101
|
Yu SS, Chen B, Huang CK, Zhou JJ, Huang X, Wang AJ, Li BM, He WH, Zhu X. Ursolic acid suppresses TGF-β1-induced quiescent HSC activation and transformation by inhibiting NADPH oxidase expression and Hedgehog signaling. Exp Ther Med 2017; 14:3577-3582. [PMID: 29042951 PMCID: PMC5639307 DOI: 10.3892/etm.2017.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
Activation of quiescent hepatic stellate cells (q-HSCs) and their transformation to myofibroblasts (MFBs) is a key event in liver fibrosis. Hedgehog (Hh) signaling stimulates q-HSCs to differentiate into MFBs, and NADPH oxidase (NOX) may be involved in regulating Hh signaling. The author's preliminary study demonstrated that ursolic acid (UA) selectively induces apoptosis in activated HSCs and inhibits their proliferation in vitro via negative regulation of NOX activity and expression. However, the effect of UA on q-HSCs remains to be elucidated. The present study aimed to investigate the effect of UA on q-HSC activation and HSC transformation and to observe alterations in the NOX and Hh signaling pathways during q-HSC activation. q-HSC were isolated from adult male Sprague-Dawley rats. Following culture for 3 days, the cells were treated with or without transforming growth factor-β1 (TGF-β1; 5 µg/l); intervention groups were pretreated with UA (40 µM) or diphenyleneiodonium chloride (DPI; 10 µM) for 30 min prior to addition of TGF-β1. mRNA and protein expression of NOX and Hh signaling components and markers of q-HSC activation were examined by western blotting and reverse transcription-polymerase chain reaction. TGF-β1 induced activation of q-HSCs, with increased expression of α-smooth muscle actin (α-SMA) and type I collagen. In addition, expression of NOX subunits (gp91phox, p67phox, p22phox, and Rac1) and Hh signaling components, including sonic Hh, sterol-4-alpha-methyl oxidase, and Gli family zinc finger 2, were upregulated in activated HSCs. Pretreatment of q-HSCs with UA or DPI prior to TGF-β1 significantly downregulated expression of NOX subunits and Hh signaling components and additionally inhibited expression of α-SMA and type I collagen, thereby preventing transformation to MFBs. UA inhibited TGF-β1-induced activation of q-HSCs and their transformation by inhibiting expression of NOX subunits and the downstream Hh pathway.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Biao Chen
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chen-Kai Huang
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juan-Juan Zhou
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Huang
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - An-Jiang Wang
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bi-Min Li
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Hua He
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan Zhu
- Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
102
|
Crosas-Molist E, Bertran E, Rodriguez-Hernandez I, Herraiz C, Cantelli G, Fabra À, Sanz-Moreno V, Fabregat I. The NADPH oxidase NOX4 represses epithelial to amoeboid transition and efficient tumour dissemination. Oncogene 2017; 36:3002-3014. [PMID: 27941881 PMCID: PMC5354266 DOI: 10.1038/onc.2016.454] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Epithelial to mesenchymal transition is a common event during tumour dissemination. However, direct epithelial to amoeboid transition has not been characterized to date. Here we provide evidence that cells from hepatocellular carcinoma (HCC), a highly metastatic cancer, undergo epithelial to amoeboid transition in physiological environments, such as organoids or three-dimensional complex matrices. Furthermore, the NADPH oxidase NOX4 inhibits this transition and therefore suppresses efficient amoeboid bleb-based invasion. Moreover, NOX4 expression is associated with E-cadherin levels and inversely correlated with invasive features. NOX4 is necessary to maintain parenchymal structures, increase cell-cell and cell-to-matrix adhesion, and impair actomyosin contractility and amoeboid invasion. Importantly, NOX4 gene deletions are frequent in HCC patients, correlating with higher tumour grade. Contrary to that observed in mesenchymal cell types, here NOX4 suppresses Rho and Cdc42 GTPase expression and downstream actomyosin contractility. In HCC patients, NOX4 expression inversely correlates with RhoC and Cdc42 levels. Moreover, low expression of NOX4 combined with high expression of either RhoC or Cdc42 is associated with worse prognosis. Therefore, loss of NOX4 increases actomyosin levels and favours an epithelial to amoeboid transition contributing to tumour aggressiveness.
