101
|
Abstract
PURPOSE OF REVIEW Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most common genetic disorders causing end-stage renal disease (ESRD) in children and adolescents. NPHP is a genetically heterogenous disorder with 20 identified genes. NPHP occurs as an isolated kidney disease, but approximately 15% of NPHP patients have additional extrarenal symptoms affecting other organs [e.g. eyes, liver, bones and central nervous system (CNS)]. The pleiotropy in NPHP is explained by the finding that almost all NPHP gene products share expression in primary cilia, a sensory organelle present in most mammalian cells. If extrarenal symptoms are present in addition to NPHP, these disorders are classified as NPHP-related ciliopathies (NPHP-RC). This review provides an update about recent advances in the field of NPHP-RC. RECENT FINDINGS The identification of novel disease-causing genes has improved our understanding of the pathomechanisms contributing to NPHP-RC. Multiple interactions between different NPHP-RC gene products have been published and outline the interconnectivity of the affected proteins and shared pathways. SUMMARY The significance of recently identified genes for NPHP-RC is discussed and the complex role and interaction of NPHP proteins in ciliary function and cellular signalling pathways is highlighted.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Child
- Cilia/pathology
- Cilia/physiology
- Cytoskeletal Proteins
- Genes, Recessive
- Humans
- Kidney/pathology
- Kidney Diseases, Cystic/complications
- Kidney Diseases, Cystic/congenital
- Kidney Diseases, Cystic/pathology
- Kidney Diseases, Cystic/physiopathology
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Membrane Proteins/metabolism
- Mutation/genetics
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
102
|
Di Gioia SA, Farinelli P, Letteboer SJF, Arsenijevic Y, Sharon D, Roepman R, Rivolta C. Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Hum Mol Genet 2015; 24:3359-71. [PMID: 25749990 DOI: 10.1093/hmg/ddv085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis pigmentosa, a form of hereditary blindness. By using different fragments of this protein as baits to screen cDNA libraries of human and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed a substantial bias towards proteins from the Golgi apparatus, the centrosome and the microtubule network. Validation of interaction with key partners by co-immunoprecipitation and proximity ligation assay confirmed that FAM161A is a member of the recently recognized Golgi-centrosomal interactome, a network of proteins interconnecting Golgi maintenance, intracellular transport and centrosome organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN and TRIP11. Furthermore, analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase. Altogether, these findings suggest that FAM161A's activities are probably not limited to ciliary tasks but also extend to more general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease.
Collapse
Affiliation(s)
| | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Stef J F Letteboer
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands and
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronald Roepman
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands and
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
103
|
Wang J, Deretic D. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting. J Cell Sci 2015; 128:1375-85. [PMID: 25673879 DOI: 10.1242/jcs.162925] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary cilia have gained considerable importance in biology and disease now that their involvement in a wide range of human ciliopathies has been abundantly documented. However, detailed molecular mechanisms for specific targeting of sensory receptors to primary cilia are still unknown. Here, we show that the Arf and Rab11 effector FIP3 (also known as RAB11FIP3) promotes the activity of Rab11a and the Arf GTPase-activating protein (GAP) ASAP1 in the Arf4-dependent ciliary transport of the sensory receptor rhodopsin. During its passage out of the photoreceptor Golgi and trans-Golgi network (TGN), rhodopsin indirectly interacts with FIP3 through Rab11a and ASAP1. FIP3 competes with rhodopsin for binding to ASAP1 and displaces it from the ternary complex with Arf4-GTP and ASAP1. Resembling the phenotype resulting from </emph>lack of ASAP1, ablation of FIP3 abolishes ciliary targeting and causes rhodopsin mislocalization. FIP3 coordinates the interactions of ASAP1 and Rab11a with the Rab8 guanine nucleotide exchange factor Rabin8 (also known as RAB3IP). Our study implies that FIP3 functions as a crucial targeting regulator, which impinges on rhodopsin-ASAP1 interactions and shapes the binding pocket for Rabin8 within the ASAP1-Rab11a-FIP3 targeting complex, thus facilitating the orderly assembly and activation of the Rab11-Rabin8-Rab8 cascade during ciliary receptor trafficking.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
104
|
Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25:276-85. [PMID: 25618328 DOI: 10.1016/j.tcb.2014.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
The cilium is the site of function for a variety of membrane receptors, enzymes and signal transduction modules crucial for a spectrum of cellular processes. Through targeted transport and selective gating mechanisms, the cell localizes specific proteins to the cilium that equip it for the role of sensory antenna. This capacity of the cilium to serve as a specialized compartment where specific proteins can be readily concentrated for sensory reception also makes it an ideal organelle to employ for the regulated emission of specific biological material and information. In this review we present and discuss an emerging body of evidence centered on ciliary ectosomes - bioactive vesicles released from the surface of the cilium.
