101
|
Pontes A, Ruethi J, Frey B, Aires A, Thomas A, Overy D, Halti B, Kerr R, Sampaio JP. Cryolevonia gen. nov. and Cryolevonia schafbergensis sp. nov., a cryophilic yeast from ancient permafrost and melted sea ice. Int J Syst Evol Microbiol 2020; 70:2334-2338. [PMID: 32022657 DOI: 10.1099/ijsem.0.004040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cryophilic basidiomycetous yeast unable to grow at 18 °C or higher temperatures was isolated from a subsurface permafrost layer collected in the Eastern Swiss Alps and from melted sea ice collected in the Artic at Frobisher Bay, Nunavut, Canada. Phylogenetic analyses employing combined sequences of the D1/D2 domain and ITS region indicated that the two new isolates belong to the family Camptobasidiaceae of the class Microbotryomycetes but are distantly related to any of the currently recognized species and genera. Consequently, the novel genus Cryolevonia, and the novel species Cryolevonia schafbergensis (type strain PYCC 8347T=CBS 16055T) are proposed to accommodate this cryophilic yeast. Although sparse hyphae and teliospore-like stuctures were observed upon prolonged incubation, a sexual cycle was not observed and therefore C. schafbergensis is documented solely from its asexual stage.
Collapse
Affiliation(s)
- Ana Pontes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joel Ruethi
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andreia Aires
- PYCC - Portuguese Yeast Culture Collection, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Amanda Thomas
- Department of Chemistry and Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - David Overy
- Nautilus Biosciences Croda, Duffy Research Centre, UPEI, Charlottetown, Canada.,Department of Chemistry and Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Brad Halti
- Nautilus Biosciences Croda, Duffy Research Centre, UPEI, Charlottetown, Canada.,Department of Chemistry and Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Russell Kerr
- Nautilus Biosciences Croda, Duffy Research Centre, UPEI, Charlottetown, Canada.,Department of Chemistry and Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,PYCC - Portuguese Yeast Culture Collection, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
102
|
Wang Y, Ma A, Liu G, Ma J, Wei J, Zhou H, Brandt KK, Zhuang G. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. GLOBAL CHANGE BIOLOGY 2020; 26:697-708. [PMID: 31782204 DOI: 10.1111/gcb.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.
Collapse
Affiliation(s)
- Yuwan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianpeng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
103
|
Characterization of amylase produced by cold-adapted bacteria from Antarctic samples. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
104
|
Xia JM, Hu XM, Huang CH, Yu LB, Xu RF, Tang XX, Lin DH. Metabolic profiling of cold adaptation of a deep-sea psychrotolerant Microbacterium sediminis to prolonged low temperature under high hydrostatic pressure. Appl Microbiol Biotechnol 2019; 104:277-289. [PMID: 31728583 DOI: 10.1007/s00253-019-10134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 12/01/2022]
Abstract
The most wide-spread "hostile" environmental factor for marine microorganisms is low temperature, which is usually accompanied by high hydrostatic pressure (HHP). Metabolic mechanisms of marine microorganisms adapting to prolonged low temperature under HHP remain to be clarified. To reveal the underlying metabolic mechanisms, we performed NMR-based metabolomic analysis of aqueous extracts derived from a psychrotolerant Microbacterium sediminis YLB-01, which was isolated from deep-sea sediment and possess great biotechnology potentials. The YLB-01 cells were firstly cultivated at the optimal condition (28 °C, 0.1 MPa) for either 18 h (logarithmic phase) or 24 h (stationary phase), then continually cultivated at either 28 °C or 4 °C under HHP (30 MPa) for 7 days. The cells cultivated at low temperature, which experienced cold stress, were distinctly distinguished from those at normal temperature. Cold stress primarily induced metabolic changes in amino acid metabolism and carbohydrate metabolism. Furthermore, the logarithmic and stationary phase cells cultivated at low temperature exhibited distinct metabolic discrimination, which was mostly reflected in the significantly disturbed carbohydrate metabolism. The logarithmic phase cells displayed suppressed TCA cycle, while the stationary phase cells showed decreased pyruvate and increased lactate. In addition, we performed transcriptome analysis for the stationary phase cells to support the metabolomic analysis. Our results suggest that the cold adaptation of the psychrotroph YLB-01 is closely associated with profoundly altered amino acid metabolism and carbohydrate metabolism. Our work provides a mechanistic understanding of the metabolic adaptation of marine psychrotrophs to prolonged low temperature under HHP.
Collapse
Affiliation(s)
- Jin-Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Min Hu
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Li-Bo Yu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Ru-Fang Xu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Xi-Xiang Tang
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China.
| | - Dong-Hai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
105
|
New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Sci Rep 2019; 9:16444. [PMID: 31712730 PMCID: PMC6848147 DOI: 10.1038/s41598-019-52832-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.
Collapse
|
106
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
107
|
de Menezes GC, Amorim SS, Gonçalves VN, Godinho VM, Simões JC, Rosa CA, Rosa LH. Diversity, Distribution, and Ecology of Fungi in the Seasonal Snow of Antarctica. Microorganisms 2019; 7:E445. [PMID: 31614720 PMCID: PMC6843862 DOI: 10.3390/microorganisms7100445] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022] Open
Abstract
We characterized the fungal community found in the winter seasonal snow of the Antarctic Peninsula. From the samples of snow, 234 fungal isolates were obtained and could be assigned to 51 taxa of 26 genera. Eleven yeast species displayed the highest densities; among them, Phenoliferia glacialis showed a broad distribution and was detected at all sites that were sampled. Fungi known to be opportunistic in humans were subjected to antifungal minimal inhibition concentration. Debaryomyces hansenii, Rhodotorula mucilaginosa, Penicillium chrysogenum, Penicillium sp. 3, and Penicillium sp. 4 displayed resistance against the antifungals benomyl and fluconazole. Among them, R. mucilaginosa isolates were able to grow at 37 °C. Our results show that the winter seasonal snow of the Antarctic Peninsula contains a diverse fungal community dominated by cosmopolitan ubiquitous fungal species previously found in tropical, temperate, and polar ecosystems. The high densities of these cosmopolitan fungi suggest that they could be present in the air that arrives at the Antarctic Peninsula by air masses from outside Antarctica. Additionally, we detected environmental fungal isolates that were resistant to agricultural and clinical antifungals and able to grow at 37 °C. Further studies will be needed to characterize the virulence potential of these fungi in humans and animals.
