101
|
Current Landscape of Sonodynamic Therapy for Treating Cancer. Cancers (Basel) 2021; 13:cancers13246184. [PMID: 34944804 PMCID: PMC8699567 DOI: 10.3390/cancers13246184] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Recently, ultrasound has advanced in its treatment opportunities. One example is sonodynamic therapy, a minimally invasive anti-cancer therapy involving a chemical sonosensitizer and focused ultrasound. The combination of the ultrasound and chemical sonosensitizer amplifies the drug’s ability to target cancer cells. Combining multiple chemical sonosensitizers with ultrasound can create a synergistic effect that could effectively disrupt tumorigenic growth, induce cell death, and elicit an immune response. This review provides an oversight of the application of this treatment to various types of cancer, including prostate cancer, glioma, and pancreatic ductal adenocarcinoma tumors. Abstract Recent advancements have tangibly changed the cancer treatment landscape. However, curative therapy for this dreadful disease remains an unmet need. Sonodynamic therapy (SDT) is a minimally invasive anti-cancer therapy involving a chemical sonosensitizer and focused ultrasound. A high-intensity focused ultrasound (HIFU) beam is used to destroy or denature targeted cancer tissues. Some SDTs are based on unfocused ultrasound (US). In some SDTs, HIFU is combined with a drug, known as a chemical sonosensitizer, to amplify the drug’s ability to damage cancer cells preferentially. The mechanism by which US interferes with cancer cell function is further amplified by applying acoustic sensitizers. Combining multiple chemical sonosensitizers with US creates a substantial synergistic effect that could effectively disrupt tumorigenic growth, induce cell death, and elicit an immune response. Therefore, the minimally invasive SDT treatment is currently attracting attention. It can be combined with targeted therapy (double-targeting cancer therapy) and immunotherapy in the future and is expected to be a boon for treating previously incurable cancers. In this paper, we will consider the current state of this therapy and discuss parts of our research.
Collapse
|
102
|
Gas-filled protein nanostructures as cavitation nuclei for molecule-specific sonodynamic therapy. Acta Biomater 2021; 136:533-545. [PMID: 34530143 DOI: 10.1016/j.actbio.2021.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Sonodynamic therapy (SDT) is a promising alternative for cancer therapy, understood to exert cytotoxicity through cavitation and subsequent production of large amounts of reactive oxygen species (ROS). Gas-filled protein nanostructures (gas vesicles or GVs) produced by cyanobacteria have a hollow structure similar to microbubbles and have demonstrated comparable enhancement of ultrasound imaging contrast. We thus hypothesized that GVs may act as stable nuclei for inertial cavitation to enhance SDT with improved enhanced permeability and retention (EPR) effects due to their nanometer scale. The function of GVs to mediate cavitation, ROS production, and cell-targeted toxicity under SDT was determined. In solution, we found that GVs successfully increased cavitation and enhanced ROS production in a dose- and time-dependent manner. Then, GV surfaces were modified (FGVs) to specifically target CD44+ cells and accumulate preferentially at the tumor site. In vitro sonodynamic therapy (SDT) showed ROS production and tumor cell toxicity substantially elevated in the presence of FGVs, and the addition of FGVs was found to enhance cavitation and subsequently inhibit tumor growth and exert greater damage to tumors under SDT in vivo. Our results thus demonstrate that FGVs can function as stable, nanosized, nuclei for spatially accurate and cell-targeted SDT. STATEMENT OF SIGNIFICANCE: The initiation of inertial cavitation is critical for ROS generation and subsequent cellular toxicity in SDT. Thus, precise control of the occurrence of cavitation is a key factor in increasing SDT's therapeutic efficacy. We explored nanometer-sized gas vesicles (GVs) as a new class of cavitation nuclei for molecule-specific sonodynamic therapy. Our results showed that GV-mediated SDT treatment enabled targeted disruption of specific cells expressing a known surface marker within the area of insonation, providing a spatially specific and targeted SDT treatment.
Collapse
|
103
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
104
|
Zhang T, Sun Y, Cao J, Luo J, Wang J, Jiang Z, Huang P. Intrinsic nucleus-targeted ultra-small metal-organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma. J Nanobiotechnology 2021; 19:315. [PMID: 34641905 PMCID: PMC8507249 DOI: 10.1186/s12951-021-01060-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sonodynamic therapy (SDT) strategies exhibit a high tissue penetration depth and can achieve therapeutic efficacy by facilitating the intertumoral release of reactive oxygen species (ROS) with a short lifespan and limited diffusion capabilities. The majority of SDT systems developed to date are of the highly O2-dependent type II variety, limiting their therapeutic utility in pancreatic cancer and other hypoxic solid tumor types. RESULTS Herein, a nucleus-targeted ultra-small Ti-tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal-organic framework (MOF) platform was synthesized and shown to be an effective mediator of SDT. This MOF was capable of generating large quantities of ROS in an oxygen-independent manner in response to low-intensity ultrasound (US) irradiation (0.5 W cm-2), thereby facilitating both type I and type II SDT. This approach thus holds great promise for the treatment of highly hypoxic orthotopic pancreatic carcinoma solid tumors. This Ti-TCPP MOF was able to induce in vitro cellular apoptosis by directly destroying DNA and inducing S phase cell cycle arrest following US irradiation. The prolonged circulation, high intratumoral accumulation, and nucleus-targeting attributes of these MOF preparations significantly also served to significantly inhibit orthotopic pancreatic tumor growth and prolong the survival of tumor-bearing mice following Ti-TCPP + US treatment. Moreover, this Ti-TCPP MOF was almost completely cleared from mice within 7 days of treatment, and no apparent treatment-associated toxicity was observed. CONCLUSION The nucleus-targeted ultra-small Ti-TCPP MOF developed herein represents an effective approach to the enhanced SDT treatment of tumors in response to low-intensity US irradiation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jing Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, People's Republic of China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
105
|
Nene LC, Nyokong T. Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro. Photodiagnosis Photodyn Ther 2021; 36:102573. [PMID: 34628070 DOI: 10.1016/j.pdpdt.2021.102573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
In this work, we explore the reactive oxygen species (ROS) generation abilities of cationic morpholino-substituted-phthalocyanine (Pc) conjugated to nitrogen (NGQDs) and nitrogen-sulfur (NSGQDs) doped-graphene quantum dots upon irradiation with light for photodynamic therapy (PDT), ultrasound for sonodynamic therapy (SDT) and the combination of both in photo-sonodynamic therapy (PSDT). The in vitro cytotoxicity studies were conducted using the Michigan Cancer Foundation-7 breast cancer cell lines (MCF-7 cells). For PDT treatments, only the 1O2 was detected for all the sensitizers, whereas both the 1O2 and •OH radicals were evident after SDT and PSDT treatments. An increase in the 1O2 generation was observed for the conjugates compared to the GQDs and the Pc alone. However, the •OH radicals were reduced in the conjugates compared to the GQDs and the Pc alone. The NGQDs generally showed better ROS generation efficacy compared to the NSGQDs, alone and in the conjugates. The combination therapy also shows improved efficacy compared to the monotherapies for the Pcs and Pc-GQDs conjugates.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, Rhodes University, P.O. 94, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, P.O. 94, Makhanda, South Africa.
