current strategies, future applications, and limitations of stem cell-based or stem cell-targeted therapy in the management of acute and chronic skin wounds.
Collapse
Affiliation(s)
- Katherine Lau
- Proteomics Department, Institute of Analytical Sciences, Dortmund, Germany
| | | | | | | | | |
Collapse
|
139
|
Herrmann JL, Markel TA, Abarbanell AM, Weil BR, Wang M, Wang Y, Tan J, Meldrum DR. Proinflammatory stem cell signaling in cardiac ischemia. Antioxid Redox Signal 2009; 11:1883-96. [PMID: 19187005 PMCID: PMC2872207 DOI: 10.1089/ars.2009.2434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell-based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Clarian Cardiovascular Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 2009; 11:1841-55. [PMID: 19260767 PMCID: PMC2848514 DOI: 10.1089/ars.2009.2455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myocardial ischemia and cardiac dysfunction have been known to follow ischemic heart diseases (IHDs). Despite a plethora of conventional treatment options, their efficacies are associated with skepticism. Cell therapies harbor a promising potential for vascular and cardiac repair, which is corroborated by adequate preclinical evidence. The underlying objectives behind cardiac regenerative therapies subsume enhancing angiomyogenesis in the ischemic myocardium, ameliorating cellular apoptosis, regenerating the damaged myocardium, repopulating the lost resident myocardial cells (smooth muscle, cardiomyocyte, and endothelial cells), and finally, decreasing fibrosis with a consequent reduction in ventricular remodeling. Although-cell based cardiomyoplasty approaches have an immense potential, their clinical utilization is limited owing to the increased need for better candidates for cellular cardiomyoplasty, better routes of delivery, appropriate dose for efficient engraftment, and better preconditioning or genetic-modification strategies for the progenitor and stem cells. Mesenchymal stem cells (MSCs) have emerged as powerful candidates in mediating myocardial repair owing to their unique properties of multipotency, transdifferentiation, intercellular connection with the resident cardiomyocytes via connexin 43 (Cx43)-positive gap junctions in the myocardium, and most important, immunomodulation. In this review, we present an in-depth discussion on the complexities associated with stem and progenitor cell therapies, the potential of preclinical approaches involving MSCs for myocardial repair, and an account of the past milestones and ongoing MSC-based trials in humans.
Collapse
Affiliation(s)
- Debayon Paul
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030-1110, USA
| | | | | |
Collapse
|
141
|
Stem cells from in- or outside of the heart: isolation, characterization, and potential for myocardial tissue regeneration. Pediatr Cardiol 2009; 30:699-709. [PMID: 19184178 DOI: 10.1007/s00246-008-9370-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 12/22/2008] [Indexed: 01/06/2023]
Abstract
Heart failure emerges with a net loss of viable cardiomyocytes, and there is no current therapy to reverse this process to improve long-term cardiac function. Due to a change in viewpoint, that the human heart cannot be considered a terminally differentiated postmitotic organ, incapable of myocardial regeneration, a belief in a new approach for therapy evolved: regenerating the heart. Finding stem cells in the heart capable of replenishing lost cardiomyocytes became a holy grail for research. Heart stem cells were isolated and characterized, originally derived from in- or outside of the heart. Since the endogenous repair potential of the heart following injury is not sufficient, cellular therapy has been performed after myocardial infarction in clinical settings. Clinical therapies performed with autologous skeletal myoblasts, cardiomyocytes, and bone marrow, as well as the animal studies, showed improvements in cardiac function, although the clinical effects are still limited. These findings have stimulated optimism that progression of heart failure might be prevented or even reversed with cell-based therapy. For future research, it will be a challenge to isolate the most potent therapeutic cell with an intrinsic capacity to stimulate regeneration in the heart, by direct participation or by producing paracrine factors.
Collapse
|
142
|
Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP. Murine “Cardiospheres” Are Not a Source of Stem Cells with Cardiomyogenic Potential. Stem Cells 2009; 27:1571-81. [DOI: 10.1002/stem.72] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
143
|
Stastna M, Abraham MR, Van Eyk JE. Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Lett 2009; 583:1800-7. [PMID: 19303873 PMCID: PMC4340703 DOI: 10.1016/j.febslet.2009.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/02/2009] [Accepted: 03/13/2009] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy is emerging as a novel approach for myocardial repair over conventional cardiovascular therapies. In addition to embryonic stem cells and adult stem cells from noncardiac sources, there is a small population of resident stem cells in the heart from which new cardiac cells (myocytes, vascular endothelial cells and smooth muscle cells) can be derived and used for cardiac repair in case of heart injury. It has been proposed that the clinical benefit of stem cells may arise from secreted proteins that mediate regeneration in a paracrine/autocrine manner. To be able to track the regulatory pathway on a molecular basis, utilization of proteomics in stem cell research is essential. Proteomics offers a tool that can address questions regarding stem cell response to disease/injury.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, 602 00 Brno, Czech Republic.