Collapse
Affiliation(s)
- Graciéle C.A. de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Soraya S. Amorim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Vívian N. Gonçalves
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Valéria M. Godinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Jefferson C. Simões
- Centro Polar e Climático, Universidade Federal do Rio Grande do Sul, Porto Alegre 91201-970, Brazil;
| | - Carlos A. Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Luiz H. Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| |
Collapse
|
108
|
Ali B, Sajjad W, Ghimire PS, Shengyun C, Minghui W, Kang S. Culture-dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. J Basic Microbiol 2019; 59:1065-1081. [PMID: 31556143 DOI: 10.1002/jobm.201900385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/23/2019] [Accepted: 09/07/2019] [Indexed: 11/08/2022]
Abstract
In the current study, psychrophilic, endolithic, and epilithic bacterial strains were isolated and characterized from the nonpolar Laohugou glacier (LHG) no. 12, the largest valley glacier in the western Qilian Mts. located on the northeastern edge of the Tibetan Plateau. Five different types of samples, rocks, soil, glacial water, ice/snow, and cryoconite, were collected. A total of 48 bacterial strains were isolated by using the R2A bacterial cultural medium. The findings revealed that the Gram-positive bacteria 41 (85.4%) dominated the Gram-negative bacteria 7 (14.6%) in this extremely harsh environment. Molecular characterization based on 16S ribosomal RNA gene sequencing exhibited that the obtained isolates belong to four phyla, among which the diversity of Firmicutes (58.33%) was higher followed by Actinobacteria (23.0%), Proteobacteria (14.6%), and least diversity was reported in Euryarchaeota (4.2%). The bacterial communities were most dominant in soil samples followed by cryoconite sample and least dominant in the ice and snow samples. Moreover, the obtained bacterial isolates were found resistant to high concentrations of heavy metals (Cr3+ , Cd2+ , Hg2+ , and Ar3+ ) and sodium chloride, and, therefore, exhibited polyextremophilic characteristics. LHG no. 12 is rich in bacterial and archaeal diversities and provides a potentially curious site for further in-depth exploration of microbial diversity and their biotechnological applications.
Collapse
Affiliation(s)
- Barkat Ali
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wasim Sajjad
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Prakriti Sharma Ghimire
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Chen Shengyun
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Wu Minghui
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Shichang Kang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| |
Collapse
|
109
|
Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs 2019; 17:md17100544. [PMID: 31547548 PMCID: PMC6835263 DOI: 10.3390/md17100544] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.
Collapse
|
110
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
111
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
112
|
Brighenti S, Tolotti M, Bruno MC, Wharton G, Pusch MT, Bertoldi W. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:542-559. [PMID: 31030160 DOI: 10.1016/j.scitotenv.2019.04.221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
This review provides a detailed synthesis of the effects of glacier retreat and permafrost thaw on stream ecosystems in the European Alps. As a working framework, we present a conceptual model developed from an integration of current knowledge and understanding of the habitat and ecological shifts in Alpine streams caused by deglaciation. In our work, we depict how climate change and the loss of cryosphere trigger complex cascading effects on Alpine hydrology, as the main water sources shift from snow and glaciers to rock glaciers, groundwater, and precipitation. The associated changes in habitat conditions, such as channel stability, turbidity, temperature, nutrient loadings, and concentrations of legacy pollutants and trace elements are identified. These changes are followed by complex ecological shifts in the stream communities (microbial community, primary producers, invertebrates) and food webs, with a predicted loss of biotic diversity. Corresponding increases in taxa abundances, biomass, functional diversity, and in the complexity of food webs, are predicted to occur in the upper reaches of Alpine catchments in response to ameliorating climatic and habitat conditions. Finally, current knowledge gaps are highlighted as a basis for framing future research agendas. In particular, we call for an improved understanding of permafrost influence on Alpine headwaters, including the ecology of rock-glacier fed streams, as these streams are likely to become increasingly important for water supply in many glacier-free Alpine valleys in the near future.
Collapse
Affiliation(s)
- Stefano Brighenti
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, TN, Italy; Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Monica Tolotti
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Maria Cristina Bruno
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.
| | - Geraldene Wharton
- School of Geography, Queen Mary University of London, London, United Kingdom
| | - Martin T Pusch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Walter Bertoldi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, TN, Italy
| |
Collapse
|
113
|
Altshuler I, Hamel J, Turney S, Magnuson E, Lévesque R, Greer CW, Whyte LG. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH 4 and CO 2 gas fluxes. Environ Microbiol 2019; 21:3711-3727. [PMID: 31206918 DOI: 10.1111/1462-2920.14715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Microbial metabolism of the thawing organic carbon stores in permafrost results in a positive feedback loop of greenhouse gas emissions. CO2 and CH4 fluxes and the associated microbial communities in Arctic cryosols are important in predicting future warming potential of the Arctic. We demonstrate that topography had an impact on CH4 and CO2 flux at a high Arctic ice-wedge polygon terrain site, with higher CO2 emissions and lower CH4 uptake at troughs compared to polygon interior soils. The pmoA sequencing suggested that USCα cluster of uncultured methanotrophs is likely responsible for observed methane sink. Community profiling revealed distinct assemblages across the terrain at different depths. Deeper soils contained higher abundances of Verrucomicrobia and Gemmatimonadetes, whereas the polygon interior had higher Acidobacteria and lower Betaproteobacteria and Deltaproteobacteria abundances. Genome sequencing of isolates from the terrain revealed presence of carbon cycling genes including ones involved in serine and ribulose monophosphate pathways. A novel hybrid network analysis identified key members that had positive and negative impacts on other species. Operational Taxonomic Units (OTUs) with numerous positive interactions corresponded to Proteobacteria, Candidatus Rokubacteria and Actinobacteria phyla, while Verrucomicrobia and Acidobacteria members had negative impacts on other species. Results indicate that topography and microbial interactions impact community composition.