| |
Collapse
|
106
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
107
|
Abstract
Low-intensity ultrasound-triggered sonodynamic therapy (SDT) is a promising noninvasive therapeutic modality due to its strong tissue penetration ability. In recent years, with the development of nanotechnology, nanoparticle-based sonosensitizer-mediated SDT has been widely investigated. With the increasing demand for precise and personalized treatment, abundant novel sonosensitizers with imaging capabilities have been developed for determining the optimal therapeutic window, thus significantly enhancing treatment efficacy. In this review, we focus on the molecular imaging-guided SDT. The prevalent mechanisms of SDT are discussed, including ultrasonic cavitation, sonoluminescence, reactive oxygen species, and mechanical damage. In addition, we introduce the major molecular imaging techniques and the design principles based on nanoparticles to achieve efficient imaging. Furthermore, the imaging-guided SDT for the treatment of cancer, bacterial infections, and vascular diseases is summarized. The ultimate goal is to design more effective imaging-guided SDT modalities and provide novel ideas for clinical translation of SDT.
Collapse
Affiliation(s)
- Juan Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chaohui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
108
|
Cao J, Pan Q, Bei S, Zheng M, Sun Z, Qi X, Shen S. Concise Nanoplatform of Phycocyanin Nanoparticle Loaded with Docetaxel for Synergetic Chemo-sonodynamic Antitumor Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7176-7185. [PMID: 35006949 DOI: 10.1021/acsabm.1c00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combined chemotherapy and sonodynamic therapy (chemo-SDT) based on the nanoplatform/nanocarrier is a potential antitumor strategy that has shown higher therapeutic efficacy than any monotherapy. Therefore, a safe and effective multifunctional system with a concise design and simple preparation process is urgently needed. In this work, by using a one-step cross-linking method, a multifunctional nanosystem, which employs phycocyanin nanoparticles (PCNPs) as a nanocarrier to deliver the chemotherapy drug docetaxel (DTX) and a nanosonosensitizer to generate reactive oxygen species (ROS), was prepared and evaluated (PCNP-DTX). Under low-intensity ultrasound irradiation, PCNP-DTX retained the ROS generation ability of phycocyanin and caused the destruction of mitochondrial potential. PCNP was also revealed to be an acidic and ultrasound-sensitive carrier with good biocompatibility. In addition to its cumulation behavior in tumors, PCNP can achieve tumor-targeted delivery and release of DTX. PCNP-DTX has also been proven to have a significant chemo-SDT synergy effect when low-intensity ultrasound was applied, showing enhanced antitumor activity both in vitro and in vivo. This study provides a concise yet promising nanoplatform based on the natural protein phycocyanin for achieving an effective, targeted, and synergetic chemo-SDT for antitumor therapy.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| | - Qiwen Pan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| | - Shifang Bei
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China.,Zhenjiang First People's Hospital, 8 Dianli Road, Zhenjiang, 212002 Jiangsu, P. R. China
| | - Mingxue Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| | - Zhenyan Sun
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| | - Song Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu, P. R. China
| |
Collapse
|
109
|
Sonophotodynamic Inactivation: The power of light and ultrasound in the battle against microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
110
|
Guo J, Xu Y, Liu M, Yu J, Yang H, Lei W, Huang C. An MSN-based synergistic nanoplatform for root canal biofilm eradication via Fenton-enhanced sonodynamic therapy. J Mater Chem B 2021; 9:7686-7697. [PMID: 34323245 DOI: 10.1039/d1tb01031j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The validity and biocompatibility of irrigating agents are imperative for the success of root canal therapy. The imperfections in the currently available irrigants highlight the fact that more advanced technologies and strategies are required for complete disinfection in endodontic treatments. In the present study, a Fenton reaction-enhanced antimicrobial sonodynamic therapy (SDT) platform was fabricated for root canal disinfection. Firstly, mesoporous silica nanoparticles (MSNs) were synthesized, grafted with an amino group and then conjugated with sonosensitizer protoporphyrin IX (PpIX). Iron ions were then anchored (M@P-Fe) to initiate a Fenton reaction. Nanoparticle characterization by size and zeta potential measurements, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis confirmed that the platform was successfully developed. Reactive oxygen species (ROS) generation assessment, methylene blue degradation and electron spin resonance assays illustrated upon ultrasound (US) irradiation, that augmented ROS, can be produced by US activated PpIX and iron mediated Fenton reactions from low concentration H2O2 (0.01%). In vitro anti-Enterococcus faecalis efficacy was demonstrated by growth curve and colony forming unit measurements. Confocal laser scanning microscopy and scanning electron microscopy observations illustrated the effectiveness of the platform on in situ biofilm eradication in root canal. Owing to the stronger oxidizing capability and short lifetime of ROS, the Fenton reaction-enhanced SDT can induce detrimental oxidative damage to bacteria upon activation of US while avoiding nonspecific toxicity to cells, which was verified by cytotoxicity evaluations using CCK-8 assay and morphology observation of MC3T3-E1 cells. Compared to commonly used NaClO, this nanoplatform displayed desirable anti-bacterial, anti-biofilm abilities and better biocompatibility. These results highlight that the integrated M@P-Fe + US + H2O2 platform is a promising candidate for US enhanced root canal irrigation and disinfection.
Collapse
Affiliation(s)
- Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Yue Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Miaodeng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Wenlong Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
111
|
Cao J, Sun Y, Zhang C, Wang X, Zeng Y, Zhang T, Huang P. Tablet-like TiO 2/C nanocomposites for repeated type I sonodynamic therapy of pancreatic cancer. Acta Biomater 2021; 129:269-279. [PMID: 34082101 DOI: 10.1016/j.actbio.2021.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Sonodynamic therapy (SDT) represents a viable approach to overcoming the limited ability of photodynamic therapy to penetrate biological barriers. However, pancreatic tumors contain a hypoxic microenvironment that limits the efficacy of oxygen-dependent type II SDT, complicating efforts to develop reliable, stable, and hypoxia-tolerant sonosensitizer. Herein, a tablet-like TiO2/C nanocomposite with a metal-organic-framework (MOF)-derived carbon structure was designed and found to be hypoxia-tolerant and stable in response to repeated ultrasound irradiation, enabling the TiO2/C-mediated generation of large quantities of reactive oxygen species (ROS) and thereby achieving efficacious type I SDT. Importantly, this nanocomposite continued to generate ROS in response to repeated ultrasound irradiation, and was able to induce tumor cell apoptosis via SDT-induced DNA damage in vitro and in vivo. This TiO2/C nanocomposite also exhibited good biocompatibility and did not induce any apparent toxicity in vitro and in vivo. Together, these data highlight TiO2/C as a valuable nanocomposite capable of facilitating repeated type I SDT, making it a promising tool for the treatment of hypoxic solid pancreatic tumors. STATEMENT OF SIGNIFICANCE: In this research, a tablet-like TiO2/C nanocomposite with a metal-organic-framework (MOF)-derived carbon structure was designed, which exhibited great stability upon repeated ultrasound irradiation, hypoxic-tolerant ability and good biocompatibility. After ultrasound irradiation, TiO2/C could efficiently generate reactive oxygen species in an oxygen-independent manner, which overcame the limitation of pure TiO2 nanoparticles. Therefore, it was applied to repeated type I sonodynamic therapy of hypoxic pancreatic tumor.
