101
|
Simunovic MP, Grigg J, Mahroo O. Vision at the limits: absolute threshold, visual function, and outcomes in clinical trials. Surv Ophthalmol 2022; 67:1270-1286. [DOI: 10.1016/j.survophthal.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
|
102
|
Outer Macular Microvascular Supply in Retinitis Pigmentosa Examined using Optical Coherence Tomography Angiography. J Ophthalmol 2022; 2021:5575851. [PMID: 34970452 PMCID: PMC8714321 DOI: 10.1155/2021/5575851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To determine the vessel density of the superior (SCP) and deep retinal capillary plexuses (DCP) in patients with retinitis pigmentosa (RP) using optical coherence tomography angiography (OCTA). Methods This was a cross-sectional study. A total of 25 eyes of 25 healthy volunteers and 30 eyes of 17 patients with RP were evaluated in this study. The integrity of the ellipsoid zone in the macular fovea was evaluated as an intact or defect using a spectral-domain OCT. Commercial spectral domain coherence tomography angiography (OCTA) was used to scan the macular region of approximately 3 × 3 mm2. The vessel density in the SCP and DCP were calculated after appropriate layer segmentation and removal of projection artifacts. The central retinal thickness (CRT) was measured with automated software. The vessel densities in the SCP and DCP were compared between different groups using SPSS. Results A total of 25 eyes of 25 healthy subjects and 30 eyes of 17 patients with RP were evaluated in the study. There was no significant difference in ages between the two groups (F = 0.065 and P=0.937). There was a significant difference in SCP and DCP between the patients with RP and healthy individuals (P < 0.001 and P < 0.001). The DCP was significantly reduced in the parafovea region between the macular intact and defect groups (P < 0.05), except in the fovea and nasal regions. After linear regression, the DCP/SCP ratio in the whole, fovea, and parafovea regions was closely related to the DCP vessel density (P < 0.05), and CRT in the fovea and parafovea was not related to the whole DCP (P=0.186 and P=0.539). Conclusion The vessel density decreased in patients with RP, especially in the DCP of the parafovea region. A greater loss of capillaries in the DCP was found when the macular region was involved. The DCP/SCP ratio may be an important indicator of RP.
Collapse
|
103
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
104
|
Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2021; 23:ijms23010070. [PMID: 35008496 PMCID: PMC8744961 DOI: 10.3390/ijms23010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those being a missense mutation that results in substitution of proline-23 with histidine. This variant, also known as P23H-RHO, results in rhodopsin misfolding, initiation of endoplasmic reticulum stress, the unfolded protein response, and activation of cell death pathways. In this study, we investigate the effect of α-crystallins on photoreceptor survival in a mouse model of IRD secondary to P23H-RHO. We find that knockout of either αA- or αB-crystallin results in increased intraretinal inflammation, activation of apoptosis and necroptosis, and photoreceptor death. Our data suggest an important role for the ⍺-crystallins in regulating photoreceptor survival in the P23H-RHO mouse model of IRD.
Collapse
|
105
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
106
|
Liu X, Jia R, Meng X, Li Y, Yang L. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp Eye Res 2021; 215:108893. [PMID: 34919893 DOI: 10.1016/j.exer.2021.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
RHO is one of the most common genetic causes of autosomal dominant retinitis Pigmentosa (adRP) and there is no effective therapy for this disease. While rapidly developed CRISPR/Cas9 gene editing technology presents a promising therapeutic strategy to treat adRP. A large number of studies for treating adRP using CRISPR/Cas9 have been performed based on transgenic mouse models which are affected with adRP caused by mutant mouse rhodopsin allele, the counterpart of human rhodopsin. Recently, some RHO humanized mouse models like T17M, P23H are generated, which permit testing of the therapeutic effect of CRISPR/Cas9 in preclinical in vivo systems, without putting humans at risk. While available humanized mouse models are few compared to the number of known RHO mutations, but it is time-consuming and costly to build humanized mice for each mutation. We wonder whether a humanized mouse model having several mutations simultaneously can be developed, although which rarely occurs in patients, to investigate the therapeutic effect of CRISPR/Cas9 for RHO-mediated adRP in preclinical in vivo systems. Homology directed repair strategy combing with CRISPR/Cas9 was employed to introduce human RHO genomic fragment containing the replacement of mouse exon1(mE1) after the start codon to mE5 before the stop codon and all introns by the human counterparts. The human rhodopsin could express under the control of the endogenous murine promoter both transcriptionally and translationally in vivo. Human rhodopsin in humanized mouse lines (without mutation) could replace murine rhodopsin morphologically and functionally. While human rhodopsin containing T17M, G51D, G114R, R135W and P171R mutations simultaneously in mutant humanized (Mut-Rhowt/hum and Mut-Rhohum/hum) mouse lines caused retinal degeneration. Mut-Rhohum/hum mice suffered from severe retinal degeneration with defective formation of rod outer segment, leaving nonrecordable electroretinogram (ERG) at 3 months. Mut- Rhowt/hum mice had a slower rate of photoreceptors loss. In 7-month-old Mut- Rhowt/hum mice, statistically reduced scotopic ERG responses were visible compared with age-matched WT mice, but the shortened outer segment and thinner outer nuclear layer could be observed from 3 months. From 7 months to 9 months, significantly abnormal scotopic ERG responses were visible and photoreceptors loss were also obvious in 9-month-old Mut-Rhowt/hum mice. In 12-month-old Mut- Rhowt/hum mice, statistically reduced scotopic and photopic ERG responses and retinal degeneration throughout the retina were visible. Because scotopic responses were more affected than photopic responses in mutant humanized mice, demonstrating that rods dysfunction was more severe than cones dysfunction and deteriorated earlier, the pattern of retinal degeneration caused by mutant human rhodopsin was a typical rod-cone decay. Immunocytochemistry in cells indicated human rhodopsin proteins with 5 mutations aggregated in the cytoplasm and were also retained in the endoplasmic reticulum. The mutant human rhodopsin also accumulated in rod inner segments and cellular bodies in vivo. In conclusion, our humanized models provide excellent opportunities to study the human rhodopsin expression patterns. Our mutant humanized heterozygotes can provide opportunities to explore gene editing therapies via CRISPR/Cas9 for these five mutations in preclinical studies, it is time-saving and cost-effective.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
107
|
Felline A, Schiroli D, Comitato A, Marigo V, Fanelli F. Structure network-based landscape of rhodopsin misfolding by mutations and algorithmic prediction of small chaperone action. Comput Struct Biotechnol J 2021; 19:6020-6038. [PMID: 34849206 PMCID: PMC8605067 DOI: 10.1016/j.csbj.2021.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
Failure of a protein to achieve its functional structural state and normal cellular location contributes to the etiology and pathology of heritable human conformational diseases. The autosomal dominant form of retinitis pigmentosa (adRP) is an incurable blindness largely linked to mutations of the membrane protein rod opsin. While the mechanisms underlying the noxious effects of the mutated protein are not completely understood, a common feature is the functional protein conformational loss. Here, the wild type and 39 adRP rod opsin mutants were subjected to mechanical unfolding simulations coupled to the graph theory-based protein structure network analysis. A robust computational model was inferred and in vitro validated in its ability to predict endoplasmic reticulum retention of adRP mutants, a feature linked to the mutation-caused misfolding. The structure-based approach could also infer the structural determinants of small chaperone action on misfolded protein mutants with therapeutic implications. The approach is exportable to conformational diseases linked to missense mutations in any membrane protein.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| |
Collapse
|
108
|
Guérin DMA, Digilio A, Branda MM. Dimeric Rhodopsin R135L Mutant-Transducin-like Complex Sheds Light on Retinitis Pigmentosa Misfunctions. J Phys Chem B 2021; 125:12958-12971. [PMID: 34793169 DOI: 10.1021/acs.jpcb.1c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin (RHO) is a light-sensitive pigment in the retina and the main prototypical protein of the G-protein-coupled receptor (GCPR) family. After receiving a light stimulus, RHO and its cofactor retinylidene undergo a series of structural changes that initiate an intricate transduction mechanism. Along with RHO, other partner proteins play key roles in the signaling pathway. These include transducin, a GTPase, kinases that phosphorylate RHO, and arrestin (Arr), which ultimately stops the signaling process and promotes RHO regeneration. A large number of RHO genetic mutations may lead to very severe retinal dysfunction and eventually to impaired dark adaptation disease called autosomal dominant retinitis pigmentosa (adRP). In this study, we used molecular dynamics (MD) simulations to evaluate the different behaviors of the dimeric form of wild-type RHO (WT dRHO) and its mutant at position 135 of arginine to leucine (dR135L), both in the free (noncomplexed) and in complex with the transducin-like protein (Gtl). Gtl is a heterotrimeric model composed of a mixture of human and bovine G proteins. Our calculations allow us to explain how the mutation causes structural changes in the RHO dimer and how this can affect the signal that transducin generates when it is bound to RHO. Moreover, the structural modifications induced by the R135L mutation can also account for other misfunctions observed in the up- and downstream signaling pathways. The mechanism of these dysfunctions, together with the transducin activity reduction, provides structure-based explanations of the impairment of some key processes that lead to adRP.