Collapse
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jérémie Hamel
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Québec, Canada
| | - Shaun Turney
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Roger Lévesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Québec, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada.,National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
114
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|
115
|
Silva TR, Tavares RSN, Canela-Garayoa R, Eras J, Rodrigues MVN, Neri-Numa IA, Pastore GM, Rosa LH, Schultz JAA, Debonsi HM, Cordeiro LRG, Oliveira VM. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:416-429. [PMID: 30874930 DOI: 10.1007/s10126-019-09892-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Considering the global trend in the search for alternative natural compounds with antioxidant and sun protection factor (SPF) boosting properties, bacterial carotenoids represent an opportunity for exploring pigments of natural origin which possess high antioxidant activity, lower toxicity, no residues, and no environmental risk and are readily decomposable. In this work, three pigmented bacteria from the Antarctic continent, named Arthrobacter agilis 50cyt, Zobellia laminarie 465, and Arthrobacter psychrochitiniphilus 366, were able to withstand UV-B and UV-C radiation. The pigments were extracted and tested for UV absorption, antioxidant capacity, photostability, and phototoxicity profile in murine fibroblasts (3T3 NRU PT-OECD TG 432) to evaluate their further potential use as UV filters. Furthermore, the pigments were identified by ultra-high-performance liquid chromatography-photodiode array detector-mass spectrometry (UPLC-PDA-MS/MS). The results showed that all pigments presented a very high antioxidant activity and good stability under exposure to UV light. However, except for a fraction of the A. agilis 50cyt pigment, they were shown to be phototoxic. A total of 18 different carotenoids were identified from 23 that were separated on a C18 column. The C50 carotenes bacterioruberin and decaprenoxanthin (including its variations) were confirmed for A. agilis 50cyt and A. psychrochitiniphilus 366, respectively. All-trans-bacterioruberin was identified as the pigment that did not express phototoxic activity in the 3T3 NRU PT assay (MPE < 0.1). Zeaxanthin, β-cryptoxanthin, β-carotene, and phytoene were detected in Z. laminarie 465. In conclusion, carotenoids identified in this work from Antarctic bacteria open perspectives for their further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.
Collapse
Affiliation(s)
- Tiago R Silva
- Institute of Biology, Campinas State University (UNICAMP), P.O. Box: 6109, Campinas, SP, Brazil.
- Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil.
| | - Renata S N Tavares
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ramon Canela-Garayoa
- Department of Chemistry, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Jordi Eras
- Department of Chemistry, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Marili V N Rodrigues
- Department of Organic Chemistry; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil
| | - Iramaia A Neri-Numa
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Glaucia M Pastore
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz H Rosa
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Hosana M Debonsi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Lorena R G Cordeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Valeria M Oliveira
- Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil
| |
Collapse
|
116
|
Adamczyk M, Hagedorn F, Wipf S, Donhauser J, Vittoz P, Rixen C, Frossard A, Theurillat JP, Frey B. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Front Microbiol 2019; 10:1080. [PMID: 31156590 PMCID: PMC6529532 DOI: 10.3389/fmicb.2019.01080] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
While vegetation has intensively been surveyed on mountain summits, limited knowledge exists about the diversity and community structure of soil biota. Here, we study how climatic variables, vegetation, parent material, soil properties, and slope aspect affect the soil microbiome on 10 GLORIA (Global Observation Research Initiative in Alpine environments) mountain summits ranging from the lower alpine to the nival zone in Switzerland. At these summits we sampled soils from all four aspects and examined how the bacterial and fungal communities vary by using Illumina MiSeq sequencing. We found that mountain summit soils contain highly diverse microbial communities with a total of 10,406 bacterial and 6,291 fungal taxa. Bacterial α-diversity increased with increasing soil pH and decreased with increasing elevation, whereas fungal α-diversity did not change significantly. Soil pH was the strongest predictor for microbial β-diversity. Bacterial and fungal community structures exhibited a significant positive relationship with plant communities, indicating that summits with a more distinct plant composition also revealed more distinct microbial communities. The influence of elevation was stronger than aspect on the soil microbiome. Several microbial taxa responded to elevation and soil pH. Chloroflexi and Mucoromycota were significantly more abundant on summits at higher elevations, whereas the relative abundance of Basidiomycota and Agaricomycetes decreased with elevation. Most bacterial OTUs belonging to the phylum Acidobacteria were indicators for siliceous parent material and several OTUs belonging to the phylum Planctomycetes were associated with calcareous soils. The trends for fungi were less clear. Indicator OTUs belonging to the genera Mortierella and Naganishia showed a mixed response to parent material, demonstrating their ubiquitous and opportunistic behaviour in soils. Overall, fungal communities responded weakly to abiotic and biotic factors. In contrast, bacterial communities were strongly influenced by environmental changes suggesting they will be strongly affected by future climate change and associated temperature increase and an upward migration of vegetation. Our results provide the first insights into the soil microbiome of mountain summits in the European Alps that are shaped as a result of highly variable local environmental conditions and may help to predict responses of the soil biota to global climate change.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sonja Wipf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Jonathan Donhauser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christian Rixen
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jean-Paul Theurillat
- Fondation J.-M. Aubert, Champex-Lac, Switzerland
- Department of Botany and Plant Biology, University of Geneva, Chambésy, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
117
|
Panwar AS, Molpa D, Joshi GK. Biotechnological Potential of Some Cold-Adapted Bacteria Isolated from North-Western Himalaya. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171903007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
118
|
Luláková P, Perez-Mon C, Šantrůčková H, Ruethi J, Frey B. High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Front Microbiol 2019; 10:668. [PMID: 31001236 PMCID: PMC6456652 DOI: 10.3389/fmicb.2019.00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/18/2019] [Indexed: 02/01/2023] Open
Abstract
The response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4–40°C) for 26 days before being exposed to a heat shock treatment of 40°C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25°C, but then dropped considerably at 40°C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40°C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.