Collapse
|
112
|
Fan L, Idris Muhammad A, Bilyaminu Ismail B, Liu D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. ULTRASONICS SONOCHEMISTRY 2021; 75:105591. [PMID: 34082219 PMCID: PMC8182071 DOI: 10.1016/j.ultsonch.2021.105591] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Sonodynamic antimicrobial chemotherapy (SACT), which relies on a combination of low-intensity ultrasound and chemotherapeutic agents termed sonosensitizers, has been explored as a promising alternative for microbial inactivation. Such treatment has superior penetration ability, high target specificity, and can overcome resistance conferred by the local microenvironment. Taken of these advantages, SACT has been endowed with an extensive application prospect in the past decade and attracted more and more attention. This review focusses on the current understanding of the mechanism of SACT, the interaction of sonodynamic action on different microbes, the factors affecting the efficacy of SACT, discusses the findings of recent works on SACT, and explores further prospects for SACT. Thus, a better understanding of sonodynamic killing facilitates the scientific community and industry personnel to establish a novel strategy to combat microbial burden.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
113
|
Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M. Derivatives of Natural Chlorophylls as Agents for Antimicrobial Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22126392. [PMID: 34203767 PMCID: PMC8232654 DOI: 10.3390/ijms22126392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid growth of drug-resistant bacteria all over the world has given rise to a major research challenge, namely a search for alternative treatments to which bacteria will be unable to develop resistance. Photodynamic therapy is an approach of this kind. It involves the use of photosensitizers in combination with visible light at a certain wavelength to excite the former and generate reactive oxygen species. Various synthetic heterocyclic compounds are used as photosensitizers. Of these, derivatives of natural chlorophylls have a special place due to their properties. This review deals with the use of such compounds in antimicrobial PDT.
Collapse
Affiliation(s)
- Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
- Correspondence: (N.S.); (E.D.)
| | - Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Ekaterina Diachkova
- Department of Oral Surgery of Bororovsky Institute of Dentistry, II.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
- Correspondence: (N.S.); (E.D.)
| | - Yuri Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
| | - Andrey Mironov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| |
Collapse
|
114
|
Antitumor immune responses induced by photodynamic and sonodynamic therapy: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
115
|
Mamat M, Wang X, Wu L, Zhao R, Cao J, Qi X, Shen S. CaO 2/Fe 3O 4 nanocomposites for oxygen-independent generation of radicals and cancer therapy. Colloids Surf B Biointerfaces 2021; 204:111803. [PMID: 33964529 DOI: 10.1016/j.colsurfb.2021.111803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The hypoxic tumor environment prevents the generation of reactive oxygen species (ROS), reducing the therapeutic efficiency. We construct oleylamine (OA) coated CaO2/Fe3O4 nanocomposites to realize oxygen-independent generation of ROS and high efficient treatment of cancer. In the tumor site, CaO2 reacts with water to generate H2O2, which can be catalized by Fe2+ that is produced by Fe3O4, to form highly toxic hydroxyl radicals (∙OH). To inhibit the premature reaction, CaO2/Fe3O4 nanoparticles were coated with pH sensitive OA. The nanocomposites exhibited remarkable tumor growth inhibition ability and favorable biocompatibility, holding a great potential for hypoxic tumor therapy.
Collapse
Affiliation(s)
- Marhaba Mamat
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China; College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaofeng Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China; College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Rong Zhao
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xueyong Qi
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
116
|
Canaparo R, Foglietta F, Giuntini F, Francovich A, Serpe L. The bright side of sound: perspectives on the biomedical application of sonoluminescence. Photochem Photobiol Sci 2021; 19:1114-1121. [PMID: 32685951 DOI: 10.1039/d0pp00133c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light is a physical phenomenon that is very important to human life, and has been investigated in its nature, behaviour and properties throughout human history although the most impressive improvements in the use of light in human activities, and of course in medicine, began just two centuries ago. However, despite the enormous progress in diagnosis, therapy and surgery to assess health and treat diseases, the delivery of light sources in vivo remains a challenge. In this regard, several strategies have been developed to overcome this drawback, the most interesting of which is the involvement of ultrasound. In this review, the authors examine how ultrasound may improve light delivery in vivo with a special emphasis on one of the most intriguing ultrasound-mediated phenomena called sonoluminescence, which is the conversion of mechanical ultrasound energy into light.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy.
| | - Federica Foglietta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 2AJ, Liverpool, UK
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Chemin du Musee 5, 1770, Fribourg, Switzerland
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy
| |
Collapse
|
117
|
Hou XL, Dai X, Yang J, Zhang B, Zhao DH, Li CQ, Yin ZY, Zhao YD, Liu B. Injectable polypeptide-engineered hydrogel depot for amplifying the anti-tumor immune effect induced by chemo-photothermal therapy. J Mater Chem B 2021; 8:8623-8633. [PMID: 32821893 DOI: 10.1039/d0tb01370f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immunosuppressive tumor microenvironment has caused great obstacles to tumor immunotherapy, especially where less tumor-associated antigens are released from tumor sites. Herein, a Ag2S QD/DOX/Bestatin@PC10ARGD genetically engineered polypeptide hydrogel PC10ARGD as a sustained-release material was developed for mammary carcinoma treatment. A near-infrared silver sulfide (Ag2S) QD as a photosensitizer was encapsulated into the hydrophobic cavity formed by the self-assembly of the polypeptide nanogel (PC10ARGD) for photothermal therapy. The water-soluble drug DOX and Bestatin were integrated into the PC10ARGD hydrogel. The photothermal effect could trigger the sustained release of the DOX, which could be applied to initiate in situ vaccination. Bestatin as an immune-adjuvant drug could amplify the body's immune function. The results of in vivo therapy tests exhibited that the Ag2S QD/DOX/Bestatin@PC10ARGD hydrogel with laser irradiation could activate anti-tumor immune effects that inhibit the growth of primary tumors and distal lung metastatic nodules. Meanwhile, a safer lower-temperature with multiple laser irradiation treatment strategy exhibited more effective tumor-killing performance (84.4% tumor inhibition rate) and promoted the penetration of immune cells into the tumor tissue. The CD8+ and CD4+ cytotoxic T cells ratio was increased by 5.3 and 10 times, respectively, thus exhibiting a good prognostic signal. The multifunctional polypeptide hydrogel as a green manufacturing and engineering material is promising to serve as a cancer vaccine for anticancer applications.
Collapse
Affiliation(s)
- Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Xiang Dai
- Eugenic Genetics Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei, P. R. China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Dong-Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Zhong-Yuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China.
| | - Yuan-di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China. and Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| |
Collapse
|
118
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
119
|
Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview. Life (Basel) 2021; 11:life11040332. [PMID: 33920160 PMCID: PMC8070048 DOI: 10.3390/life11040332] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.