Collapse
Affiliation(s)
- E Crosas-Molist
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - E Bertran
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - I Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - C Herraiz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - G Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - À Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - V Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - I Fabregat
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques II, University of Barcelona, Barcelona, Spain
| |
Collapse
|
103
|
Fabregat I, Giannelli G. The TGF-β pathway: a pharmacological target in hepatocellular carcinoma? Hepat Oncol 2017; 4:35-38. [PMID: 30191051 PMCID: PMC6095167 DOI: 10.2217/hep-2017-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) & University of Barcelona, L’Hospitalet, Barcelona, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS ‘S. De Bellis’, Castellana Grotte Bari, Italy
| | - on behalf of the IT-LIVER Consortium
- Bellvitge Biomedical Research Institute (IDIBELL) & University of Barcelona, L’Hospitalet, Barcelona, Spain
- National Institute of Gastroenterology IRCCS ‘S. De Bellis’, Castellana Grotte Bari, Italy
| |
Collapse
|
104
|
Dong H, Guo H, Liang Y, Wang X, Niu Y. Astragaloside IV synergizes with ferulic acid to suppress hepatic stellate cells activation in vitro. Free Radic Res 2017; 51:167-178. [PMID: 28147890 DOI: 10.1080/10715762.2017.1290233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because hepatic fibrosis usually involves more than one pathological process, combination therapy with modalities that target aberrant signaling cascade in activated hepatic stellate cells (HSCs) represents an alternative strategy. This study evaluates the hypothesis that astragaloside IV (AS-IV) and ferulic acid (FA) synergize to inhibit HSCs activation via simultaneous activating nuclear factor erythroid-2-related factor-2 (Nrf2) and blocking transforming growth factor-β (TGF-β) pathways. The combination of FA and AS-IV, hereafter referred to as the AS-IV/FA, at suboptimal concentrations synergistically inhibited HSCs activation, as measured by expressions of α-smooth muscle actin (α-SMA), collagen α type I (Col I) and fibronectin. Nrf2 nuclear accumulation, glutathione (GSH) increase, and reactive oxygen species (ROS) reduction by AS-IV were not potentiated by co-treatment with FA. Similarly, inhibition of TGF-β1 secretion and Smad activity by FA also was not enhanced by combined treatment with AS-IV. AS-IV/FA synergistically suppresses the p38 mitogen-activated protein kinase (MAPK) activity. Inhibition of HSCs activation by AS-IV/FA could be completely blocked by TGF-βs-neutralizing antibody plus shRNA-mediated knockdown of Nrf2. Dual blockade of the TGF-β1/Smad pathway by FA and activation of Nrf2/ARE pathway by AS-IV contributed to the synergistic effects of this combination treatment. These results suggest that combinatorial treatments that target different pathway may afford a more effective strategy to inhibit HSC activation.
Collapse
Affiliation(s)
- Haiying Dong
- a The Institute of Medicine, Qiqihar Medical University , Qiqihar , China
| | - Hongyan Guo
- a The Institute of Medicine, Qiqihar Medical University , Qiqihar , China
| | - Yini Liang
- a The Institute of Medicine, Qiqihar Medical University , Qiqihar , China
| | - Xing Wang
- a The Institute of Medicine, Qiqihar Medical University , Qiqihar , China
| | - Yingcai Niu
- a The Institute of Medicine, Qiqihar Medical University , Qiqihar , China
| |
Collapse
|
105
|
|
106
|
Ramalho FN, Sanches SC, Foss MC, Augusto MJ, Silva DM, Oliveira AM, Ramalho LN. Aliskiren effect on non-alcoholic steatohepatitis in metabolic syndrome. Diabetol Metab Syndr 2017; 9:82. [PMID: 29046730 PMCID: PMC5640954 DOI: 10.1186/s13098-017-0282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is highly associated with metabolic syndrome, a major cause of morbidity in the globalized society. The renin-angiotensin system (RAS) influences hepatic fatty acid metabolism, inflammation and fibrosis. Thus, in the present study, we aimed to evaluate the effect of aliskiren, a direct renin inhibitor, on metabolic syndrome-related NASH. METHODS C57BL/6 male mice (n = 45) were divided into three groups: controls; animals inoculated with streptozotocin (STZ) (40 mg/kg/day) for 5 days and fed with high fat diet (HFD) for 8 weeks; and animals inoculated with STZ for 5 days, fed with HFD for 8 weeks and treated with aliskiren (100 mg/kg/day) for the final 2 weeks. Glycemic and insulin levels, hepatic lipid profile, histological parameters and inflammatory protein expression were analyzed. RESULTS Aliskiren normalized plasma glucose and insulin levels, reduced cholesterol, triglycerides and total fat accumulation in liver and diminished hepatic injury, steatosis and fibrosis. These results could be explained by the ability of aliskiren to block angiotensin-II, lowering oxidative stress and inflammation in liver. Also, it exhibited a beneficial effect in increasing insulin sensitivity. CONCLUSION These findings support the use of aliskiren in the treatment of metabolic syndrome underlying conditions. However, clinical studies are indispensable to test its effectiveness in the treatment of patients with metabolic syndrome.