Collapse
Affiliation(s)
- Petra Luláková
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Hana Šantrůčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Joel Ruethi
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
119
|
Carrasco M, Rozas JM, Alcaíno J, Cifuentes V, Baeza M. Pectinase secreted by psychrotolerant fungi: identification, molecular characterization and heterologous expression of a cold-active polygalacturonase from Tetracladium sp. Microb Cell Fact 2019; 18:45. [PMID: 30845994 PMCID: PMC6407229 DOI: 10.1186/s12934-019-1092-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023] Open
Abstract
Background Pectinolytic enzymes, which are used in several industries, especially in the clarification process during wine and fruit juice production, represent approximately 10% of the global enzyme market. To prevent the proliferation of undesired microorganisms, to retain labile and volatile flavor compounds, and to save energy, the current trend is to perform this process at low temperatures. However, the commercially available pectinases are highly active at temperatures approximately 50 °C and poorly active at temperatures below 35 °C, which is the reason why there is a constant search for cold-active pectinases. In preliminary studies, pectinolytic activity was detected in cold-adapted yeasts and yeast-like microorganisms isolated from Antarctica. The aim of the present work was to characterize pectinases secreted by these microorganisms and to express the best candidate in Pichia pastoris. Results Degradation of pectin by extracellular protein extracellular extracts obtained from 12 yeast cultures were assayed in plates at 4 °C to 37 °C and pH from 5.4 to 7.0, obtaining positive results in samples obtained from Dioszegia sp., Phenoliferia glacialis and Tetracladium sp. An enzyme was purified from Tetracladium sp., analyzed by peptide mass fingerprinting and compared to genome and transcriptome data from the same microorganism. Thus, the encoding gene was identified corresponding to a polygalacturonase-encoding gene. The enzyme was expressed in Pichia pastoris, and the recombinant polygalacturonase displayed higher activity at 15 °C than a mesophilic counterpart. Conclusions Extracellular pectinase activity was found in three yeast and yeast-like microorganisms from which the highest activity was displayed by Tetracladium sp., and the enzyme was identified as a polygalacturonase. The recombinant polygalacturonase produced in P. pastoris showed high activity at 15 °C, representing an attractive candidate to be applied in clarification processes in the production of fermented beverages and fruit juices. Electronic supplementary material The online version of this article (10.1186/s12934-019-1092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
120
|
Pandey A, Jain R, Sharma A, Dhakar K, Kaira GS, Rahi P, Dhyani A, Pandey N, Adhikari P, Shouche YS. 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0273-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
121
|
Chua MJ, Campen RL, Wahl L, Grzymski JJ, Mikucki JA. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. nov., a psychrophilic, moderate halophile from Blood Falls, an antarctic subglacial brine. FEMS Microbiol Ecol 2019; 94:4850642. [PMID: 29444218 DOI: 10.1093/femsec/fiy021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/08/2018] [Indexed: 11/12/2022] Open
Abstract
Antarctic subice environments are diverse, underexplored microbial habitats. Here, we describe the ecophysiology and annotated genome of a Marinobacter strain isolated from a cold, saline, iron-rich subglacial outflow of the Taylor Glacier, Antarctica. This strain (BF04_CF4) grows fastest at neutral pH (range 6-10), is psychrophilic (range: 0°C-20°C), moderately halophilic (range: 0.8%-15% NaCl) and hosts genes encoding potential low temperature and high salt adaptations. The predicted proteome suggests it utilizes fewer charged amino acids than a mesophilic Marinobacter strain. BF04_CF4 has increased concentrations of membrane unsaturated fatty acids including palmitoleic (33%) and oleic (27.5%) acids that may help maintain cell membrane fluidity at low temperatures. The genome encodes proteins for compatible solute biosynthesis and transport, which are known to be important for growth in saline environments. Physiological verification of predicted metabolic functions demonstrate BF04_CF4 is capable of denitrification and may facilitate iron oxidation. Our data indicate that strain BF04_CF4 represents a new Marinobacter species, Marinobacter gelidimuriae sp. nov., that appears well suited for the subglacial environment it was isolated from. Marinobacter species have been isolated from other cold, saline environments in the McMurdo Dry Valleys and permanently cold environments globally suggesting that this lineage is cosmopolitan and ecologically relevant in icy brines.
Collapse
Affiliation(s)
- Michelle J Chua
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard L Campen
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Lindsay Wahl
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Jill A Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
122
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
123
|
He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q. Novel Histidine Kinase Gene HisK2301 from Rhodosporidium kratochvilovae Contributes to Cold Adaption by Promoting Biosynthesis of Polyunsaturated Fatty Acids and Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:653-660. [PMID: 30558417 DOI: 10.1021/acs.jafc.8b04859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid histidine kinase (HHKs) are widespread in fungi, but their roles in the regulation of fungal adaptation to environmental stresses remain largely unclear. To elucidate this, we cloned HisK2301 from Rhodosporidium kratochvilovae strain YM25235, characterized HisK2301 as a novel HHK, and further investigated the role of HisK2301 by overexpressing it in YM25235. Our results revealed that HisK2301 can promote adaptation of YM25235 to cold, osmotic, and salt stresses. During cold stress, HisK2301 significantly enhanced the biosynthesis of polyunsaturated fatty acids (PUFA) and intracellular glycerol. HisK2301 also augmented the expression levels of Δ12/Δ15 fatty acid desaturase ( RKD12) and glycerol-3-phosphate dehydrogenase1 ( GPD1), which are responsible for PUFA and glycerol biosynthesis, respectively. To conclude, our findings give the first insight into the defense and mechanisms of HisK2301 in fungi against cold stress and suggest the potential use of the novel cold-adapted HHK HisK2301 in industrial processes, such as large-scale production of PUFA.
Collapse
Affiliation(s)
- Jing He
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
- Genetic Diagnosis Center, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases , The First People's Hospital of Yunnan Province , Kunming , Yunnan 650032 , PR China
| | - Zhicheng Cui
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Xiuling Ji
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yiyong Luo
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Qi Zhang
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| |
Collapse
|
124
|
Lo Giudice A, Azzaro M, Schiaparelli S. Microbial Symbionts of Antarctic Marine Benthic Invertebrates. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
125
|
Belov AA, Cheptsov VS, Vorobyova EA. Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. AIMS Microbiol 2018; 4:685-710. [PMID: 31294242 PMCID: PMC6613332 DOI: 10.3934/microbiol.2018.4.685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
The purpose of this research was to investigate the structure of soil bacteria communities present in the Gibson (Australia) and the Sahara (Egypt) deserts, as well as to estimate strain survivability under different environmental factors. It should be noticed that the screening of bacterial resistance to wide spectra of principally different stress conditions was performed for the first time. Experiments were conducted with culturable bacterial communities. Strains were identified using 16S rRNA sequencing, and stress-tolerance was estimated by growing strains in various nutrient media. In order to characterize the community the epifluorescent microscopy and multisubstrate testing were also performed. High bacterial abundance in the desert soils was detected, and there was seen a significant proportion of culturable cells. The close numbers of psychotropic and mesophilic bacteria in arid ecosystems were revealed. The representatives of the Actinobacteria phylum were dominant in the microbial communities, and Firmicutes, Proteobacteria, and Bacteroidetes phyla representatives were also identified. Tolerance of the axenic bacterial cultures, isolated from arid desert ecotopes, to temperature, pH, salts (KCl, NaCl, MgSO4, NaHCO3), strong oxidizers (Mg(ClO4)2), and antibiotics (ampicillin, cephalexin, chloramphenicol, tetracycline, doxycycline, kanamycin, rifampicin) was studied. The bacterial isolates were characterized by polyextremotolerance and by the ability to maintain metabolic activity in vitro while influenced by a wide range of physicochemical and biotic factors.