Collapse
|
105
|
Abstract
The connecting cilium of the rod photoreceptor is a tubular structure that bridges two adjacent cellular compartments, the inner segment, the major site of biosynthesis and energy metabolism, and the outer segment, a highly specialized ciliary structure responsible for phototransduction. The connecting cilium allows for active processes of protein sorting and transport to occur between them. Mutations affecting the cargo, their transporters, and the structural components of the primary cilium and basal body lead to aberrant trafficking and photoreceptor cell death. Understanding the overall design of the cilium, its architectural organization, and the function of varied protein complexes within the structural hierarchy of the cilium requires techniques for visualizing their native three-dimensional structures at high magnification. Here we describe methods for isolating retinas from mice, purifying fragments of rod cells that include much of the inner segment and the rod photoreceptor cilia, vitrifying the cell fragments, and determining their structures by cryo-electron tomography.
Collapse
|
106
|
Baehr W. Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture. Invest Ophthalmol Vis Sci 2014; 55:8653-66. [PMID: 25550383 DOI: 10.1167/iovs.14-16066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This lecture details the elucidation of cGMP phosphodiesterase (PDEδ), discovered 25 years ago by Joe Beavo at the University of Washington. PDEδ, once identified as a fourth PDE6 subunit, is now regarded as a promiscuous prenyl-binding protein and important chaperone of prenylated small G proteins of the Ras superfamily and prenylated proteins of phototransduction. Alfred Wittinghofer's group in Germany showed that PDEδ forms an immunoglobulin-like β-sandwich fold that is closely related in structure to other lipid-binding proteins, for example, Uncoordinated 119 (UNC119) and RhoGDI. His group cocrystallized PDEδ with ARL (Arf-like) 2(GTP), and later with farnesylated Rheb (ras homolog expressed in brain). PDEδ specifically accommodates farnesyl and geranylgeranyl moieties in the absence of bound protein. Germline deletion of the Pde6d gene encoding PDEδ impeded transport of rhodopsin kinase (GRK1) and PDE6 to outer segments, causing slowly progressing, recessive retinitis pigmentosa. A rare PDE6D null allele in human patients, discovered by Tania Attié-Bitach in France, specifically impeded trafficking of farnesylated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase (INPP5E) to cilia, causing severe syndromic ciliopathy (Joubert syndrome). Binding of cargo to PDEδ is controlled by Arf-like proteins, ARL2 and ARL3, charged with guanosine-5'-triphosphate (GTP). Arf-like proteins 2 and 3 are unprenylated small GTPases that serve as cargo displacement factors. The lifetime of ARL3(GTP) is controlled by its GTPase-activating protein, retinitis pigmentosa protein 2 (RP2), which accelerates GTPase activity up to 90,000-fold. RP2 null alleles in human patients are associated with severe X-linked retinitis pigmentosa (XLRP). Germline deletion of RP2 in mouse, however, causes only a mild form of XLRP. Absence of RP2 prolongs the activity of ARL3(GTP) that, in turn, impedes PDE6δ-cargo interactions and trafficking of prenylated protein to the outer segments. Hyperactive ARL3(GTP), acting as a hyperactive cargo displacement factor, is predicted to be key in the pathobiology of RP2-XLRP.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Neurobiology and Anatomy, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
107
|
The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina. Cell Tissue Res 2014; 359:423-440. [PMID: 25501893 DOI: 10.1007/s00441-014-2050-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.