Collapse
Affiliation(s)
- Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU) and Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Ayelen Digilio
- Department of Physics, National University of San Luis (UNSL), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - María Marta Branda
- Institute of Applied Physics (CONICET-UNSL), Av. Ejercito de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
109
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
110
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
111
|
Ballios BG, Place EM, Martinez-Velazquez L, Pierce EA, Comander JI, Huckfeldt RM. Beyond Sector Retinitis Pigmentosa: Expanding the Phenotype and Natural History of the Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in Autosomal Dominant Retinitis Pigmentosa. Genes (Basel) 2021; 12:genes12121853. [PMID: 34946802 PMCID: PMC8701931 DOI: 10.3390/genes12121853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Sector and pericentral are two rare, regional forms of retinitis pigmentosa (RP). While usually defined as stable or only very slowly progressing, the available literature to support this claim is limited. Additionally, few studies have analyzed the spectrum of disease within a particular genotype. We identified all cases (9 patients) with an autosomal dominant Rhodopsin variant previously associated with sector RP (RHO c.316G > A, p.Gly106Arg) at our institution. Clinical histories were reviewed, and testing included visual fields, multimodal imaging, and electroretinography. Patients demonstrated a broad phenotypic spectrum that spanned regional phenotypes from sector-like to pericentral RP, as well as generalized disease. We also present evidence of significant intrafamilial variability in regional phenotypes. Finally, we present the longest-reported follow-up for a patient with RHO-associated sector-like RP, showing progression from sectoral to pericentral disease over three decades. In the absence of comorbid macular disease, the long-term prognosis for central visual acuity is good. However, we found that significant progression of RHO p.Gly106Arg disease can occur over protracted periods, with impact on peripheral vision. Longitudinal widefield imaging and periodic ERG reassessment are likely to aid in monitoring disease progression.
Collapse
Affiliation(s)
- Brian G. Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Luis Martinez-Velazquez
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Jason I. Comander
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Rachel M. Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
- Correspondence:
| |
Collapse
|
112
|
Picarazzi F, Manetti F, Marigo V, Mori M. Conformational insights into the C-terminal mutations of human rhodopsin in retinitispigmentosa. J Mol Graph Model 2021; 110:108076. [PMID: 34798368 DOI: 10.1016/j.jmgm.2021.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Rhodopsin is a light-sensitive transmembrane receptor involved in the visual transduction cascade. Among the several rhodopsin mutations related to retinitis pigmentosa (RP), those affecting the C-terminal VAPA-COOH motif that is implicated in rhodopsin trafficking from the Golgi to the rod outer segment are notably associated with more aggressive RP forms. However, molecular reasons for defective rhodopsin signaling due to VAPA-COOH mutations, which might include steric hindrance, physicochemical features and structural determinants, are yet unknown, thus limiting further drug design approaches. In this work, clinically relevant rhodopsin mutations at the P347 site within the VAPA-COOH motif were investigated by molecular dynamics (MD) simulations and compared to the wild-type (WT) system. In agreement with experimental evidence, conformational fluctuations of the intrinsically disordered C-terminal tail of WT and mutant rhodopsin were found not to affect the overall structure of the transmembrane domain, including binding to the retinal cofactor. The WT VAPA-COOH motif adopts a unique conformation that is not found in pathological mutants, suggesting that structural features could better explain the pathogenicity of P347 rhodopsin mutants than physicochemical or steric determinants. These results were confirmed by MD simulations in both membrane-embedded full-length opsin and membrane-free C-terminal deca-peptides, these latter becoming very useful and small-size model systems for further investigations of rhodopsin C-terminal mutations. Structural details elucidated in this work might facilitate the understanding of the pathological mechanisms of this class of rhodopsin mutants, which will be instrumental to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41125 Modena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
113
|
Ortega JT, Jastrzebska B. Neuroinflammation as a Therapeutic Target in Retinitis Pigmentosa and Quercetin as Its Potential Modulator. Pharmaceutics 2021; 13:pharmaceutics13111935. [PMID: 34834350 PMCID: PMC8623264 DOI: 10.3390/pharmaceutics13111935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The retina is a multilayer neuronal tissue located in the back of the eye that transduces the environmental light into a neural impulse. Many eye diseases caused by endogenous or exogenous harm lead to retina degeneration with neuroinflammation being a major hallmark of these pathologies. One of the most prevalent retinopathies is retinitis pigmentosa (RP), a clinically and genetically heterogeneous hereditary disorder that causes a decline in vision and eventually blindness. Most RP cases are related to mutations in the rod visual receptor, rhodopsin. The mutant protein triggers inflammatory reactions resulting in the activation of microglia to clear degenerating photoreceptor cells. However, sustained insult caused by the abnormal genetic background exacerbates the inflammatory response and increases oxidative stress in the retina, leading to a decline in rod photoreceptors followed by cone photoreceptors. Thus, inhibition of inflammation in RP has received attention and has been explored as a potential therapeutic strategy. However, pharmacological modulation of the retinal inflammatory response in combination with rhodopsin small molecule chaperones would likely be a more advantageous therapeutic approach to combat RP. Flavonoids, which exhibit antioxidant and anti-inflammatory properties, and modulate the stability and folding of rod opsin, could be a valid option in developing treatment strategies against RP.