Collapse
Affiliation(s)
- Andrey A. Belov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir S. Cheptsov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Vorobyova
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
126
|
Bosmans L, Pozo MI, Verreth C, Crauwels S, Wäckers F, Jacquemyn H, Lievens B. Hibernation Leads to Altered Gut Communities in Bumblebee Queens ( Bombus terrestris). INSECTS 2018; 9:insects9040188. [PMID: 30544592 PMCID: PMC6316087 DOI: 10.3390/insects9040188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
Many reptiles, amphibians, mammals, and insects practice some form of hibernation during which their metabolic rate is drastically reduced. This allows them to conserve energy and survive the harsh winter conditions with little or no food. While it can be expected that a reduction in host metabolism has a substantial influence on the gut microbial community, little is known about the effects of hibernation on the composition of the microbial gut community, especially for insects. In this study, we assessed and compared the bacterial gut community composition within the midgut and ileum of indoor-reared queens of Bombus terrestris before and after an artificial hibernation period of 16 weeks. Deep sequencing of 16S ribosomal RNA gene amplicons and clustering of sequence reads into operational taxonomic units (OTUs) at a similarity threshold of 97% revealed several bacterial taxa that are known to be strongly associated with corbiculate bees. Bacterial community composition after hibernation compared to before hibernation was characterized by higher OTU richness and evenness, with decreased levels of the core bacteria Gilliamella (Proteobacteria, Orbaceae) and Snodgrassella (Proteobacteria, Neisseriaceae), and increased relative abundance of non-core bacteria, including several psychrophilic and psychrotrophic taxa.
Collapse
Affiliation(s)
- Lien Bosmans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium.
| | - María I Pozo
- Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001 Heverlee, Belgium.
| | - Christel Verreth
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Felix Wäckers
- Biobest Group, B-2260 Westerlo, Belgium.
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001 Heverlee, Belgium.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
127
|
Sun W, Li W, Ji X, Li H, Qin K, Wei Y. Cold-Adapted Bacterial Diversity in Mingyong Glacier based on Combination Analysis of Fatty Acids and 16S rRNA Gene Sequence. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
128
|
Pischedda A, Ramasamy KP, Mangiagalli M, Chiappori F, Milanesi L, Miceli C, Pucciarelli S, Lotti M. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep 2018; 8:14721. [PMID: 30283056 PMCID: PMC6170424 DOI: 10.1038/s41598-018-33127-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is a particularly severe threat to Antarctic marine polar organisms because they are exposed to high dissolved oxygen and to intense UV radiation. This paper reports the features of three superoxide dismutases from the Antarctic psychrophilic ciliate Euplotes focardii that faces two environmental challenges, oxidative stress and low temperature. Two out of these are Cu,Zn superoxide dismutases (named Ef-SOD1a and Ef-SOD1b) and one belongs to the Mn-containing group (Ef-SOD2). Ef-SOD1s and Ef-SOD2 differ in their evolutionary history, expression and overall structural features. Ef-SOD1 genes are expressed at different levels, with Ef-SOD1b mRNA 20-fold higher at the ciliate optimal temperature of growth (4 °C). All Ef-SOD enzymes are active at 4 °C, consistent with the definition of cold-adapted enzymes. At the same time, they display temperatures of melting in the range 50-70 °C and retain residual activity after incubation at 65-75 °C. Supported by data of molecular dynamics simulation, we conclude that the E. focardii SODs combine cold activity, local molecular flexibility and thermo tolerance.
Collapse
Affiliation(s)
- Alessandro Pischedda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Kesava Priyan Ramasamy
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | | | | | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| |
Collapse
|
129
|
Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol 2018; 94:5017441. [PMID: 30032189 DOI: 10.1093/femsec/fiy099] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
Climate change has a disproportionally large impact on alpine soil ecosystems, leading to pronounced changes in soil microbial diversity and function associated with effects on biogeochemical processes at the local and supraregional scales. However, due to restricted accessibility, high-altitude soils remain largely understudied and a considerable heterogeneity hampers the comparability of different alpine studies. Here, we highlight differences and similarities between alpine and arctic ecosystems, and we discuss the impact of climatic variables and associated vegetation and soil properties on microbial ecology. We consider how microbial alpha-diversity, community structures and function change along altitudinal gradients and with other topographic features such as slope aspect. In addition, we focus on alpine permafrost soils, harboring a surprisingly large unknown microbial diversity and on microbial succession along glacier forefield chronosequences constituting the most thoroughly studied alpine habitat. Finally, highlighting experimental approaches, we present climate change studies showing shifts in microbial community structures and function in response to warming and altered moisture, interestingly with some contradiction. Collectively, despite harsh environmental conditions, many specially adapted microorganisms are able to thrive in alpine environments. Their community structures strongly correlate with climatic, vegetation and soil properties and thus closely mirror the complexity and small-scale heterogeneity of alpine soils.
Collapse
Affiliation(s)
| | - Beat Frey
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
130
|
Abstract
Screening of 1,000-years old ice layers from the perennial ice block of Scărișoara Ice Cave (NW Romania) revealed the presence of fungal communities. Using culture-dependent methods and molecular techniques based on DGGE fingerprinting of 18S rRNA gene fragments and sequencing, we identified 50 cultured and 14 uncultured fungi in presently-forming, 400 and 900 years old ice layers, corresponding to 28 distinct operational taxonomic units (OTUs). The dominant ice-contained fungal OTUs were related to Ascomycota, Basidiomycota and Cryptomycota phyla. Representatives of Mucoromycota and Chytridiomycota were also isolated from recent and 400 years old ice samples. The cryophilic Mrakia stokesii was the most abundant fungal species found in the cave ice samples of all prospected ages, alongside other cryophilic fungi also identified in various glacial environments. Ice deposits formed during the Little Ice Age (dated between AD 1,250 and 1,850) appeared to have a higher fungal diversity than the ice layer formed during the Medieval Warm Period (prior to AD 1,250). A more complex fungal community adapted to low temperatures was obtained from all analyzed ice layers when cultivated at 4 °C as compared to 15 °C, suggesting the dominance of cold-adapted fungi in this glacial habitat. The fungal distribution in the analyzed cave ice layers revealed the presence of unique OTUs in different aged-formed ice deposits, as a first hint for putative further identification of fungal biomarkers for climate variations in this icy habitat. This is the first report on fungi from a rock-hosted cave ice block.