Collapse
Affiliation(s)
- F. N. Ramalho
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - S. C. Sanches
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - M. C. Foss
- Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - M. J. Augusto
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - D. M. Silva
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - A. M. Oliveira
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - L. N. Ramalho
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
107
|
Liver 5-HT7 receptors: A novel regulator target of fibrosis and inflammation-induced chronic liver injury in vivo and in vitro. Int Immunopharmacol 2016; 43:227-235. [PMID: 28043031 DOI: 10.1016/j.intimp.2016.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/03/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM Hepatocellular cancer (HCC) is the sixth most common cancer and liver fibrosis is strongly associated with HCC. Treatment options are limited, and preventive strategies should be developed. An important step in the beginning of liver fibrosis is a strong inflammatory response. 5-HT7 is the last recognized member of the serotonin receptor family and is expressed in both central nerve system and peripheral system and have a lot of functions like learning, memory, smooth muscular relaxation, in the control of circadian rhythms and thermoregulation, pain and migraine, schizophrenia, anxiety, cognitive disturbances, and even inflammation. METHODS We therefore examined the biochemical, histopathological and molecular effects of the 5-HT7 receptor agonist and antagonist on inflammatory liver fibrogenesis in animal models of progressive cirrhosis: a mouse model induced by carbon tetrachloride (CCl4) and in Hep3b cells. RESULTS 5-HT7 expression was observed in the liver in vivo and in vitro in CCl4-induced damage. 5-HT7 receptor agonist but not the antagonist reduced liver markers in mice and in Hep3b cells in carbon tetrachloride (CCl4) induced damage. 5-HT7 agonist, but not antagonist, protected liver tissue from oxidative stress in fibrosis. 5-HT7 agonist but not antagonist induces anti-inflammatory, anti-fibrinotic and anti-cytokine features in liver fibrosis in vivo and in vitro. CONCLUSIONS 5-HT7 receptors have modulatory function and are an up-and-coming pharmacological target in the inflammatory fibrotic process. 5-HT7 receptor agonist LP-44 showed significant hepatoprotective effects against liver fibrosis, and LP-44 might become a useful therapeutic target for chronic liver inflammation and fibrosis.
Collapse
|
108
|
Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F, Zheng S. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2016; 11:322-334. [PMID: 28038427 PMCID: PMC5199192 DOI: 10.1016/j.redox.2016.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by dramatic disappearance of lipid droplets (LDs). Although LD disappearance has long been considered one of the hallmarks of HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of autophagy in the process of LD disappearance, and to further examine the underlying mechanisms in this molecular context. We found that LD disappearance during HSC activation was associated with a coordinate increase in autophagy. Inhibition or depletion of autophagy by Atg5 siRNA impaired LD disappearance of quiescent HSCs, and also restored lipocyte phenotype of activated HSCs. In contrast, induction of autophagy by Atg5 plasmid accelerated LD loss of quiescent HSCs. Importantly, our study also identified a crucial role for reactive oxygen species (ROS) in the facilitation of autophagy activation. Antioxidants, such as glutathione and N-acetyl cysteine, significantly abrogated ROS production, and in turn, prevented autophagosome generation and autophagic flux during HSC activation. Besides, we found that HSC activation triggered Rab25 overexpression, and promoted the combination of Rab25 and PI3KCIII, which direct autophagy to recognize, wrap and degrade LDs. Down-regulation of Rab25 activity, using Rab25 siRNA, blocked the target recognition of autophagy on LDs, and inhibited LD disappearance of quiescent HSCs. Moreover, the scavenging of excessive ROS could disrupt the interaction between autophagy and Rab25, and increase intracellular lipid content. Overall, these results provide novel implications to reveal the molecular mechanism of LD disappearance during HSC activation, and also identify ROS-Rab25-dependent autophagy as a potential target for the treatment of liver fibrosis. Autophagosome generation and autophagic flux are increased during HSC activation. The inhibition of autophagy blocks LD disappearance of quiescent HSCs. The induction of autophagy accelerates LD disappearance of quiescent HSCs. Rab25 activation is required for autophagy to degrade LDs during HSC activation. Mitochondrial H2O2 production triggers autophagy activation during HSC activation.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shifeng Zhao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhen Yao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ling Wang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiangjuan Shao
- Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis., MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shizhong Zheng
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
109
|