Collapse
|
114
|
Sen M, Al-Amin M, Kicková E, Sadeghi A, Puranen J, Urtti A, Caliceti P, Salmaso S, Arango-Gonzalez B, Ueffing M. Retinal neuroprotection by controlled release of a VCP inhibitor from self-assembled nanoparticles. J Control Release 2021; 339:307-320. [PMID: 34606936 DOI: 10.1016/j.jconrel.2021.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
Mutations in rhodopsin lead to its misfolding resulting in autosomal dominant retinitis pigmentosa (adRP). Pharmacological inhibition of the ATP-driven chaperone valosin-containing protein (VCP), a molecular checkpoint for protein quality control, slows down retinal degeneration in animal models. However, poor water-solubility of VCP inhibitors poses a challenge to their clinical translation as intravitreal injections for retinal treatment. In order to enable the delivery of VCP inhibitors, we have developed and investigated two formulations for the VCP inhibitor ML240. Nanoformulations of ML240 were obtained by using amphiphilic polymers methoxy-poly (ethylene glycol)5kDa-cholane (mPEG5kDa-cholane) and methoxy-poly (ethylene glycol)5kDa-cholesterol (mPEG5kDa-cholesterol). Both formulations increased the water-solubility of ML240 by two orders of magnitude and prolonged the drug released over ten days. In addition, encapsulation of ML240 in mPEG5kDa-cholane showed superior photoreceptor protection at lower drug concentrations, normalized rhodopsin localization, and alleviated inflammatory microglial responses in an ex vivo rat model of retinal degeneration. The study demonstrates the potential of VCP inhibitor nanoformulations to treat adRP, a pharmacologically orphan disease.
Collapse
Affiliation(s)
- Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Md Al-Amin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Eva Kicková
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
115
|
McKee AG, Kuntz CP, Ortega JT, Woods H, Most V, Roushar FJ, Meiler J, Jastrzebska B, Schlebach JP. Systematic Profiling of Temperature- and Retinal-Sensitive Rhodopsin Variants by Deep Mutational Scanning. J Biol Chem 2021; 297:101359. [PMID: 34756884 PMCID: PMC8649220 DOI: 10.1016/j.jbc.2021.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/29/2023] Open
Abstract
Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of “temperature-sensitive” variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.
Collapse
Affiliation(s)
- Andrew G McKee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Joseph T Ortega
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hope Woods
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria Most
- Institute for Drug Development, Leipzig University, Leipzig, SAC, Germany
| | - Francis J Roushar
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Institute for Drug Development, Leipzig University, Leipzig, SAC, Germany
| | - Beata Jastrzebska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
116
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
117
|
Wang Y, Chen X, Gao X, Zhao A, Zhao C, Chen X. Variants identified by next-generation sequencing cause endoplasmic reticulum stress in Rhodopsin-associated retinitis pigmentosa. BMC Ophthalmol 2021; 21:371. [PMID: 34666717 PMCID: PMC8525045 DOI: 10.1186/s12886-021-02110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Background Rhodopsin (RHO) is the most well-known genetic cause of autosomal dominant retinitis pigmentosa (adRP). This study aimed to investigate the genetic cause of a large Chinese adRP family and assess the pathogenicity of the detected RHO mutant. Methods Routine ocular examinations were conducted on all participants. Next-generation sequencing with targeted capture was performed to screen mutations in 179 genes associated with hereditary retinal diseases and 10 candidate genes. Variants detected by NGS were validated by Sanger sequencing and evaluated for pathogenicity. Fragments of mutant and wild-type RHO were cloned into the pEGFP-N1 vector and were transfected into different cell lines to observe the cellular localization of the Rhodopsin-GFP fusion protein and evaluate the expression of endoplasmic reticulum (ER) stress markers. RT-PCR analysis was used to detect transfected the splicing of X box-binding protein 1 (XBP1) mRNA, which is a critical factor affecting ER stress. Results Genetic analysis identified a heterozygous missense variant, RHO, c.284 T > C (p.L95P) in this adRP family. Another RHO variant (p.P53R) that we reported previously was also included in further functional assessment. Both misfolded mutant proteins accumulated in the ER in a manner similar to that noted for the classic mutant P23H. Spliced XBP1 was observed in cells transfected with mutants, indicating an increase in ER stress. Conclusions Although the p.L95P variant is not a novel change, it was the first variant to be functionally evaluated and reported in Chinese RP patients. The results in our study provide significant evidence to classify the p.L95P mutation as a class II mutation. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02110-2.
Collapse
Affiliation(s)
- Yue Wang
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Nanjing Medical University, Nanjing, 211166, China
| | - Xi Chen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Nanjing Medical University, Nanjing, 211166, China
| | - Xiang Gao
- Department of Ophthalmology, Jiaozuo Health College, Henan, 454100, China
| | - Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Nanjing Medical University, Nanjing, 211166, China
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xuejuan Chen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China. .,Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
118
|
Pharmacological Inhibition of the VCP/Proteasome Axis Rescues Photoreceptor Degeneration in RHO P23H Rat Retinal Explants. Biomolecules 2021; 11:biom11101528. [PMID: 34680161 PMCID: PMC8534135 DOI: 10.3390/biom11101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.
Collapse
|
119
|
Kojima K. [Biophysical and Biochemical Research of Animal Rhodopsins]. YAKUGAKU ZASSHI 2021; 141:1155-1160. [PMID: 34602512 DOI: 10.1248/yakushi.21-00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opsins (also called animal rhodopsins) are universal photoreceptive proteins that provide the molecular basis of visual and nonvisual photoreception in animals, including humans. Opsins consist of seven helical α-transmembrane domains and use retinal, a derivative of vitamin A, as a chromophore. In many opsins, light absorption triggers photo-isomerization from 11-cis retinal to all-trans retinal, resulting in activation via dynamic structural changes in the protein moiety. Activated opsins stimulate cognate trimeric G proteins to induce signal transduction cascades in cells. Recently, molecular and physiological analyses of diverse opsins have progressively advanced. This review introduces the molecular basis and physiological functions of opsins. Based on the functions of opsins, I will discuss the potential of opsins as target molecules to treat and prevent visual and nonvisual diseases such as sleep disorder and depression.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
120
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
121
|
Kaplan HJ, Wang W, Piri N, Dean DC. Metabolic rescue of cone photoreceptors in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:331-335. [PMID: 35070660 PMCID: PMC8757513 DOI: 10.4103/tjo.tjo_46_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. It is a leading cause of visual disability, with an incidence of ~1 in 7000 persons. Although most RP is nonsyndromic, 20%-30% of patients with RP also have an associated nonocular condition. The gene mutations responsible for RP occur overwhelmingly in rod photoreceptors. Visual loss frequently begins with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors. Although the visual disability from rod dysfunction is significant, it is the subsequent loss of central vision later in life due to cone degeneration that is catastrophic. Until recently, the reason for cone dysfunction in RP was unknown. However, it is now recognized that cones degenerate, losing outer segment (OS) synthesis and inner segment (IS) disassembly because of glucose starvation following rod demise. Rod OS phagocytosis by the apical microvilli of retinal pigment epithelium is necessary to transport glucose from the choriocapillaris to the subretinal space. Although cones lose OS with the onset of rod degeneration in RP, regardless of the gene mutation in rods, cone nuclei remain viable for years (i.e. enter cone dormancy) so that therapies aimed at reversing glucose starvation can prevent and/or recover cone function and central vision.