| | | | | |
Collapse
|
144
|
Röll W, Sasse P, Breitbach M, Wenzel D, Klein A, Bostani T, Fleischmann B, Welz A. Zellersatztherapie am Herzen: Fiktion oder reale Möglichkeit. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2009. [DOI: 10.1007/s00398-009-0719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
145
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
146
|
Rust W, Balakrishnan T, Zweigerdt R. Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 2009; 4:225-37. [PMID: 19317642 DOI: 10.2217/17460751.4.2.225] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS The production of a homogenous population of human cardiomyocytes that can be expanded in vitro may facilitate development of replacement tissue lost as a result of cardiac disease and injury. MATERIALS AND METHODS We evaluated the utility of activated leukocyte cell-adhesion molecule, CD166 (ALCAM) expression as a marker for isolating cardiomyocytes from differentiating cultures of human embryonic stem cells (hESCs). Using RT-qPCR, immunohistochemistry and DNA methylation studies, we evaluated the developmental age of hESC-derived cardiomyocytes. RESULTS AND CONCLUSIONS We demonstrate that cardiomyocytes derived from hESC cultures express ALCAM and that this surface antigen can be used to select a population of differentiated cells that are enriched for cardiomyocytes. Expression of contractile proteins and ion channels, and DNA methylation patterns, suggest that ALCAM-enriched cardiomyocytes have an embryonic phenotype. Selected cardiomyocyte populations survive sorting, adhere to collagen-coated tissue culture plastic and proliferate in short-term culture. Long-term in vitro survival of cardiomyocytes was achieved by culturing cells in 3D aggregates.
Collapse
Affiliation(s)
- William Rust
- Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793, USA.
| | | | | |
Collapse
|
147
|
Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 2009; 13:866-86. [PMID: 19382895 PMCID: PMC2737613 DOI: 10.1111/j.1582-4934.2009.00758.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies suggested that various cell lineages exist within the subepicardium and we supposed that this area could host cardiac stem cell niches (CSCNs). Using transmission electron microscopy, we have found at least 10 types of cells coexisting in the subepicardium of normal adult mice: adipocytes, fibroblasts, Schwann cells and nerve fibres, isolated smooth muscle cells, mast cells, macrophages, lymphocytes, interstitial Cajal-like cells (ICLCs) and cardiomyocytes progenitors (CMPs). The latter cells, sited in the area of origin of coronary arteries and aorta, showed typical features of either very immature or developing cardiomyocytes. Some of these cells were connected to each other to form columns surrounded by a basal lamina and embedded in a cellular network made by ICLCs. Complex intercellular communication occurs between the ICLCs and CMPs through electron-dense nanostructures or through shed vesicles. We provide here for the first time the ultrastructural description of CSCN in the adult mice myocardium, mainly containing ICLCs and CMPs. The existence of resident CMPs in different developmental stages proves that cardiac renewing is a continuous process. We suggest that ICLCs might act as supporting nurse cells of the cardiac niches and may be responsible for activation, commitment and migration of the stem cells out of the niches. Briefly, not only resident cardiac stem cells but also ICLCs regulate myocyte turnover and contribute to both cardiac cellular homeostasis and endogenous repair/remodelling after injuries.
Collapse
Affiliation(s)
- L M Popescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | |
Collapse
|
148
|
Suciu L, Popescu LM, Regalia T, Ardelean A, Manole CG. Epicardium: interstitial Cajal-like cells (ICLC) highlighted by immunofluorescence. J Cell Mol Med 2009; 13:771-7. [PMID: 19382907 PMCID: PMC3822883 DOI: 10.1111/j.1582-4934.2009.00756.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During the last few years, there is an increasing interest in the role of the epicardium in cardiac development, myocardial remodelling or repair and regeneration. Several types of cells were described in the subepicardial loose connective tissue, beneath the epicardial mesothe-lium. We showed previously (repeatedly) the existence of interstitial Cajal-like cells (ICLCs) in human and mammalian myocardium, either in atria or in ventricles. Here, we describe ICLCs in adult mice epicardium and primary culture as well as in situ using frozen sections. The identification of ICLCs was based on phase contrast microscopy and immunophenotyping. We found cells with characteristic morphologic aspects: spindle-shaped, triangular or polygonal cell body and typical very long (tens to hundreds micrometres) and very thin cyto-plasmic processes, with a distinctive ‘beads-on-a-string’ appearance. The dilations contain mitochondria, as demonstrated by MitoTracker Green FM labelling of living cells. Epicardial ICLCs were found positive for c-kit/CD117 and/or CD34. However, we also observed ICLCs positive for c-kit and vimentin. In conclusion, ICLCs represent a distinct cell type in the subendocardium, presumably comprising at least two subpopulations: (i) c-kit/CD34-positive and (ii) only c-kit-positive. ICLCs might be essential as progenitor (or promoter) cells for developing cardiomyocyte lineages in normal and/or injured heart.
Collapse
Affiliation(s)
- L Suciu
- Department of Cellular and Molecular Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | |
Collapse
|
149
|
Abstract
While cultured embryonic stem (ES) cells can be harvested in abundance and appear to be the most versatile of cells for regenerative medicine, adult stem cells also hold promise, but the identity and subsequent isolation of these comparatively rare cells remains problematic in most tissues, perhaps with the notable exception of the bone marrow. The ability to continuously self-renew and produce the differentiated progeny of the tissue of their location are their defining properties. Identifying surface molecules (markers) that would aid in stem cell isolation is a major goal. Considerable overlap exists between different putative organ-specific stem cells in their repertoire of gene expression, often related to self-renewal, cell survival and cell adhesion. More robust tests of 'stemness' are now being employed, using lineage-specific genetic marking and tracking to show production of long-lived clones and multipotentiality in vivo. Moreover, the characterization of normal stem cells in specific tissues may provide a dividend for the treatment of cancer. The successful treatment of neoplastic disease may well require the specific targeting of neoplastic stem cells, cells that may well have many of the characteristics of their normal counterparts.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St. Bartholomew's and the London School of Medicine and Dentistry, London, UK.
| | | |
Collapse
|
150
|
Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 2009; 4:232-43. [DOI: 10.1038/nprot.2008.229] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|