Collapse
|
120
|
Ponce Ayala ET, Alves Dias de Sousa F, Vollet-Filho JD, Rodrigues Garcia M, de Boni L, Salvador Bagnato V, Pratavieira S. Photodynamic and Sonodynamic Therapy with Protoporphyrin IX: In Vitro and In Vivo Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1032-1044. [PMID: 33446374 DOI: 10.1016/j.ultrasmedbio.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 05/25/2023]
Abstract
Sono-photodynamic therapy is a promising anticancer technique based on the combination of sonodynamic and photodynamic therapy to improve the cancer treatment effectiveness. This study was aimed at analyzing the effects of the sono-photodynamic (SPD) activity on protoporphyrin IX (PpIX) solution and PpIX-loaded rat liver. In vitro, PpIX 5 μM solutions were irradiated with light (635 nm, 30-50 mW/cm2), ultrasound (1 MHz, 1-2 W/cm2) and both. The PpIX absorption spectra recorded over exposure time revealed that the PpIX decay rate induced by SPD activity (combined irradiation) was approximately the sum of those induced by photodynamic and sonodynamic activity. In vivo, rats were intraperitoneally injected with 5-aminolevulinic acid at the dose of 500 mg/kg weight. After 3 h of injection, the PpIX-loaded livers were irradiated with light (635 nm, 180 ± 9 J/cm2), ultrasound (1.0 MHz, 770 ± 40 J/cm2) and both using a single probe capable of illuminating and sonicating the liver simultaneously. After 30 h, the liver damage induced by each protocol was analyzed histologically. It was found that a greater necrosis depth was induced by the SPD activity. These results suggest that the SPD activity could improve the PpIX decay rate and have greater scope than photodynamic or sonodynamic activity. Further studies should be performed to gain a better understanding of this protocol.
Collapse
Affiliation(s)
| | | | | | | | - Leonardo de Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
121
|
D’Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, Durando G, Pellegatta S, Prada F. Sonodynamic Therapy for the Treatment of Intracranial Gliomas. J Clin Med 2021; 10:1101. [PMID: 33800821 PMCID: PMC7961476 DOI: 10.3390/jcm10051101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are the most common and aggressive malignant primary brain tumors. Current therapeutic schemes include a combination of surgical resection, radiotherapy and chemotherapy; even if major advances have been achieved in Progression Free Survival and Overall Survival for patients harboring high-grade gliomas, prognosis still remains poor; hence, new therapeutic options for malignant gliomas are currently researched. Sonodynamic Therapy (SDT) has proven to be a promising treatment combining the effects of low-intensity ultrasound waves with various sound-sensitive compounds, whose activation leads to increased immunogenicity of tumor cells, increased apoptotic rates and decreased angiogenetic potential. In addition, this therapeutic technique only exerts its cytotoxic effects on tumor cells, while both ultrasound waves and sensitizing compound are non-toxic per se. This review summarizes the present knowledge regarding mechanisms of action of SDT and currently available sonosensitizers and focuses on the preclinical and clinical studies that have investigated its efficacy on malignant gliomas. To date, preclinical studies implying various sonosensitizers and different treatment protocols all seem to confirm the anti-tumoral properties of SDT, while first clinical trials will soon start recruiting patients. Accordingly, it is crucial to conduct further investigations regarding the clinical applications of SDT as a therapeutic option in the management of intracranial gliomas.
Collapse
Affiliation(s)
- Antonio D’Ammando
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
| | - Luca Raspagliesi
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Matteo Gionso
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Faculty of Medicine and Surgery, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
| | - Edoardo Porto
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Francesco Di Meco
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Giovanni Durando
- Istituto Nazionale di Ricerca Metrologica I.N.Ri.M., 10135 Torino, Italy;
| | - Serena Pellegatta
- Laboratory of Immunotherapy of Brain Tumors, Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| |
Collapse
|
122
|
Nittayacharn P, Abenojar E, La Deda M, Ricciardi L, Strangi G, Exner AA. Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjug Chem 2021; 33:1057-1068. [PMID: 33677967 PMCID: PMC10108504 DOI: 10.1021/acs.bioconjchem.1c00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sonodynamic therapy (SDT) is a novel promising approach for the minimally invasive treatment of cancer derived from photodynamic therapy (PDT). In this study, we have explored an effective sonosensitizer for SDT by loading the iridium(III) complex [Ir(ppy)2(en)] OOCCH3, where ppy = 2-phenylpyridine and en = ethylenediamine], from now on referred to as Ir, with high photosensitizing ability, into echogenic nanobubbles (Ir-NBs). Akin to photosensitizers, sonosensitizers are acoustically activated by deep-tissue-penetrating low-frequency ultrasound (US) resulting in a localized therapeutic effect attributed to an excessive generation of reactive oxygen species (ROS). The Ir-NB formulation was optimized, and the in vitro characterizations were carried out, including physical properties, acoustic performance, intracellular ROS generation, and cytotoxicity against two human cancer cell lines. Ir-NBs had an average size of 303.3 ± 91.7 nm with a bubble concentration of 9.28 × 1010 particles/mL immediately following production. We found that the initial Ir feeding concentration had a negligible effect on the NB size, but affected the bubble concentration as well as the acoustic performance of the NBs. Through a combination of sonication and Ir-NBs treatment, an increase of 68.8% and 69.6% cytotoxicity in human ovarian cancer cells (OVCAR-3) and human breast cancer cells (MCF-7), respectively, was observed compared to the application of Ir-NBs alone. Furthermore, Ir-NBs exposed to the US also induced the highest levels of intracellular ROS generation compared to free Ir and free Ir with empty NBs. The combination of these results suggests that the differences in treatment efficacy is a direct result of acoustic cavitation. These results provide evidence that US activated Ir-loaded NBs have the potential to become an effective sonosensitizer for SDT.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Cosenza, Italy.,CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Loredana Ricciardi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Giuseppe Strangi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy.,Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
123
|
Lin X, Huang R, Huang Y, Wang K, Li H, Bao Y, Wu C, Zhang Y, Tian X, Wang X. Nanosonosensitizer-Augmented Sonodynamic Therapy Combined with Checkpoint Blockade for Cancer Immunotherapy. Int J Nanomedicine 2021; 16:1889-1899. [PMID: 33707944 PMCID: PMC7943542 DOI: 10.2147/ijn.s290796] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Sonodynamic therapy (SDT) has good targeting and non-invasive advantages in the treatment of solid cancers, and checkpoint blockade immunotherapy is also a promising treatment to cure cancer. However, their antitumor effects are not sufficient due to some inherent factors. Some studies that combined SDT with immunotherapy or nanoparticles have managed to enhance its efficiency to treat cancers. METHODS In this work, an effective therapeutic strategy that can potentiate the antitumor efficacy of anti-PD-L1 antibody (aPD-L1) is developed by the use of cascade immuno-sonodynamic therapy (immuno-SDT). Titanium dioxide (TiO2), a nanostructured agent for SDT, sonosensitizer Chlorin e6 (Ce6), and immunological adjuvant CpG oligonucleotide (CpG ODN), are used to construct a multifunctional nanosonosensitizer (TiO2-Ce6-CpG). Then, we conducted in vitro and in vivo experiments to explore the antitumor effect of TiO2-Ce6-CpG under ultrasound (US) treatment. RESULTS The characterization tests showed that the nanosonosensitizers are polycrystalline structure with homogeneous sizes, resulting in a good drug loading efficiency. The innovative nanosonosensitizers (TiO2-Ce6-CpG) can not only effectively inhibit tumor growth but also stimulate the immune system to activate the adaptive immune responses, using the TiO2-Ce6 to augment SDT and the immune adjuvant CpG to enhance the immune response. After combined with the aPD-L1, the synergistic effect could not only efficiently inhibit the primary tumor growth but also lead to an inhibition of the non-irradiated pre-existing distant tumors by inducing a strong tumor-specific immune response. CONCLUSION In this study, we present an effective strategy for tumor treatment by combining nanosonosensitizer-augmented SDT and aPD-L1 checkpoint blockade. This work provides a promising strategy and offers a new vision for treating malignant tumors.