Collapse
Affiliation(s)
- Henry J Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Niloofar Piri
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas C Dean
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| |
Collapse
|
122
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
123
|
Zhu P, Dyka F, Ma X, Yin L, Yu H, Baehr W, Hauswirth WW, Deng WT. Disease mechanisms of X-linked cone dystrophy caused by missense mutations in the red and green cone opsins. FASEB J 2021; 35:e21927. [PMID: 34547123 PMCID: PMC8462070 DOI: 10.1096/fj.202101066r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022]
Abstract
Cone photoreceptors are responsible for the visual acuity and color vision of the human eye. Red/green cone opsin missense mutations N94K, W177R, P307L, R330Q, and G338E have been identified in subjects with congenital blue cone monochromacy or color‐vision deficiency. Studies on disease mechanisms due to these cone opsin mutations have been previously carried out exclusively in vitro, and the reported impairments were not always consistent. Here we expressed these mutants via AAV specifically in vivo in M‐opsin knockout mouse cones to investigate their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. We show that these mutations alter the M‐opsin structure, function, and localization. N94K and W177R mutants appeared to be misfolded since they localized exclusively in cone inner segments and endoplasmic reticulum. In contrast, P307L, R330Q, and G338E mutants were detected predominately in cone outer segments. Expression of R330Q and G338E, but not P307L opsins, also partially restored expression and correct localization of cone PDE6α’ and cone transducin γ and resulted in partial rescue of M‐cone‐mediated light responses. Expression of W177R and P307L mutants significantly reduced cone viability, whereas N94K, R330Q, and G338E were only modestly toxic. We propose that although the underlying biochemical and cellular defects caused by these mutants are distinct, they all seem to exhibit a dominant phenotype, resembling autosomal dominant retinitis pigmentosa associated with the majority of rhodopsin missense mutations. The understanding of the molecular mechanisms associated with these cone opsin mutants is fundamental to developing targeted therapies for cone dystrophy/dysfunction.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Frank Dyka
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Xiaojie Ma
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Ling Yin
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Heather Yu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA.,Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah, USA.,Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Wen-Tao Deng
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
124
|
Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Song Z, Tao Y. RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space. Drug Deliv 2021; 28:218-228. [PMID: 33501868 PMCID: PMC7850421 DOI: 10.1080/10717544.2020.1870584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Retinal degeneration (RD) refers to a group of blinding retinopathies leading to the progressive photoreceptor demise and vision loss. Treatments against this debilitating disease are urgently needed. Intraocular delivery of exosomes represents an innovative therapeutic strategy against RD. In this study, we aimed to determine whether the subretinal delivery of RPE-derived exosomes (RPE-Exos) can prevent the photoreceptor death in RD. RD was induced in C57BL6 mice by MNU administration. These MNU administered mice received a single subretinal injection of RPE-Exos. Two weeks later, the RPE-Exos induced effects were evaluated via functional, morphological, and behavior examinations. Subretinal delivery of RPE-Exos efficiently ameliorates the visual function impairments, and alleviated the structural damages in the retina of MNU administered mice. Moreover, RPE-Exos exert beneficial effects on the electrical response of the inner retinal circuits. Treatment with RPE-Exos suppressed the expression levels of inflammatory factors, and mitigated the oxidative damage, indicating that subretinal delivery of RPE-Exos constructed a cytoprotective microenvironment in the retina of MNU administered mice. Our data suggest that RPE-Exos have therapeutic effects against the visual impairments and photoreceptor death. These findings will enrich our knowledge of RPE-Exos, and highlight the discovery of a promising medication for RD.
Collapse
Affiliation(s)
- Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuanmeng Wei
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Miao Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Enming Du
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Haijun Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
125
|
Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nat Commun 2021; 12:4934. [PMID: 34400638 PMCID: PMC8368061 DOI: 10.1038/s41467-021-25204-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Rhodopsin (RHO) gene mutations are a common cause of autosomal dominant retinitis pigmentosa (ADRP). The need to suppress toxic protein expression together with mutational heterogeneity pose challenges for treatment development. Mirtrons are atypical RNA interference effectors that are spliced from transcripts as short introns. Here, we develop a novel mirtron-based knockdown/replacement gene therapy for the mutation-independent treatment of RHO-related ADRP, and demonstrate efficacy in a relevant mammalian model. Splicing and potency of rhodopsin-targeting candidate mirtrons are initially determined, and a mirtron-resistant codon-modified version of the rhodopsin coding sequence is validated in vitro. These elements are then combined within a single adeno-associated virus (AAV) and delivered subretinally in a RhoP23H knock-in mouse model of ADRP. This results in significant mouse-to-human rhodopsin RNA replacement and is associated with a slowing of retinal degeneration. This provides proof of principle that synthetic mirtrons delivered by AAV are capable of reducing disease severity in vivo.
Collapse
|
126
|
Colombo L, Maltese PE, Castori M, El Shamieh S, Zeitz C, Audo I, Zulian A, Marinelli C, Benedetti S, Costantini A, Bressan S, Percio M, Ferri P, Abeshi A, Bertelli M, Rossetti L. Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33576794 PMCID: PMC7884295 DOI: 10.1167/iovs.62.2.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To describe the molecular epidemiology of nonsyndromic retinitis pigmentosa (RP) and Usher syndrome (US) in Italian patients. Methods A total of 591 probands (315 with family history and 276 sporadics) were analyzed. For 155 of them, we performed a family segregation study, considering a total of 382 relatives. Probands were analyzed by a customized multigene panel approach. Sanger sequencing was used to validate all genetic variants and to perform family segregation studies. Copy number variants of selected genes were analyzed by multiplex ligation-dependent probe amplification. Four patients who tested negative to targeted next-generation sequencing analysis underwent clinical exome sequencing. Results The mean diagnostic yield of molecular testing among patients with a family history of retinal disorders was 55.2% while the diagnostic yield including sporadic cases was 37.4%. We found 468 potentially pathogenic variants, 147 of which were unpublished, in 308 probands and 66 relatives. Mean ages of onset of the different classes of RP were autosomal dominant RP, 19.3 ± 12.6 years; autosomal recessive RP, 23.2 ± 16.6 years; X-linked RP, 13.9 ± 9.9 years; and Usher syndrome, 18.9 ± 9.5 years. We reported potential new genotype-phenotype correlations in three probands, two revealed by TruSight One testing. All three probands showed isolated RP caused by biallelic variants in genes usually associated with syndromes such as PERCHING and Senior-Loken or with retinal dystrophy, iris coloboma, and comedogenic acne syndrome. Conclusions This is the largest molecular study of Italian patients with RP in the literature, thus reflecting the epidemiology of the disease in Italy with reasonable accuracy.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | | | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | | | | | | | | | | | - Paolo Ferri
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Andi Abeshi
- MAGI's Lab s.r.l., Rovereto, Italy.,Department of Otolaryngology, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
127
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
128
|
Inoue C, Takeuchi T, Shiota A, Kondo M, Nshizawa Y. A rat model for retinitis pigmentosa with rapid retinal degeneration enables drug evaluation in vivo. Biol Proced Online 2021; 23:11. [PMID: 34088267 PMCID: PMC8176615 DOI: 10.1186/s12575-021-00150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Although retinitis pigmentosa (RP) is most frequently studied in mouse models, rats, rabbits, and pigs are also used as animal models of RP. However, no studies have reported postnatal photoreceptor cell loss before complete development in these models. Here, we generated a transgenic rat strain, named the P347L rat, in which proline at position 347 in the rhodopsin protein was replaced with leucine. Results A pathological analysis of photoreceptor cells in the P347L rat model was performed, and drugs with potential use as therapeutic agents against RP were investigated. The data clearly showed rapid degeneration and elimination of the outer nuclear layer even before the photoreceptor cells were fully established in P347L rats. To test the usefulness of the P347L rat in the search for new therapeutic agents against RP, the effects of rapamycin on RP were investigated in this rat strain. The findings suggest that rapamycin promotes autophagy and autophagosomal uptake of the rhodopsin that has accumulated abnormally in the cytoplasm, thereby alleviating stress and delaying photoreceptor cell death. Conclusions In this RP model, the time to onset of retinal degeneration was less than that of previously reported RP models with other rhodopsin mutations, enabling quicker in vivo evaluation of drug efficacy. Administration of rapamycin delayed the photoreceptor cell degeneration by approximately 1 day. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-021-00150-y.