Collapse
|
131
|
Pandey A, Dhakar K, Jain R, Pandey N, Gupta VK, Kooliyottil R, Dhyani A, Malviya MK, Adhikari P. Cold Adapted Fungi from Indian Himalaya: Untapped Source for Bioprospecting. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40011-018-1002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
132
|
Monteux S, Weedon JT, Blume-Werry G, Gavazov K, Jassey VEJ, Johansson M, Keuper F, Olid C, Dorrepaal E. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME JOURNAL 2018; 12:2129-2141. [PMID: 29875436 PMCID: PMC6092332 DOI: 10.1038/s41396-018-0176-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 12/05/2022]
Abstract
The decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS, possibly as a result of colonization by overlying microorganisms. Overall, respiration rates decreased with depth and soils showed lower potential respiration when subjected to deeper thaw, which we attributed to gradual labile carbon pool depletion. Despite deeper rooting under induced deep thaw, root density measurements did not improve soil chemistry-based models of potential respiration. However, BCS explained an additional unique portion of variation in respiration, particularly when accounting for differences in organic matter content. Our results suggest that by measuring bacterial community composition, we can improve both our understanding and the modeling of the permafrost carbon feedback.
Collapse
Affiliation(s)
- Sylvain Monteux
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Sciences, Umeå Universitet, 981 07, Abisko, Sweden.
| | - James T Weedon
- Systems Ecology, Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.,PLECO, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Gesche Blume-Werry
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Sciences, Umeå Universitet, 981 07, Abisko, Sweden
| | - Konstantin Gavazov
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Sciences, Umeå Universitet, 981 07, Abisko, Sweden.,Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Vincent E J Jassey
- Functional Ecology and Environment Laboratory (ECOLAB), Department of Biology and Geosciences, UMR 6245 Université Toulouse III Paul Sabatier, 31062, Toulouse cedex 09, France
| | - Margareta Johansson
- Department of Physical Geography and Ecosystem Science, Lund Universitet, 223 62, Lund, Sweden
| | - Frida Keuper
- INRA, AgroImpact UR1158, Site Laon, 02000, Barenton Bugny, France
| | - Carolina Olid
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Sciences, Umeå Universitet, 981 07, Abisko, Sweden
| | - Ellen Dorrepaal
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Sciences, Umeå Universitet, 981 07, Abisko, Sweden
| |
Collapse
|
133
|
Turchetti B, Selbmann L, Gunde-Cimerman N, Buzzini P, Sampaio JP, Zalar P. Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov. from European Cold Environments and Arctic Region. Life (Basel) 2018; 8:life8020009. [PMID: 29734727 PMCID: PMC6027198 DOI: 10.3390/life8020009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
Over 80% of the Earth’s environments are permanently or periodically exposed to temperatures below 5 °C. Cold habitats harbour a wide diversity of psychrophilic and psychrotolerant yeasts. During ecological studies of yeast communities carried out in cold ecosystem in the Italian Alps, Svalbard (Norway, Arctic region), and Portugal, 23 yeast strains that could not be assigned to any known fungal taxa were isolated. In particular, two of them were first identified as Rhodotorula sp., showing the highest degree of D1/D2 sequence identity with Cystobasidum laryngis accounted to only 97% with the type strain (C. laryngis CBS 2221). The other 21 strains, exhibiting identical D1/D2 sequences, had low identity (97%) with Rhodosporidiobolus lusitaniae and Rhodosporidiobolus colostri. Similarly, ITS sequences of the type strains of the most closely related species (93⁻94%). In a 2-genes multilocus D1/D2 and ITS ML phylogenetic tree, the studied strains pooled in two well separated and supported groups. In order to classify the new 23 isolates based on phylogenetic evidences, we propose the description of two novel species Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov.
Collapse
Affiliation(s)
- Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, 06121 Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, 06121 Perugia, Italy.
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
134
|
A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep 2018; 8:6582. [PMID: 29700429 PMCID: PMC5919928 DOI: 10.1038/s41598-018-25079-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/11/2018] [Indexed: 02/03/2023] Open
Abstract
Brines are hypersaline solutions which have been found within the Antarctic permafrost from the Tarn Flat area (Northern Victoria Land). Here, an investigation on the possible presence and diversity of fungal life within those peculiar ecosystems has been carried out for the first time. Brines samples were collected at 4- and 5-meter depths (TF1 and TF2, respectively), from two brines separated by a thin ice layer. The samples were analyzed via Illumina MiSeq targeting the ITS region specific for both yeasts and filamentous fungi. An unexpected high alpha diversity was found. Beta diversity analysis revealed that the two brines were inhabited by two phylogenetically diverse fungal communities (Unifrac value: 0.56, p value < 0.01; Martin’s P-test p-value < 0.001) characterized by several specialist taxa. The most abundant fungal genera were Candida sp., Leucosporidium sp., Naganishia sp. and Sporobolomyces sp. in TF1, and Leucosporidium sp., Malassezia sp., Naganishia sp. and Sporobolomyces sp. in TF2. A few hypotheses on such differentiation have been done: i) the different chemical and physical composition of the brines; ii) the presence in situ of a thin layer of ice, acting as a physical barrier; and iii) the diverse geological origin of the brines.
Collapse
|
135
|
Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, Liu M, Bu R. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep 2018; 8:5619. [PMID: 29618759 PMCID: PMC5884794 DOI: 10.1038/s41598-018-24040-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
In the permafrost region of northeastern China, vegetation and soil environment have showed response to permafrost degradation triggered by global warming, but the corresponding variation of the soil microbial communities remains poorly investigated. Here, a field investigation in the continuous permafrost region was conducted to collect 63 soil samples from 21 sites along a latitudinal gradient to assess the distribution pattern of microbial communities and their correlation with environmental factors. High-throughput Illumina sequencing revealed that bacterial communities were dominated by Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria. Both microbial richness and phylogenetic diversity decreased initially and then increased as the latitude increased. UniFrac analysis of microbial communities detected significant differences among latitudes. Variation partitioning analysis and structural equation models revealed that environmental variables, including geographic factors, plant-community factors and soil physicochemical factors, all played non-negligible roles in affecting the microbial community structures directly or indirectly. Redundancy analysis and boosted regression tree analysis further highlighted the influences of soil pH and plant richness on microbial community compositions and diversity patterns. Taken together, these results suggest that the distribution pattern of soil microbial communities shows distinct changes along the latitudinal gradients in northeastern China and is predominantly mediated by soil pH and plant diversity.