Collapse
Affiliation(s)
- Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Rong Huang
- Department of Child Health, Women and Children’s Hospital, Xiamen University, Xiamen, 361003, People’s Republic of China
| | - Yanlin Huang
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Kai Wang
- School of Public Health, Xiamen University, Xiamen, 361102, People’s Republic of China
| | - Heng Li
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Yiheng Bao
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Chaohui Wu
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Yi Zhang
- Department of Breast Surgery, Xiamen TCM Hospital, Xiamen, 361001, People’s Republic of China
| | - Xinhua Tian
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen, 361004, People’s Republic of China
| |
Collapse
|
124
|
Li L, Lin H, Li D, Zeng Y, Liu G. Ultrasound activated nanosensitizers for sonodynamic therapy and theranostics. Biomed Mater 2021; 16:022008. [DOI: 10.1088/1748-605x/abd382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
125
|
Chen W, Wang J, Cheng L, Du W, Wang J, Pan W, Qiu S, Song L, Ma X, Hu Y. Polypyrrole-Coated Mesoporous TiO 2 Nanocomposites Simultaneously Loading DOX and Aspirin Prodrugs for a Synergistic Theranostic and Anti-Inflammatory Effect. ACS APPLIED BIO MATERIALS 2021; 4:1483-1492. [PMID: 35014497 DOI: 10.1021/acsabm.0c01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although a number of therapeutic strategies have been applied in cancer therapy, treatment for cancer metastasis is challenging due to unsatisfactory cure rate and easy cancer recurrence. In our work, nanocomposites (NCs) based on polypyrrole-coated mesoporous TiO2 with a suitable size are prepared through a modified soft-templating strategy, which integrates double prodrugs (doxorubicin (DOX) prodrug and aspirin prodrug) with superior drug loading capacity. Under external stimulation of near-infrared (NIR) and ultrasound (US), the prepared nanocomposites have an excellent photothermal conversion efficiency (over 50.8%) and a satisfactory sonodynamic therapeutic effect, and simultaneous prodrug activation and drug release occur rapidly under external stimulation. Through intravenous injection, the tumor area can be clearly seen through thermal imaging, benefiting from the enhanced permeability and retention (EPR) effect. Through synergistic therapy, cancer cell toxicity and the tumor inhibition effect are significantly enhanced. Moreover, downregulated inflammatory factors also reduce the risk of cancer recurrence. In general, the designed NCs provide a potential alternative for synergistic therapy as well as downregulation of inflammatory cytokines.
Collapse
Affiliation(s)
- Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Jing Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Wanwan Pan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
126
|
Sun S, Wang P, Sun S, Liang X. Applications of Micro/Nanotechnology in Ultrasound-based Drug Delivery and Therapy for Tumor. Curr Med Chem 2021; 28:525-547. [PMID: 32048951 DOI: 10.2174/0929867327666200212100257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Ultrasound has been broadly used in biomedicine for both tumor diagnosis as well as therapy. The applications of recent developments in micro/nanotechnology promote the development of ultrasound-based biomedicine, especially in the field of ultrasound-based drug delivery and tumor therapy. Ultrasound can activate nano-sized drug delivery systems by different mechanisms for ultrasound- triggered on-demand drug release targeted only at the tumor sites. Ultrasound Targeted Microbubble Destruction (UTMD) technology can not only increase the permeability of vasculature and cell membrane via sonoporation effect but also achieve in situ conversion of microbubbles into nanoparticles to promote cellular uptake and therapeutic efficacy. Furthermore, High Intensity Focused Ultrasound (HIFU), or Sonodynamic Therapy (SDT), is considered to be one of the most promising and representative non-invasive treatment for cancer. However, their application in the treatment process is still limited due to their critical treatment efficiency issues. Fortunately, recently developed micro/nanotechnology offer an opportunity to solve these problems, thus improving the therapeutic effect of cancer. This review summarizes and discusses the recent developments in the design of micro- and nano- materials for ultrasound-based biomedicine applications.
Collapse
Affiliation(s)
- Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| |
Collapse
|
127
|
He Y, Hua Liu S, Yin J, Yoon J. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
128
|
Alves F, Gomes Guimarães G, Mayumi Inada N, Pratavieira S, Salvador Bagnato V, Kurachi C. Strategies to Improve the Antimicrobial Efficacy of Photodynamic, Sonodynamic, and Sonophotodynamic Therapies. Lasers Surg Med 2021; 53:1113-1121. [PMID: 33508146 DOI: 10.1002/lsm.23383] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/31/2020] [Accepted: 01/10/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES This work evaluated antimicrobial photodynamic therapy (PDT), sonodynamic therapy (SDT), and the association of both therapies (sonophotodynamic therapy [SPDT]), mediated by curcumin (Cur) against Staphylococcus aureus biofilm. Next, additional strategies for these treatments were assessed. MATERIALS AND METHODS S. aureus biofilms received PDT, SDT, and SPDT, mediated by Cur (80 µM), LED light (450 nm), and 1 MHz ultrasound. The same treatments were also performed adding a strategy: Cur with sodium dodecyl sulfate (SDS), Cur with potassium iodide (KI) or a pre-treatment with ultrasound. Cell viability was determined and biofilm architecture was evaluated under confocal microscopy. RESULTS SPDT was more effective to inactivate the bacteria than PDT and SDT. SDS achieved the greatest viability reductions, followed by KI and ultrasound pre-treatment. Confocal images revealed biofilm disruption and a reduced number of cells in all treatments. However, SPDT exhibited a pronounced effect and it was greater using SDS. CONCLUSION SPDT was more effective and additional strategies potentiated its effectiveness. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Fernanda Alves
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil
| | - Gabriela Gomes Guimarães
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil
| | - Natália Mayumi Inada
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil
| | - Sebastião Pratavieira
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil.,The Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street, College Station, Texas, 77843
| | - Cristina Kurachi
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
129
|
Liu J, Zhao X, Nie W, Yang Y, Wu C, Liu W, Zhang K, Zhang Z, Shi J. Tumor cell-activated "Sustainable ROS Generator" with homogeneous intratumoral distribution property for improved anti-tumor therapy. Am J Cancer Res 2021; 11:379-396. [PMID: 33391481 PMCID: PMC7681092 DOI: 10.7150/thno.50028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) holds a number of advantages for tumor therapy. However, its therapeutic efficiency is limited by non-sustainable reactive oxygen species (ROS) generation and heterogeneous distribution of photosensitizer (PS) in tumor. Herein, a "Sustainable ROS Generator" (SRG) is developed for efficient antitumor therapy. Methods: SRG was prepared by encapsulating small-sized Mn3O4-Ce6 nanoparticles (MC) into dendritic mesoporous silica nanoparticles (DMSNs) and then enveloped with hyaluronic acid (HA). Due to the high concentration of HAase in tumor tissue, the small-sized MC could be released from DMSNs and homogeneously distributed in whole tumor. Then, the released MC would be uptaken by tumor cells and degraded by high levels of intracellular glutathione (GSH), disrupting intracellular redox homeostasis. More importantly, the released Ce6 could efficiently generate singlet oxygen (1O2) under laser irradiation until the tissue oxygen was exhausted, and the manganese ion (Mn2+) generated by degraded MC would then convert the low toxic by-product (H2O2) of PDT to the most harmful ROS (·OH) for sustainable and recyclable ROS generation. Results: MC could be homogeneously distributed in whole tumor and significantly reduced the level of intracellular GSH. At 2 h after PDT, obvious intracellular ROS production was still observed. Moreover, during oxygen recovery in tumor tissue, ·OH could be continuously produced, and the nanosystem could induce 82% of cell death comparing with 30% of cell death induced by free Ce6. For in vivo PDT, SRG achieved a complete inhibition on tumor growth. Conclusion: Based on these findings, we conclude that the designed SRG could induce sustainable ROS generation, homogeneous intratumoral distribution and intracellular redox homeostasis disruption, presenting an efficient strategy for enhanced ROS-mediated anti-tumor therapy.