Collapse
Affiliation(s)
- Chisato Inoue
- Center for Clinical Examination Practicum Supp, ort, Chubu University, Kasugai, Aichi, 4878501, Japan.
| | - Tamaki Takeuchi
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 4878501, Japan
| | - Akira Shiota
- Institute of Immunology Co., LTD, Utsunomiya, Tochigi, 3290512, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, 5148507, Japan
| | - Yuji Nshizawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Aichi, 4878501, Japan
| |
Collapse
|
129
|
Ramirez-Phillips AC, Liu D. Therapeutic Genome Editing and In Vivo Delivery. AAPS JOURNAL 2021; 23:80. [PMID: 34080099 DOI: 10.1208/s12248-021-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Improvements in the understanding of human genetics and its roles in disease development and prevention have led to an increased interest in therapeutic genome editing via the use of engineered nucleases. Various approaches have been explored in the past focusing on the development of an effective and safe system for sequence-specific editing. Compared to earlier nucleases such as zinc finger nuclease and transcription activator-like effector nuclease, the relatively low cost and ease of producing clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) systems have made therapeutic genome editing significantly more feasible. CRISPR/Cas9 genome editing has shown great potential to correct genetic mutations implicated in monogenic diseases and to eradicate latent or chronic viral infections in preclinical studies. Several CRISPR/Cas9-based therapeutics have reached the clinical stage, including treatments for inherited red blood cell disorders and Leber Congenital Amaurosis 10, as well as CRISPR/Cas9-edited T cells designed to target and destroy cancer cells. Further advances in therapeutic genome editing will rely on a safe and more efficient method of in vivo CRISPR/Cas9 delivery and improved efficiency of homology-directed repair for site-specific gene insertion or replacement. While other reviews have focused on one or two aspects of CRISPR/Cas9 genome editing, this review aims to provide a summary of the mechanisms of genome editing, the reasons for the emerging interest in CRISPR/Cas9 compared to other engineered nucleases, the current progress in developing CRISPR/Cas9 delivery systems, and the current preclinical and clinical applications of CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
130
|
Ganzen L, Ko MJ, Zhang M, Xie R, Chen Y, Zhang L, James R, Mumm J, van Rijn RM, Zhong W, Pang CP, Zhang M, Tsujikawa M, Leung YF. Drug screening with zebrafish visual behavior identifies carvedilol as a potential treatment for an autosomal dominant form of retinitis pigmentosa. Sci Rep 2021; 11:11432. [PMID: 34075074 PMCID: PMC8169685 DOI: 10.1038/s41598-021-89482-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Retinitis Pigmentosa (RP) is a mostly incurable inherited retinal degeneration affecting approximately 1 in 4000 individuals globally. The goal of this work was to identify drugs that can help patients suffering from the disease. To accomplish this, we screened drugs on a zebrafish autosomal dominant RP model. This model expresses a truncated human rhodopsin transgene (Q344X) causing significant rod degeneration by 7 days post-fertilization (dpf). Consequently, the larvae displayed a deficit in visual motor response (VMR) under scotopic condition. The diminished VMR was leveraged to screen an ENZO SCREEN-WELL REDOX library since oxidative stress is postulated to play a role in RP progression. Our screening identified a beta-blocker, carvedilol, that ameliorated the deficient VMR of the RP larvae and increased their rod number. Carvedilol may directly on rods as it affected the adrenergic pathway in the photoreceptor-like human Y79 cell line. Since carvedilol is an FDA-approved drug, our findings suggest that carvedilol can potentially be repurposed to treat autosomal dominant RP patients.
Collapse
Affiliation(s)
- Logan Ganzen
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA
| | - Mee Jung Ko
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Mengrui Zhang
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Rui Xie
- grid.170430.10000 0001 2159 2859Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816 USA
| | - Yongkai Chen
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Liyun Zhang
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Rebecca James
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Jeff Mumm
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Richard M. van Rijn
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| | - Wenxuan Zhong
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Chi Pui Pang
- grid.10784.3a0000 0004 1937 0482Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China ,grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Mingzhi Zhang
- grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Motokazu Tsujikawa
- grid.136593.b0000 0004 0373 3971Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuk Fai Leung
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, 625 Harrison Street, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| |
Collapse
|
131
|
Challenging Safety and Efficacy of Retinal Gene Therapies by Retinogenesis. Int J Mol Sci 2021; 22:ijms22115767. [PMID: 34071252 PMCID: PMC8198227 DOI: 10.3390/ijms22115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Gene-expression programs modulated by transcription factors (TFs) mediate key developmental events. Here, we show that the synthetic transcriptional repressor (TR; ZF6-DB), designed to treat Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP), does not perturb murine retinal development, while maintaining its ability to block Rho expression transcriptionally. To express ZF6-DB into the developing retina, we pursued two approaches, (i) the retinal delivery (somatic expression) of ZF6-DB by Adeno-associated virus (AAV) vector (AAV-ZF6-DB) gene transfer during retinogenesis and (ii) the generation of a transgenic mouse (germ-line transmission, TR-ZF6-DB). Somatic and transgenic expression of ZF6-DB during retinogenesis does not affect retinal function of wild-type mice. The P347S mouse model of RHO-adRP, subretinally injected with AAV-ZF6-DB, or crossed with TR-ZF6-DB or shows retinal morphological and functional recovery. We propose the use of developmental transitions as an effective mode to challenge the safety of retinal gene therapies operating at genome, transcriptional, and transcript levels.
Collapse
|
132
|
Caridi B, Doncheva D, Sivaprasad S, Turowski P. Galectins in the Pathogenesis of Common Retinal Disease. Front Pharmacol 2021; 12:687495. [PMID: 34079467 PMCID: PMC8165321 DOI: 10.3389/fphar.2021.687495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diseases of the retina are major causes of visual impairment and blindness in developed countries and, due to an ageing population, their prevalence is continually rising. The lack of effective therapies and the limitations of those currently in use highlight the importance of continued research into the pathogenesis of these diseases. Vascular endothelial growth factor (VEGF) plays a major role in driving vascular dysfunction in retinal disease and has therefore become a key therapeutic target. Recent evidence also points to a potentially similarly important role of galectins, a family of β-galactoside-binding proteins. Indeed, they have been implicated in regulating fundamental processes, including vascular hyperpermeability, angiogenesis, neuroinflammation, and oxidative stress, all of which also play a prominent role in retinopathies. Here, we review direct evidence for pathological roles of galectins in retinal disease. In addition, we extrapolate potential roles of galectins in the retina from evidence in cancer, immune and neuro-biology. We conclude that there is value in increasing understanding of galectin function in retinal biology, in particular in the context of the retinal vasculature and microglia. With greater insight, recent clinical developments of galectin-targeting drugs could potentially also be of benefit to the clinical management of many blinding diseases.