Collapse
|
108
|
Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun 2014; 5:5482. [PMID: 25405894 PMCID: PMC4237283 DOI: 10.1038/ncomms6482] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/06/2014] [Indexed: 01/14/2023] Open
Abstract
Primary cilia contain specific receptors and channel proteins that sense the extracellular milieu. Defective ciliary function causes ciliopathies such as autosomal dominant polycystic kidney disease (ADPKD). However, little is known about how large ciliary transmembrane proteins traffic to the cilia. Polycystin-1 (PC1) and -2 (PC2), the two ADPKD gene products, are large transmembrane proteins that co-localize to cilia where they act to control proper tubular diameter. Here we describe that PC1 and PC2 must interact and form a complex to reach the trans-Golgi network (TGN) for subsequent ciliary targeting. PC1 must also be proteolytically cleaved at a GPS site for this to occur. Using yeast two-hybrid screening coupled with a candidate approach, we identify a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism, whereby Rabep1 couples the polycystin complex to a GGA1/Arl3-based ciliary trafficking module at the TGN. This study provides novel insights into the ciliary trafficking mechanism of membrane proteins.
Collapse
|
109
|
Osborne NN, Álvarez CN, del Olmo Aguado S. Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov Today 2014; 19:1613-22. [DOI: 10.1016/j.drudis.2014.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
|
110
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
111
|
Pearring JN, Lieu EC, Winter JR, Baker SA, Arshavsky VY. R9AP targeting to rod outer segments is independent of rhodopsin and is guided by the SNARE homology domain. Mol Biol Cell 2014; 25:2644-9. [PMID: 25009288 PMCID: PMC4148253 DOI: 10.1091/mbc.e14-02-0747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
R9AP, the membrane anchor for transducin's GTPase-activating complex, contains targeting information within its SNARE homology domain that is both necessary and sufficient for R9AP delivery to photoreceptor outer segments. R9AP's targeting is independent of rhodopsin, the most abundant protein residing in the outer segment organelle. In vertebrate photoreceptor cells, rapid recovery from light excitation is dependent on the RGS9⋅Gβ5 GTPase-activating complex located in the light-sensitive outer segment organelle. RGS9⋅Gβ5 is tethered to the outer segment membranes by its membrane anchor, R9AP. Recent studies indicated that RGS9⋅Gβ5 possesses targeting information that excludes it from the outer segment and that this information is overridden by association with R9AP, which allows outer segment targeting of the entire complex. It was also proposed that R9AP itself does not contain specific targeting information and instead is delivered to the outer segment in the same post-Golgi vesicles as rhodopsin, because they are the most abundant transport vesicles in photoreceptor cells. In this study, we revisited this concept by analyzing R9AP targeting in rods of wild-type and rhodopsin-knockout mice. We found that the R9AP targeting mechanism does not require the presence of rhodopsin and further demonstrated that R9AP is actively targeted in rods by its SNARE homology domain.
Collapse
Affiliation(s)
- Jillian N Pearring
- Albert Eye Research Institute, Duke Eye Center, Duke University, Durham, NC 27710
| | - Eric C Lieu
- Albert Eye Research Institute, Duke Eye Center, Duke University, Durham, NC 27710
| | - Joan R Winter
- Albert Eye Research Institute, Duke Eye Center, Duke University, Durham, NC 27710
| | - Sheila A Baker
- Department of Biochemistry and Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Vadim Y Arshavsky
- Albert Eye Research Institute, Duke Eye Center, Duke University, Durham, NC 27710
| |
Collapse
|
112
|
Bhogaraju S, Lorentzen E. Crystal structure of a Chlamydomonas reinhardtii flagellar RabGAP TBC-domain at 1.8 Å resolution. Proteins 2014; 82:2282-7. [PMID: 24810373 DOI: 10.1002/prot.24597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/08/2022]
Abstract
Rab GTPases play a crucial role in the regulation of many intracellular membrane trafficking pathways including endocytosis and ciliogenesis. Rab GTPase activating proteins (RabGAPs) increase the GTP hydrolysis rate of Rab GTPases and turn them into guanine nucleotide diphosphate (GDP) bound inactive form. Here, we determined the crystal structure of the putative catalytic domain of a RabGAP (which we name CrfRabGAP) that is found in the flagellar proteome of the unicellular green alga Chlamydomonas reinhardtii. BLAST searches revealed potential human orthologues of CrfRabGAP as TBC1D3 and TBC1D26. Sequence and structural comparison with other canonical RabGAPs revealed that the CrfRabGAP does not contain the canonical catalytic residues required for the activation of Rab GTPases. The function of noncanonical RabGAPs-like CrfRabGAP might be to serve as Rab effectors rather than activators.
Collapse
Affiliation(s)
- Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | | |
Collapse
|
113
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|