Collapse
|
130
|
Sun L, Wang P, Zhang J, Sun Y, Sun S, Xu M, Zhang L, Wang S, Liang X, Cui L. Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomater Sci 2021; 9:1945-1960. [PMID: 33522523 DOI: 10.1039/d0bm01875a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focus on the recent developments in inorganic nanomaterials for tumor SDT.
Collapse
Affiliation(s)
- Lihong Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ping Wang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Jinxia Zhang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Yang Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Suhui Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Menghong Xu
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Lulu Zhang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Shumin Wang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ligang Cui
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| |
Collapse
|
131
|
Li E, Sun Y, Lv G, Qin F, Sheng T, Zhang Z, Zhang R, Hu Z, Cao W. Sinoporphyrin sodium mediated sonodynamic therapy generates superoxide anions under a hypoxic environment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DVDMS-SDT induces G2/M arrest by superoxide anions.
Collapse
Affiliation(s)
- Enze Li
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin 150080, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Yi Sun
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150000, China
| | - Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Feng Qin
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Tianqi Sheng
- Zhong Sheng (Shen Zhen) Medical Equipment Science and Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Rui Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Zheng Hu
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin 150080, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Wenwu Cao
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin 150080, China
- Department of Mathematics and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
132
|
Pourhajibagher M, Bahador A. In Vitro Application of Sonodynamic Antimicrobial Chemotherapy as a Sonobactericidal Therapeutic Approach for Bacterial Infections: A Systematic Review and Meta-analysis. J Lasers Med Sci 2020; 11:S1-S7. [PMID: 33995962 DOI: 10.34172/jlms.2020.s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: This study aimed to perform a systematic review of the literature followed by a meta-analysis about the efficacy of sonodynamic antimicrobial chemotherapy (SACT) in bacterial infections. Methods: According to the PICOS (population, intervention, comparison and outcome) recommendations and PRISMA guidelines, an electronic search was conducted in PubMed, SCOPUS, Embase, and Cochrane Library based on the MeSH terms. All analyses were conducted using Biostat's Comprehensive Meta-Analysis version 2.0. The inter-study heterogeneity and publication bias assessments were carried out on the studies using I2 and the Egger's regression test. Results: Initially, 126 articles were identified in the electronic search, and 14 studies remained after analysis and exclusion of the duplicated studies and eligibility criteria. All results from the included studies displayed a significant reduction of microorganisms. The meta-analysis demonstrated a significant reduction in the bacterial load in all analyses (0.944% [95% CI, 0.901-0.969%; P=0.000]). Also, there was a low risk of bias for microbial load reduction without the evidence of publication bias. Conclusion: The results highlight that there is scientific evidence emphasizing the effectiveness of SACT in reducing the count of microorganisms in bacterial infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
133
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
134
|
Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT), as a promising noninvasive therapeutic modality, has received ever-increasing attention in recent years. Its specialized chemical agents, named sonosensitizers, are activated by low-intensity US to produce lethal reactive oxygen species (ROS) for oncotherapy. Compared with phototherapeutic strategies, SDT provides many noteworthy opportunities and benefits, such as deeper penetration depth, absence of phototoxicity, and fewer side effects. Nevertheless, previous studies have also demonstrated its intrinsic limitations. Thanks to the facile engineering nature of nanotechnology, numerous novel nanoplatforms are being applied in this emerging field to tackle these intrinsic barriers and achieve continuous innovations. In particular, the combination of SDT with other treatment strategies has demonstrated a superior efficacy in improving anticancer activity relative to that of monotherapies alone. Therefore, it is necessary to summarize the nanomaterial-assisted combinational sonodynamic cancer therapy applications. Herein, the design principles in achieving synergistic therapeutic effects based on nanomaterial engineering methods are highlighted. The ultimate goals are to stimulate the design of better-quality combined sonodynamic treatment schemes and provide innovative ideas for the perspectives of SDT in promoting its future transformation to clinical application.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
135
|
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. NANOSCALE 2020; 12:21034-21059. [PMID: 33078823 DOI: 10.1039/d0nr04540c] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT.
Collapse
Affiliation(s)
| | - Herleen Ruprai
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia.
| | - James M Hook
- School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia and Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia. and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| |
Collapse
|
136
|
Adelnia A, Mokhtari-Dizaji M, Hoseinkhani S, Bakhshandeh M. The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue. Skin Res Technol 2020; 27:376-384. [PMID: 33085810 DOI: 10.1111/srt.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the effect of dual-frequency sonication on the viability of B16F10 melanoma cells in the presence of methylene blue (MB) encapsulated in nanoliposomes. METHODS Treatment protocols were studied: sonication groups (40 kHz, 1 MHz and dual-frequency), the same sonication groups with nanoliposomes containing MB, MB free and nanoliposomes containing MB groups, and so sham and control groups. The nanoliposomes were prepared by the lipid film hydration method. The cell viability of the different treatment groups was evaluated by the MTT assay. RESULTS The dual-frequency protocols caused higher viability losses compared to the kHz and MHz sonications (P < .05). In presence of the nanoliposomes containing MB, dual frequency led to 6% and 3% viability for 600 and 1200 seconds, respectively, while the corresponding values were 10% and 4% for the 40 kHz protocols and 22% and 9% for the 1 MHz, as compared to the control group (100%). The result of KI dosimetry showed that the cavitation activity of the dual-frequency protocol was about 1.23, as compared to sonication at 40 kHz and 1 MHz. CONCLUSION Enhancement of inertial cavitation induction by dual-frequency sonication may be the primary effective mechanism, which causes increased sonochemical processes and drug release from nanocarriers.