Collapse
Affiliation(s)
- Bruna Caridi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dilyana Doncheva
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sobha Sivaprasad
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
133
|
Li J, Du W, Xu N, Tao T, Tang X, Huang L. RNA-seq analysis for exploring the pathogenesis of Retinitis pigmentosa in P23H knock-in mice. Ophthalmic Res 2021; 64:798-810. [PMID: 33971646 DOI: 10.1159/000515727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Jiarui Li
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Wei Du
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xin Tang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
134
|
Jiang K, Fairless E, Kanda A, Gotoh N, Cogliati T, Li T, Swaroop A. Divergent Effects of HSP70 Overexpression in Photoreceptors During Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 33107904 PMCID: PMC7594617 DOI: 10.1167/iovs.61.12.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Disruption of proteostasis is a key event in many neurodegenerative diseases. Heat shock proteins (HSPs) participate in multiple functions associated with intracellular transport and proteostasis. We evaluated the effect of augmented HSP70 expression in mutant photoreceptors of mouse retinal degeneration models to test the hypothesis that failure to sustain HSP70 expression contributes to photoreceptor cell death. Methods We examined HSP70 expression in retinas of wild-type and mutant mice by RNA and protein analysis. A transgenic mouse line, TgCrx-Hspa1a-Flag, was generated to express FLAG-tagged full-length HSP70 protein under control of a 2.3 kb mouse Crx promoter. This line was crossed to three distinct retinal degeneration mouse models. Retinal structure and function were evaluated by histology, immunohistochemistry, and electroretinography. Results In seven different mouse models of retinal degeneration, we detected transient elevation of endogenous HSP70 expression at early stages, followed by a dramatic reduction as cell death ensues, suggesting an initial adaptive response to cellular stress. Augmented expression of HSP70 in RHOT17M mice, in which mutant rhodopsin is misfolded, marginally improved photoreceptor survival, whereas elevated HSP70 led to more severe retinal degeneration in rd10 mutants that produce a partially functional PDE6B. In Rpgrip1−/− mice that display a ciliary defect, higher HSP70 had no impact on photoreceptor survival or function. Conclusions HSP70 overexpression has divergent effects in photoreceptors determined, at least in part, by the nature of the mutant protein each model carries. Additional investigations on HSP pathways and associated chaperone networks in photoreceptors are needed before designing therapeutic strategies targeting proteostasis.
Collapse
Affiliation(s)
- Ke Jiang
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Fairless
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Atsuhiro Kanda
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
135
|
Chiu W, Lin TY, Chang YC, Isahwan-Ahmad Mulyadi Lai H, Lin SC, Ma C, Yarmishyn AA, Lin SC, Chang KJ, Chou YB, Hsu CC, Lin TC, Chen SJ, Chien Y, Yang YP, Hwang DK. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci 2021; 22:ijms22094534. [PMID: 33926102 PMCID: PMC8123696 DOI: 10.3390/ijms22094534] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye’s accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.
Collapse
Affiliation(s)
- Wei Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Henkie Isahwan-Ahmad Mulyadi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shen-Che Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Bai Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| |
Collapse
|
136
|
Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. eNeuro 2021; 8:ENEURO.0020-21.2021. [PMID: 33509952 PMCID: PMC8059883 DOI: 10.1523/eneuro.0020-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of temporal variations in amplitude of light intensity, or temporal contrast sensitivity (TCS), depends on the kinetics of rod photoresponse recovery. Uncharacteristically fast rod recovery kinetics are facets of both human patients and transgenic animal models with a P23H rhodopsin mutation, a prevalent cause of retinitis pigmentosa (RP). Here, we show that mice with this mutation (RhoP23H/+) exhibit an age-dependent and illumination-dependent enhancement in TCS compared with controls. At retinal illumination levels producing ≥1000 R*/rod/s or more, postnatal day 30 (P30) RhoP23H/+ mice exhibit a 1.2-fold to 2-fold increase in retinal and optomotor TCS relative to controls in response to flicker frequencies of 3, 6, and 12 Hz despite significant photoreceptor degeneration and loss of flash electroretinogram (ERG) b-wave amplitude. Surprisingly, the TCS of RhoP23H/+ mice further increases as degeneration advances. Enhanced TCS is also observed in a second model (rhodopsin heterozygous mice, Rho+/-) with fast rod recovery kinetics and no apparent retinal degeneration. In both mouse models, enhanced TCS is explained quantitatively by a comprehensive model that includes photoresponse recovery kinetics, density and collecting area of degenerating rods. Measurement of TCS may be a non-invasive early diagnostic tool indicative of rod dysfunction in some forms of retinal degenerative disease.
Collapse
|
137
|
Impairments of Photoreceptor Outer Segments Renewal and Phototransduction Due to a Peripherin Rare Haplotype Variant: Insights from Molecular Modeling. Int J Mol Sci 2021; 22:ijms22073484. [PMID: 33801777 PMCID: PMC8036374 DOI: 10.3390/ijms22073484] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinitis pigmentosa punctata albescens (RPA) is a particular form of retinitis pigmentosa characterized by childhood onset night blindness and areas of peripheral retinal atrophy. We investigated the genetic cause of RPA in a family consisting of two affected Egyptian brothers with healthy consanguineous parents. METHODS Mutational analysis of four RPA causative genes was realized by Sanger sequencing on both probands, and detected variants were subsequently genotyped in their parents. Afterwards, found variants were deeply, statistically, and in silico characterized to determine their possible effects and association with RPA. RESULTS Both brothers carry three missense PRPH2 variants in a homozygous condition (c.910C > A, c.929G > A, and c.1013A > C) and two promoter variants in RHO (c.-26A > G) and RLBP1 (c.-70G > A) genes, respectively. Haplotype analyses highlighted a PRPH2 rare haplotype variant (GAG), determining a possible alteration of PRPH2 binding with melanoregulin and other outer segment proteins, followed by photoreceptor outer segment instability. Furthermore, an altered balance of transcription factor binding sites, due to the presence of RHO and RLBP1 promoter variants, might determine a comprehensive downregulation of both genes, possibly altering the PRPH2 shared visual-related pathway. CONCLUSIONS Despite several limitations, the study might be a relevant step towards detection of novel scenarios in RPA etiopathogenesis.
Collapse
|
138
|
Fang X, Peden AA, van Eeden FJM, Malicki JJ. Identification of additional outer segment targeting signals in zebrafish rod opsin. J Cell Sci 2021; 134:jcs.254995. [PMID: 33589494 DOI: 10.1242/jcs.254995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
In vertebrate photoreceptors, opsins are highly concentrated in a morphologically distinct ciliary compartment known as the outer segment (OS). Opsin is synthesized in the cell body and transported to the OS at a remarkable rate of 100 to 1000 molecules per second. Opsin transport defects contribute to photoreceptor loss and blindness in human ciliopathies. Previous studies revealed that the rhodopsin C-terminal tail, of 44 amino acids, is sufficient to mediate OS targeting in Xenopus photoreceptors. Here, we show that, although the Xenopus C-terminus retains this function in zebrafish, the homologous zebrafish sequence is not sufficient to target opsin to the OS. This functional difference is largely caused by a change of a single amino acid present in Xenopus but not in other vertebrates examined. Furthermore, we find that sequences in the third intracellular cytoplasmic loop (IC3) and adjacent regions of transmembrane helices 6 and 7 are also necessary for opsin transport in zebrafish. Combined with the cytoplasmic tail, these sequences are sufficient to target opsin to the ciliary compartment.