Collapse
Affiliation(s)
- Baihui Ren
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany
| | - Yuanman Hu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China
| | - Baodong Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ying Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China
| | - Jan Thiele
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany
| | - Rongjiu Shi
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China
| | - Miao Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China
| | - Rencang Bu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang Liaoning, 110016, China.
| |
Collapse
|
136
|
Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 2018. [DOI: 10.1007/s00300-018-2300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
137
|
Abstract
It is well known that cold environments are predominant over the Earth and there are a great number of reports analyzing bacterial adaptations to cold. Most of these works are focused on characteristics traditionally involved in cold adaptation, such as the structural adjustment of enzymes, maintenance of membrane fluidity, expression of cold shock proteins and presence of compatible solutes. Recent works based mainly on novel "omic" technologies have presented evidence of the presence of other important features to thrive in cold. In this work, we analyze cold-adapted bacteria, looking for strategies involving novel features, and/or activation of non-classical metabolisms for a cold lifestyle. Metabolic traits related to energy generation, compounds and mechanisms involved in stress resistance and cold adaptation, as well as characteristics of the cell envelope, are analyzed in heterotrophic cold-adapted bacteria. In addition, metagenomic, metatranscriptomic and metaproteomic data are used to detect key functions in bacterial communities inhabiting cold environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
138
|
Sapers HM, Ronholm J, Raymond-Bouchard I, Comrey R, Osinski GR, Whyte LG. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog. Front Microbiol 2017; 8:2527. [PMID: 29312221 PMCID: PMC5744183 DOI: 10.3389/fmicb.2017.02527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.
Collapse
Affiliation(s)
- Haley M. Sapers
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | | | - Raven Comrey
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Gordon R. Osinski
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada
| | - Lyle G. Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
139
|
Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa Junior A, Durães Sette L. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 2017; 38:600-619. [PMID: 29228814 DOI: 10.1080/07388551.2017.1379468] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.
Collapse
Affiliation(s)
- Alysson Wagner Fernandes Duarte
- a Universidade Federal de Alagoas, Campus Arapiraca , Arapiraca , Brazil.,b Divisão de Recursos Microbianos , Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , Paulínia , Brazil
| | - Juliana Aparecida Dos Santos
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Marina Vitti Vianna
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Juliana Maíra Freitas Vieira
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Vitor Hugo Mallagutti
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fabio José Inforsato
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Lia Costa Pinto Wentzel
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Luciana Daniela Lario
- d Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario , Rosario , Argentina.,e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Andre Rodrigues
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fernando Carlos Pagnocca
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Adalberto Pessoa Junior
- e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Lara Durães Sette
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| |
Collapse
|
140
|
Moon S, Kim J, Bae E. Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes. Sci Rep 2017; 7:16027. [PMID: 29167503 PMCID: PMC5700098 DOI: 10.1038/s41598-017-16266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Psychrophiles are extremophilic organisms capable of thriving in cold environments. Proteins from these cold-adapted organisms can remain physiologically functional at low temperatures, but are structurally unstable even at moderate temperatures. Here, we report the crystal structure of adenylate kinase (AK) from the Antarctic fish Notothenia coriiceps, and identify the structural basis of cold adaptation by comparison with homologues from tropical fishes including Danio rerio. The structure of N. coriiceps AK (AKNc) revealed suboptimal hydrophobic packing around three Val residues in its central CORE domain, which are replaced with Ile residues in D. rerio AK (AKDr). The Val-to-Ile mutations that improve hydrophobic CORE packing in AKNc increased stability at high temperatures but decreased activity at low temperatures, suggesting that the suboptimal hydrophobic CORE packing is important for cold adaptation. Such linkage between stability and activity was also observed in AKDr. Ile-to-Val mutations that destabilized the tropical AK resulted in increased activity at low temperatures. Our results provide the structural basis of cold adaptation of a psychrophilic enzyme from a multicellular, eukaryotic organism, and highlight the similarities and differences in the structural adjustment of vertebrate and bacterial psychrophilic AKs during cold adaptation.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- iNtRON Biotechnology, Inc., Seongnam, 13202, Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
141
|
Baeza M, Barahona S, Alcaíno J, Cifuentes V. Amplicon-Metagenomic Analysis of Fungi from Antarctic Terrestrial Habitats. Front Microbiol 2017; 8:2235. [PMID: 29184546 PMCID: PMC5694453 DOI: 10.3389/fmicb.2017.02235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
In cold environments such as polar regions, microorganisms play important ecological roles, and most of our knowledge about them comes from studies of cultivable microorganisms. Metagenomic technologies are powerful tools that can give a more comprehensive assessment of microbial communities, and the amplification of rDNA followed by next-generation sequencing has given good results in studies aimed particularly at environmental microorganisms. Culture-independent studies of microbiota in terrestrial habitats of Antarctica, which is considered the driest, coldest climate on Earth, are increasing and indicate that micro-diversity is much higher than previously thought. In this work, the microbial diversity of terrestrial habitats including eight islands of the South Shetland Archipelago, two islands on the Antarctic Peninsula and Union Glacier, was studied by amplicon-metagenome analysis. Molecular analysis of the studied localities clustered together the islands of the South Shetland Archipelago, except Greenwich Island, and separated them from the Litchfield and Lagotellerie islands and Union Glacier, which is in agreement with the latitudinal difference among them. Among fungi, 87 genera and 123 species were found, of which species belonging to 37 fungal genera not previously cultivated from Antarctica were detected. Phylogenetic analysis, including the closest BLAST-hit sequences, clustered fungi in 11 classes being the most represented Lecanoromycetes and Eurotiomycetes.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
142
|
Zhao Y, Song C, Dong H, Luo Y, Wei Y, Gao J, Wu Q, Huang Y, An L, Sheng H. Community structure and distribution of culturable bacteria in soil along an altitudinal gradient of Tianshan Mountains, China. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1396195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanting Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Chunli Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongqiang Dong