Collapse
Affiliation(s)
- Akbar Adelnia
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hoseinkhani
- Department of Biochemistry, Faculty of Biosciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
137
|
Nan C, Zheng Y, Fan H, Sun H, Huang S, Li N. Antitumorigenic Effect of Hsp90 Inhibitor SNX-2112 on Tongue Squamous Cell Carcinoma is Enhanced by Low-Intensity Ultrasound. Onco Targets Ther 2020; 13:7907-7919. [PMID: 32884285 PMCID: PMC7434630 DOI: 10.2147/ott.s262174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose The novel Hsp90 inhibitor SNX-2112 showed broad antitumor activity. However, it was still necessary to optimize the therapeutic dosage of SNX-2112 applied on tumors to obtain effective therapy with minimal dose to reduce toxicity. We investigated the role of low-intensity US in promoting antitumorigenic effect of low doses of SNX-2112 on tongue squamous cell carcinoma. Methods Cell viability was measured using CCK-8 assay or staining with Calcein AM/PI. Relative cumulative levels of SNX-2112 in cells were detected using high-performance liquid chromatography. The production of ROS was analyzed using fluorescence microscope and flow cytometer. Cellular apoptosis was detected using flow cytometer. The expression levels of proteins of the ERS-associated apoptosis signaling pathway were detected using Western blotting analysis. The efficacy and biosafety of SNX-2112 were also investigated in a mouse xenograft model. Results Low-intensity US combined with SNX-2112 exhibited significant antitumor effect, increased the absorption of SNX-2112 by cells even with a low dose, enhanced ROS generation and apoptosis. The combination regimen also inhibited the protein expression of Hsp90 and triggered apoptosis through endoplasmic reticulum stress (ERS) by enhancing PERK, CHOP and Bax protein levels, while downregulating the level of Bcl-2. Additionally, N-acetyl-L-cysteine (NAC), ROS scavenger, was able to reverse these results. Low-intensity US combined with SNX-2112 significantly inhibited tumor growth, prolonged survival of mice, decreased proliferation and promoted apoptosis with no visible damage or abnormalities in major organs in the mouse xenograft model with tongue squamous cell carcinoma. Conclusion The antitumor effects of SNX-2112 were enhanced by low-intensity US. The most probable mechanism was that US sonoporation induced more SNX-2112 delivery to the cells and enhanced ROS production, triggering the ERS-associated apoptosis signaling pathway. Therefore, low-intensity US may increase the efficiency of conventional chemotherapy and reduce the dosage of SNX-2112 required and its side effects.
Collapse
Affiliation(s)
- Chuanchuan Nan
- Department of Intensive Care Unit, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, People's Republic of China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haipeng Sun
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Shengxing Huang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| |
Collapse
|
138
|
Matafonova G, Batoev V. Dual-frequency ultrasound: Strengths and shortcomings to water treatment and disinfection. WATER RESEARCH 2020; 182:116016. [PMID: 32619682 DOI: 10.1016/j.watres.2020.116016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Since the early 2000s, dual-frequency ultrasound (DFUS) has received much attention for synergistically enhanced elimination of organic pollutants and pathogenic microorganisms from water. In the present review, we have surveyed recent developments in acoustic physics to elucidate the mechanism of synergistic effect under exposure of aqueous media to DFUS. Briefly, the nonlinear dynamics of microbubbles upon DFUS exposure produces additional frequencies, such as harmonics, subharmonics, ultraharmonics and combination frequencies. These increase the probability of bubbles collapse, thereby enhancing cavitation and generating more reactive oxygen species (ROS) for advanced oxidation processes (AOPs). Further, literature data on ROS generation, chemical degradation and microbial inactivation in aqueous media through DFUS alone and DFUS-based AOPs (involving oxidants or catalysts) have been discussed. In this regard, optimal frequency combination, sonoreactor type and transducer arrangement appear to be key parameters for achieving a high synergistic effect. Strengths and shortcomings of DFUS to water treatment and disinfection have been identified and future research directions have been proposed. Though most studies were conducted on pure (matrix-free) aqueous solutions, these AOPs could be applicable for treating real waters.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
139
|
Zeng W, Xu Y, Yang W, Liu K, Bian K, Zhang B. An Ultrasound-Excitable Aggregation-Induced Emission Dye for Enhanced Sonodynamic Therapy of Tumors. Adv Healthc Mater 2020; 9:e2000560. [PMID: 33448676 DOI: 10.1002/adhm.202000560] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/13/2020] [Indexed: 01/08/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) can significantly solve the problem of tissue penetrability of light of photodynamic therapy (PDT) that has long vexed physicians in clinics. However, there is a great shortage of sonosensitizers for SDT. Currently, several photosensitizers and their derivatives have been reported for SDT but these dyes are usually quenched when aggregated due to aggregation-caused quenching (ACQ) effect. In this work, aggregation-induced emission (AIE) dye (TTMN) assembled nanoparticles (S-AIE) are synthesized and employed as sonosensitizers for enhanced SDT due to the unique properties of the AIE dye and the deep tissue penetration of ultrasound. Results show that S-AIE can generate potent singlet oxygen (1O2) under US irradiation to induce cancer cells apoptosis and clearly inhibit tumor growth in vitro and in vivo. In particular, the intrinsic fluorescence of AIE dye can guide the procedure of SDT. To the best of current knowledge, this is the first demonstration of AIE dyes being used as sonosensitizers for SDT and importantly, this work could inspire other more efficient AIE dyes for being used as sonosensitizers for SDT of deep-seated tumors.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Yan Xu
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Weitao Yang
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Kai Liu
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Kexin Bian
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Bingbo Zhang
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| |
Collapse
|
140
|
Zhao Y, Chen BQ, Kankala RK, Wang SB, Chen AZ. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater Sci Eng 2020; 6:4799-4815. [DOI: 10.1021/acsbiomaterials.0c00830] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
141
|
Wang P, Li A, Yu L, Chen Y, Xu D. Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Front Bioeng Biotechnol 2020; 8:652. [PMID: 32754578 PMCID: PMC7366901 DOI: 10.3389/fbioe.2020.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction, which results in a high disability rate on human health and a huge burden on social economy. At present, traditional therapies based on drug therapy still cannot cure RA, in accompany with the potential serious side effects. Based on the development of nanobiotechnology and nanomedicine, energy conversion-based nanotherapy has demonstrated distinctive potential and performance in RA treatment. This strategy employs specific nanoparticles with intrinsic physiochemical properties to target lesions with the following activation by diverse external stimuli, such as light, ultrasound, microwave, and radiation. These nanoagents subsequently produce therapeutic effects or release therapeutic factors to promote necrotic apoptosis of RA inflammatory cells, reduce the concentration of related inflammatory factors, relieve the symptoms of RA, which are expected to ultimately improve the life quality of RA patients. This review highlights and discusses the versatile biomedical applications of energy conversion-based nanotherapy in efficient RA treatment, in together with the deep clarification of the facing challenges and further prospects on the final clinical translations of these energy conversion-based nanotherapies against RA.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