Collapse
Affiliation(s)
- Xiaoming Fang
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Andrew A Peden
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Fredericus J M van Eeden
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jarema J Malicki
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
139
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
140
|
Li H, Liu B, Lian L, Zhou J, Xiang S, Zhai Y, Chen Y, Ma X, Wu W, Hou L. High dose expression of heme oxigenase-1 induces retinal degeneration through ER stress-related DDIT3. Mol Neurodegener 2021; 16:16. [PMID: 33691741 PMCID: PMC7944639 DOI: 10.1186/s13024-021-00437-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress is a common cause of neurodegeneration and plays a central role in retinal degenerative diseases. Heme oxygenase-1 (HMOX1) is a redox-regulated enzyme that is induced in neurodegenerative diseases and acts against oxidative stress but can also promote cell death, a phenomenon that is still unexplained in molecular terms. Here, we test whether HMOX1 has opposing effects during retinal degeneration and investigate the molecular mechanisms behind its pro-apoptotic role. METHODS Basal and induced levels of HMOX1 in retinas are examined during light-induced retinal degeneration in mice. Light damage-independent HMOX1 induction at two different expression levels is achieved by intraocular injection of different doses of an adeno-associated virus vector expressing HMOX1. Activation of Müller glial cells, retinal morphology and photoreceptor cell death are examined using hematoxylin-eosin staining, TUNEL assays, immunostaining and retinal function are evaluated with electroretinograms. Downstream gene expression of HMOX1 is analyzed by RNA-seq, qPCR examination and western blotting. The role of one of these genes, the pro-apoptotic DNA damage inducible transcript 3 (Ddit3), is analyzed in a line of knockout mice. RESULTS Light-induced retinal degeneration leads to photoreceptor degeneration and concomitant HMOX1 induction. HMOX1 expression at low levels before light exposure prevents photoreceptor degeneration but expression at high levels directly induces photoreceptor degeneration even without light stress. Photoreceptor degeneration following high level expression of HMOX1 is associated with a mislocalization of rhodopsin in photoreceptors and an increase in the expression of DDIT3. Genetic deletion of Ddit3 in knockout mice prevents photoreceptor cell degeneration normally resulting from high level HMOX1 expression. CONCLUSION The results reveal that the expression levels determine whether HMOX1 is protective or deleterious in the retina. Furthermore, in contrast to the protective low dose of HMOX1, the deleterious high dose is associated with induction of DDIT3 and endoplasmic reticulum stress as manifested, for instance, in rhodopsin mislocalization. Hence, future applications of HMOX1 or its regulated targets in gene therapy approaches should carefully consider expression levels in order to avoid potentially devastating effects.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Bo Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Lili Lian
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jiajia Zhou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Shengjin Xiang
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325003 China
| | - Yifan Zhai
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325003 China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
141
|
The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease. Int J Mol Sci 2021; 22:ijms22041855. [PMID: 33673358 PMCID: PMC7917623 DOI: 10.3390/ijms22041855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.
Collapse
|
142
|
Patrizi C, Llado M, Benati D, Iodice C, Marrocco E, Guarascio R, Surace EM, Cheetham ME, Auricchio A, Recchia A. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Am J Hum Genet 2021; 108:295-308. [PMID: 33508235 PMCID: PMC7896132 DOI: 10.1016/j.ajhg.2021.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of progressive retinal degenerations of mostly monogenic inheritance, which cause blindness in about 1:3,500 individuals worldwide. Heterozygous variants in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP). Among these, missense variants at C-terminal proline 347, such as p.Pro347Ser, cause severe adRP recurrently in European affected individuals. Here, for the first time, we use CRISPR/Cas9 to selectively target the p.Pro347Ser variant while preserving the wild-type RHO allele in vitro and in a mouse model of adRP. Detailed in vitro, genomic, and biochemical characterization of the rhodopsin C-terminal editing demonstrates a safe downregulation of p.Pro347Ser expression leading to partial recovery of photoreceptor function in a transgenic mouse model treated with adeno-associated viral vectors. This study supports the safety and efficacy of CRISPR/Cas9-mediated allele-specific editing and paves the way for a permanent and precise correction of heterozygous variants in dominantly inherited retinal diseases.
Collapse
Affiliation(s)
- Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manel Llado
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Enrico M Surace
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, 80125 Naples, Italy
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedicine, Federico II University, 80125 Naples, Italy.
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
143
|
Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. RNA therapeutics in ophthalmology - translation to clinical trials. Exp Eye Res 2021; 205:108482. [PMID: 33548256 DOI: 10.1016/j.exer.2021.108482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The use of RNA interference technology has proven to inhibit the expression of many target genes involved in the underlying pathogenesis of several diseases affecting various systems. First established in in vitro and later in animal studies, small interfering RNA (siRNA) and antisense oligonucleotide (ASO) therapeutics are now entering clinical trials with the potential of clinical translation to patients. Gene-silencing therapies have demonstrated promising responses in ocular disorders, predominantly due to the structure of the eye being a closed and compartmentalised organ. However, although the efficacy of such treatments has been observed in both preclinical studies and clinical trials, there are issues pertaining to the use of these drugs which require more extensive research with regards to the delivery and stability of siRNAs and ASOs. This would improve their use for long-term treatment regimens and alleviate the difficulties experienced by patients with ocular diseases. This review provides a detailed insight into the recent developments and clinical trials that have been conducted for several gene-silencing therapies, including ISTH0036, SYL040012, SYL1001, PF-04523655, Sirna-027, QR-110, QR-1123, QR-421a and IONIS-FB-LRX in glaucoma, dry eye disease, age-related macular degeneration, diabetic macular oedema and various inherited retinal diseases. Our aim is to explore the potential of these drugs whilst evaluating their associated advantages and disadvantages, and to discuss the future translation of RNA therapeutics in ophthalmology.
Collapse
Affiliation(s)
- Aanchal Gupta
- King's College London, London, SE1 7EH, United Kingdom; Department of Ophthalmology, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | | | | | - Cynthia Yu-Wai-Man
- King's College London, London, SE1 7EH, United Kingdom; Department of Ophthalmology, St Thomas' Hospital, London, SE1 7EH, United Kingdom.
| |
Collapse
|
144
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
145
|
Sun X, Sun P, Liu L, Jiang P, Li Y. Ferulic acid attenuates microglia-mediated neuroinflammation in retinal degeneration. BMC Ophthalmol 2021; 21:13. [PMID: 33407277 PMCID: PMC7789661 DOI: 10.1186/s12886-020-01765-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Retinal degeneration is often accompanied by microglia-mediated neuroinflammation. Ferulic acid (FA), an active ingredient of traditional Chinese medicines (TCMs), has been reported to have anti-inflammatory effects. This study explores the impact of FA on microglia-mediated neuroinflammation and associated retinal degeneration in rd10 mice. METHODS Rd10 mice received different concentrations of FA every day from postnatal day (P)4 to P24. On P25, the visual function of the mice was evaluated by electroretinogram, and retinae were collected for further investigation. Microglial activation and the expression of relevant cytokines in the retina were evaluated by qPCR, western blotting and immunofluorescence staining. Retinal structure was assessed by haematoxylin and eosin (HE) staining. RESULTS Supplementation with 50 mg/kg FA provided optimal protection against retinal degeneration, with treated mice exhibiting more photoreceptor nuclei as well as greater wave amplitude amplification on electroretinogram than untreated mice. FA suppressed microglial activation both in vivo and in vitro, and inhibited the expression of pro-inflammatory factors Tnfα, IL1β, and Ccl2 in the retinae of rd10 mice. Furthermore, FA suppressed the activation of STAT1 and subsequently inhibited IRF8 expression, potentially highlighting a role for these pathways in FA-mediated immunomodulatory activity. CONCLUSIONS Attenuation of neuroinflammation by FA may be beneficial for retarding retinal degeneration.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, People's Republic of China
| | - Peng Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, People's Republic of China
| | - Limei Liu
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, People's Republic of China
| | - Pengfei Jiang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, People's Republic of China.