Dong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 2016; 13:60. [PMID: 27814727 PMCID: PMC5097370 DOI: 10.1186/s12989-016-0172-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
Carbon nanotubes (CNTs) are newly developed materials with unique properties and a range of industrial and commercial applications. A rapid expansion in the production of CNT materials may increase the risk of human exposure to CNTs. Studies in rodents have shown that certain forms of CNTs are potent fibrogenic inducers in the lungs to cause interstitial, bronchial, and pleural fibrosis characterized by the excessive deposition of collagen fibers and the scarring of involved tissues. The cellular and molecular basis underlying the fibrotic response to CNT exposure remains poorly understood. Myofibroblasts are a major type of effector cells in organ fibrosis that secrete copious amounts of extracellular matrix proteins and signaling molecules to drive fibrosis. Myofibroblasts also mediate the mechano-regulation of fibrotic matrix remodeling via contraction of their stress fibers. Recent studies reveal that exposure to CNTs induces the differentiation of myofibroblasts from fibroblasts in vitro and stimulates pulmonary accumulation and activation of myofibroblasts in vivo. Moreover, mechanistic analyses provide insights into the molecular underpinnings of myofibroblast differentiation and function induced by CNTs in the lungs. In view of the apparent fibrogenic activity of CNTs and the emerging role of myofibroblasts in the development of organ fibrosis, we discuss recent findings on CNT-induced lung fibrosis with emphasis on the role of myofibroblasts in the pathologic development of lung fibrosis. Particular attention is given to the formation and activation of myofibroblasts upon CNT exposure and the possible mechanisms by which CNTs regulate the function and dynamics of myofibroblasts in the lungs. It is evident that a fundamental understanding of the myofibroblast and its function and regulation in lung fibrosis will have a major influence on the future research on the pulmonary response to nano exposure, particle and fiber-induced pneumoconiosis, and other human lung fibrosing diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA.
| |
Collapse
|
110
|
Al-Khafaji AB, Tohme S, Yazdani HO, Miller D, Huang H, Tsung A. Superoxide induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-dependent mechanism. Mol Med 2016; 22:621-631. [PMID: 27453505 DOI: 10.2119/molmed.2016.00054] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils constitute the early innate immune response to perceived infectious and sterile threats. Neutrophil Extracellular Traps (NETs) are a novel mechanism to counter pathogenic invasion and sequelae of ischemia including cell death and oxidative stress. Superoxide is a radical intermediate of oxygen metabolism produced by parenchymal and non-parenchymal hepatic cells, and is a hallmark of oxidative stress after liver ischemia-reperfusion (I/R). While extracellular superoxide recruits neutrophils to the liver and initiates sterile inflammatory injury, it is unknown whether superoxide induces the formation of NETs. We hypothesize that superoxide induces NET formation through a signaling cascade involving Toll-like receptor 4 (TLR-4) and neutrophil NADPH Oxidase (NOX). We treated neutrophils with extracellular superoxide and observed NET DNA release, histone H3 citrullination, and increased levels of MPO-DNA complexes occurring in a TLR-4 dependent manner. Inhibition of superoxide generation by Allopurinol and inhibition of NOX by diphenyleneiodonium prevented NET formation. When mice were subjected to warm liver I/R, we found significant NET formation associated with liver necrosis and increased serum ALT in TLR-4 WT, but not TLR-4 KO mice. To reduce circulating superoxide we pretreated mice undergoing I/R with Allopurinol and N-acetylcysteine, which resulted in decreased NETs and ameliorated liver injury. Our study demonstrates a requirement for TLR-4 and NOX in superoxide-induced NETs, and suggests involvement of superoxide-induced NETs in pathophysiologic settings.
Collapse
Affiliation(s)
- Ahmed B Al-Khafaji
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hamza Obaid Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Miller
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
111
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
112
|
Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis. Front Pharmacol 2016; 7:183. [PMID: 27445819 PMCID: PMC4917547 DOI: 10.3389/fphar.2016.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.
Collapse
Affiliation(s)
- Hayley C. Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Amanda K. Wheaton
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Kevin K. Kim
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | | | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
113
|
Chico L, Orsucci D, Lo Gerfo A, Marconi L, Mancuso M, Siciliano G. Biomarkers and progress of antioxidant therapy for rare mitochondrial disorders. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1178570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniele Orsucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Letizia Marconi
- Department of Cardiothoracic and Vascular, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
114
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|