142
|
|
143
|
Shen Y, Ou J, Chen X, Zeng X, Huang L, Pi Z, Hu Y, Chen S, Chen T. An in vitro study on sonodynamic treatment of human colon cancer cells using sinoporphyrin sodium as sonosensitizer. Biomed Eng Online 2020; 19:52. [PMID: 32552718 PMCID: PMC7302370 DOI: 10.1186/s12938-020-00797-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer is the third leading cause of cancer-related deaths worldwide. Sonodynamic therapy (SDT) is an emerging cancer therapy, and in contrast to photodynamic therapy, could non-invasively reach deep-seated tissues and locally activates a sonosensitizer preferentially accumulated in the tumor area to produce cytotoxicity effects. In comparison with traditional treatments, SDT may serve as an alternative strategy for human colon cancer treatment. Here, we investigated the sonodynamic effect using sinoporphyrin sodium (DVDMS) as a novel sonosensitizer on human colon cancer cells in vitro. RESULTS The absorption spectra of DVDMS revealed maximum absorption at 363 nm wavelength and emission peak at 635 nm. Confocal microscopy images revealed the DVDMS was primarily localized in the cytoplasm, while no evident signal was detected within the nuclei. Flow cytometry analysis showed rapid intracellular uptake of DVDMS by two types of human colon cancer cells (HCT116 and RKO). Cell viability of HCT116 was tolerant with the concentration of DVDMS up to 20 µg/mL, while the case of RKO was 5 µg/mL. In comparison with the control group, the SDT-treated groups of these two types of human colon cancer cells showed significant increase in cellular apoptosis and necrosis ratio. Increased intracellular reactive oxygen species (ROS) production was detected, indicating the involvement of ROS in mediating SDT effects. CONCLUSION DVDMS results an effective sonosensitizer for the ultrasound-mediated cancer cell killing, and its anticancer effect seems to rely on its ability to produce ROS under ultrasound exposure.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jianquan Ou
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaojun Zeng
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Lanhui Huang
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Zhaoke Pi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yaxin Hu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Tie Chen
- Department of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
144
|
Prada F, Sheybani N, Franzini A, Moore D, Cordeiro D, Sheehan J, Timbie K, Xu Z. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J Neurooncol 2020; 148:445-454. [PMID: 32500440 DOI: 10.1007/s11060-020-03536-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Malignant gliomas have a dismal prognosis and significant efforts are being made to develop more effective treatments. Sonodynamic therapy (SDT) is an emerging modality for cancer treatment which combines ultrasound with sonosensitizers to produce a localized cytotoxic effect. The aim of this study is to demonstrate the efficacy of SDT with fluorescein (FL) and low-intensity focused ultrasound in inhibiting the growth of ectopic gliomas implanted in the rat's subcutaneous tissue. METHODS In vivo cytotoxicity of FL-SDT was evaluated in C6 rat glioma cells which were inoculated subcutaneously. Tumor specific extracellular FL extravasation and accumulation was assessed with IVIS imaging in rats receiving systemic FL. Effects of FL-SDT with focused low-intensity ultrasound on tumor growth, and histological features of the rat's tumors were investigated. Treatment related apoptosis and necrosis were analyzed using hematoxylin & eosin, and apoptosis-specific staining. RESULTS IVIS imaging revealed a high degree of FL accumulation within the tumor, with a nearly threefold increase in tumoral epifluorescence signal over background. SDT significantly inhibited outgrowth of ectopic C6 gliomas across all three FUS exposure conditions. TUNEL and active caspase-3 staining did not reveal conclusive trends across control and SDT condition for apoptosis. CONCLUSION Our results suggest that SDT with FL and low-intensity FUS is effective in inhibiting the growth of ectopic malignant gliomas in rats. The selective FL extravasation and accumulation in the tumor areas where the blood-brain barrier is damaged suggests the tumor-specificity of the treatment. The possibility to use this treatment in intracranial models and in human gliomas will have to be explored in further studies.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA. .,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy. .,Focused Ultrasound Foundation, Charlottesville, VA, USA.
| | - Natasha Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Diogo Cordeiro
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| |
Collapse
|
145
|
Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis Photodyn Ther 2020; 31:101834. [PMID: 32464265 DOI: 10.1016/j.pdpdt.2020.101834] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is a treatment to deal with microorganisms, which is limited to treating microbial biofilms due to poor light penetration. Sonodynamic antimicrobial chemotherapy (SACT) can be used for circumventing the limitations of aPDT to inhibit the polymicrobial biofilms. The objective of this study has been focused on the simultaneous use of aPDT and SACT, which is called photo-sonodynamic antimicrobial chemotherapy (P-SACT) to inhibit the biofilms of periopathogens bacteria on surfaces of the titanium dental implants. MATERIALS AND METHODS Following synthesis and confirmation of Chitosan Nanoparticles-Indocyanine green (CNPs-ICG) as photo-sonosensitizer, the mature biofilm model of the polymicrobial synergism of periopathogens was formed on the surface of the titanium dental implants. The quantitative and qualitative evaluations of periopathogens biofilms were performed using microbial viability and scanning electron microscopy analysis of the following groups of treatment modalities (n = 5): 1- Control (periopathogens biofilm without treatment), 2- ICG, 3- CNPs-ICG, 4- diode laser, 5- aPDT/ICG, 6- aPDT/CNPs-ICG, 7- ultrasound, 8- SACT/ICG, 9- SACT/CNPs-ICG, 10- PSACT/ICG, 11- PSACT/CNPs-ICG, and 12-0.2% chlorhexidine (CHX). RESULTS A significant reduction in the log10 CFU/mL of periopathogens was observed in the groups treated with aPDT/ICG, aPDT/CNPs-ICG, SACT/ICG, SACT/CNPs-ICG, PSACT/ICG, PSACT/CNPs-ICG, and 0.2% CHX up to 5.3, 6.5, 5.6, 6.6, and 8.8 log, respectively, when compared with control group (P < 0.05). PSACT/CNPs-ICG group demonstrated significantly higher capacity in eliminating the periopathogens biofilm compared with other groups (P < 0.05). However, there was no significant difference between PSACT/CNPs-ICG and 0.2% CHX (P > 0.05). Microscopic images revealed that biofilms treated with PSACT were comprised mainly of deformed and dead cells. CONCLUSIONS These results highlight the potential of PSACT/CNPs-ICG for the decontamination of the dental implant surfaces from the polymicrobial synergism of periopathogens biofilm.
Collapse
|
146
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
147
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
148
|
Yan P, Liu LH, Wang P. Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor. ACS APPLIED BIO MATERIALS 2020; 3:3456-3475. [DOI: 10.1021/acsabm.0c00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| | - Li-Han Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| |
Collapse
|
149
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
150
|
Zeng Q, Qiao L, Cheng L, Li C, Cao Z, Chen Z, Wang Y, Liu J. Perfluorohexane-Loaded Polymeric Nanovesicles with Oxygen Supply for Enhanced Sonodynamic Therapy. ACS Biomater Sci Eng 2020; 6:2956-2969. [PMID: 33463260 DOI: 10.1021/acsbiomaterials.0c00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Zeng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lijuan Qiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lili Cheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chao Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhong Cao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiyi Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Yi Wang
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|