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
146
|
Otte B, Andrews C, Lacy G, Branham K, Musch DC, Jayasundera KT. Clinical trial design for neuroprotection in RHO autosomal dominant retinitis pigmentosa; outcome measure considerations. Ophthalmic Genet 2021; 42:170-177. [PMID: 33406961 DOI: 10.1080/13816810.2020.1867752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To identify structural and functional outcome measures among patients with Rho-positive autosomal dominant Retinitis Pigmentosa (adRP) to aid neuroprotection trial design.Methods: This was a retrospective cohort study of 52 patients with Rho-positive adRP. We measured Goldmann Visual Fields (GVF) constriction in four sectors (nasal, temporal, inferior, superior), and sectoral Ellipsoid Zone (EZ) width degeneration using Spectral Domain Optical Coherence Tomography (OCT) scans. Disease progression trajectories were projected using mixed effects modeling.Results: Superior GVF was most constricted at presentation and had the shallowest trajectory (less steep negative slope); Inferior GVF was less constricted (corrected p < .001) and had a steeper negative slope (corrected p = .019) than superior GVF. Temporal EZ was most stable on OCT with a relatively shallow negative trajectory (corrected p = .011).Conclusions: Patients' superior visual fields presented with more constriction and subsequently had a shallow negative slope suggesting the corresponding inferior retina may be "burned out" at presentation. Targeted therapies for adRP will likely show a greater efficacy signal if delivered to the superior and nasal retina, which may demonstrate more change on OCT and GVF over the course of a neuroprotection trial.Translational Relevance: Mixed effects analysis of sectoral visual field constriction and EZ degeneration in Rho-positive adRP can prove useful in monitoring therapeutic efficacy and identifying targets for local therapies.
Collapse
Affiliation(s)
- Benjamin Otte
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chris Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabrielle Lacy
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kanishka T Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
147
|
Yang P, Lockard R, Titus H, Hiblar J, Weller K, Wafai D, Weleber RG, Duvoisin RM, Morgans CW, Pennesi ME. Suppression of cGMP-Dependent Photoreceptor Cytotoxicity With Mycophenolate Is Neuroprotective in Murine Models of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 32785677 PMCID: PMC7441375 DOI: 10.1167/iovs.61.10.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the effect of mycophenolate mofetil (MMF) on retinal degeneration on two mouse models of retinitis pigmentosa. Methods Intraperitoneal injections of MMF were administered daily in rd10 and c57 mice starting at postoperative day 12 (P12) and rd1 mice starting at P8. The effect of MMF was assessed with optical coherence tomography, immunohistochemistry, electroretinography, and OptoMotry. Whole retinal cyclic guanosine monophosphate (cGMP) and mycophenolic acid levels were quantified with mass spectrometry. Photoreceptor cGMP cytotoxicity was evaluated with cell counts of cGMP immunostaining. Results MMF treatment significantly delays the onset of retinal degeneration and cGMP-dependent photoreceptor cytotoxicity in rd10 and rd1 mice, albeit a more modest effect in the latter. In rd10 mice, treatment with MMF showed robust preservation of the photoreceptors up to P22 with associated suppression of cGMP immunostaining and microglial activation; The neuroprotective effect diminished after P22, but outer retinal thickness was still significantly thicker by P35 and OptoMotry response was significantly better up to P60. Whereas cGMP immunostaining of the photoreceptors were present in rd10 and rd1 mice, hyperphysiological whole retinal cGMP levels were observed only in rd1 mice. Conclusions Early treatment with MMF confers potent neuroprotection in two animal models of RP by suppressing the cGMP-dependent common pathway for photoreceptor cell death. The neuroprotective effect of MMF on cGMP-dependent cytotoxicity occurs independently of the presence of hyperphysiological whole retinal cGMP levels. Thus our data suggest that MMF may be an important new class of neuroprotective agent that could be useful in the treatment of patients with RP.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Rachel Lockard
- School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Hope Titus
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jordan Hiblar
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kyle Weller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Dahlia Wafai
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Robert M Duvoisin
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Catherine W Morgans
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
148
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
149
|
Lee SJ, Wang W, Jin L, Lu X, Gao L, Chen Y, Liu T, Emery D, Vukmanic E, Liu Y, Kaplan HJ, Dean DC. Rod photoreceptor clearance due to misfolded rhodopsin is linked to a DAMP-immune checkpoint switch. J Biol Chem 2021; 296:100102. [PMID: 33214223 PMCID: PMC7949052 DOI: 10.1074/jbc.ra120.016053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Chronic endoplasmic reticulum stress resulting from misfolding of the visual pigment rhodopsin (RHO) can lead to loss of rod photoreceptors, which initiates retinitis pigmentosa, characterized initially by diminished nighttime and peripheral vision. Cone photoreceptors depend on rods for glucose transport, which the neurons use for assembly of visual pigment-rich structures; as such, loss of rods also leads to a secondary loss of cone function, diminishing high-resolution color vision utilized for tasks including reading, driving, and facial recognition. If dysfunctional rods could be maintained to continue to serve this secondary cone preservation function, it might benefit patients with retinitis pigmentosa, but the mechanisms by which rods are removed are not fully established. Using pigs expressing mutant RHO, we find that induction of a danger-associated molecular pattern (DAMP) "eat me" signal on the surface of mutant rods is correlated with targeting the live cells for (PrCR) by retinal myeloid cells. Glucocorticoid therapy leads to replacement of this DAMP with a "don't eat me" immune checkpoint on the rod surface and inhibition of PrCR. Surviving rods then continue to promote glucose transport to cones, maintaining their viability.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, Kosin University College of Medicine, Seo-gu, Busan, Korea
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Lei Jin
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Lei Gao
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Douglas Emery
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Eric Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA.
| |
Collapse
|
150
|
Vasudevan S, Park PSH. Differential Aggregation Properties of Mutant Human and Bovine Rhodopsin. Biochemistry 2020; 60:6-18. [PMID: 33356167 DOI: 10.1021/acs.biochem.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin is the light receptor required for the function and health of photoreceptor cells. Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinal degeneration. Bovine rhodopsin is often used as a model to understand the effect of pathogenic mutations in rhodopsin due to the abundance of structural information on the bovine form of the receptor. It is unclear whether or not the bovine rhodopsin template is adequate in predicting the effect of these mutations occurring in human retinal disease or in predicting the efficacy of therapeutic strategies. To better understand the extent to which bovine rhodopsin can serve as a model, human and bovine P23H rhodopsin mutants expressed heterologously in cells were examined. The aggregation properties and cellular localization of the mutant receptors were determined by Förster resonance energy transfer and confocal microscopy. The potential therapeutic effects of the pharmacological compounds 9-cis retinal and metformin were also examined. Human and bovine P23H rhodopsin mutants exhibited different aggregation properties and responses to the pharmacological compounds tested. These observations would lead to different predictions on the severity of the phenotype and divergent predictions on the benefit of the therapeutic compounds tested. The bovine rhodopsin template does not appear to adequately model the effects of the P23H mutation in the human form of the receptor.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|