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Sciences, Tarim University, Alare Xinjiang, PR China
| | - Yang Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yali Wei
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jiangli Gao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Qianqian Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yaolong Huang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongmei Sheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
143
|
Shen L, Liu Y, Wang N, Jiao N, Xu B, Liu X. Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier, Tibetan Plateau. Extremophiles 2017; 22:29-38. [PMID: 29071425 DOI: 10.1007/s00792-017-0973-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
It has been suggested that the cryosphere is a new biome uniquely dominated by microorganisms, although the ecological characteristics of these cold-adapted bacteria are not well understood. We investigated the vertical variation with depth of the proportion of pigmented bacteria recovered from an ice core drilled in the Yuzhufeng Glacier, Tibetan Plateau. A total of 25,449 colonies were obtained from 1250 ice core sections. Colonies grew on only one-third of the inoculated Petri dishes, indicating that although the ice core harbored abundant culturable bacteria, bacteria could not be isolated from every section. Four phyla and 19 genera were obtained; Proteobacteria formed the dominant cluster, followed by Actinobacteria, Bacteroidetes and Firmicutes. The proportion of pigmented bacteria increased with depth from 79 to 95% and yellow-colored colonies predominated throughout the ice core, making up 47% of all the colonies. Pigments including α- and β-carotene, diatoxanthin, peridinin, zea/lutein, butanoyloxy, fucoxanthin and fucoxanthin were detected in representative colonies with α-carotene being the dominant carotenoid. To the best of our knowledge, this is the highest resolution study of culturable bacteria in a deep ice core reported to date.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,Shanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Xiaobo Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Kathmandu Center for Research and Education, CAS-TU, Beijing, China
| |
Collapse
|
144
|
Yin H, Wang Y, He Y, Xing L, Zhang X, Wang S, Qi X, Zheng Z, Lu J, Miao J. Cloning and expression analysis of tps, and cryopreservation research of trehalose from Antarctic strain Pseudozyma sp. 3 Biotech 2017; 7:343. [PMID: 28955640 PMCID: PMC5610133 DOI: 10.1007/s13205-017-0983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022] Open
Abstract
Trehalose is a non-reducing disaccharide sugar that widely exists in a variety of organisms, such as bacteria and eukaryotes except the vertebrates. It plays an important role in a number of critical metabolic functions especially in response to stressful environmental conditions. However, the biosynthetic pathways of trehalose in cold-adapted yeast and its responses to temperature and salinity changes remain little understood. In this study, the genome of Antarctic-isolated Pseudozyma sp. NJ7 was generated from which we identified the gene coding for trehalose phosphate synthase (TPS1) and trehalose phosphate phosphatase (TPS2), the two enzymes most critical for trehalose production. The whole draft genome length of Pseudozyma sp. NJ7 was 18,021,233 bp, and encoded at least 34 rRNA operons and 72 tRNAs. The open reading frame of tps1 contained 1827 nucleotide encoding 608 amino acids with a molecular weight of 67.64 kDa, and an isoelectric point of 5.54, while tps2 contained 3948 nucleotide encoding 1315 amino acids with a molecular weight of 144.47 kDa and an isoelectric point of 6.36. The TPS1 and TPS2 protein sequences were highly homologous to Moesziomyces antarcticus T-34, but TPS2 had obvious specificity and differently with others which suggest species specificity and different evolutionary history. Expression level of tps1 gene was strongly influenced by temperature and high salinity. In addition, addition of 0.5% trehalose preserved yeast cells in the short term but was not effective for cryopreservation for more than 5 days, but still suggesting that exogenous trehalose could indeed significantly improve the survival of yeast cells under freezing conditions. Our results provided new insights on the molecular basis of cold adaptations of Antarctic Pseudozyma sp., and also generated new information on the roles trehalose play in yeast tolerance to extreme conditions in the extreme Antarctic environments.
Collapse
Affiliation(s)
- Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266061 China
| | - Yibin Wang
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| | - Yingying He
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
| | - Lei Xing
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266061 China
| | - Xiufang Zhang
- Clinical Laboratory, Qingdao Hiser Medical Center, Qingdao, 266033 China
| | - Shuai Wang
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Marine and Fisheries Monitoring Center of Sanya, Sanya, 572000 China
| | - Xiaoqing Qi
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
| | - Zhou Zheng
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Jinlai Miao
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| |
Collapse
|
145
|
Wang M, Tian J, Xiang M, Liu X. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 2017; 8:178-188. [PMID: 30123638 PMCID: PMC6059074 DOI: 10.1080/21501203.2017.1370429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Our planet is dominant with cold environments that harbour enormously diverse cold-adapted fungi comprising representatives of all phyla. Investigation based on culture-dependent and independent methods has demonstrated that cold-adapted fungi are cosmopolitan and occur in diverse habitants and substrates. They live as saprobes, symbionts, plant and animal parasites and pathogens to perform crucial functions in different ecosystems. Pseudogymnoascus destructans caused bat white-nose syndrome and Ophiocordyceps sinensis as Chinese medicine are the representative species that have significantly ecological and economic significance. Adaptation to cold niches has made this group of fungi a fascinating resource for the discovery of novel enzymes and secondary metabolites for biotechnological and pharmaceutical uses. This review provides the current understanding of living strategy and ecological functions of cold-adapted fungi, with particular emphasis on how those fungi overcome the extreme low temperature and perform their ecological function.
Collapse
Affiliation(s)
- Manman Wang
- College of Life Science, Hebei University, Baoding, China
| | - Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
146
|
Dong J, Gasmalla MAA, Zhao W, Sun J, Liu W, Wang M, Han L, Yang R. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas
sp. strain. Biotechnol Appl Biochem 2017; 64:686-699. [DOI: 10.1002/bab.1525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/03/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Dong
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- College of Food Science and Engineering; Shihezi University; Shihezi Xinjiang People's Republic of China
| | - Mohammed A. A. Gasmalla
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Jingtao Sun
- College of Food Science and Engineering; Shihezi University; Shihezi Xinjiang People's Republic of China
| | - Wenyu Liu
- Xinjiang Shihezi Vocational Technical College; Shihezi Xinjiang People's Republic of China
| | - Mingming Wang
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Liang Han
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| |
Collapse
|
147
|
Casillo A, Ziaco M, Lindner B, Parrilli E, Schwudke D, Holgado A, Verstrepen L, Sannino F, Beyaert R, Lanzetta R, Tutino ML, Corsaro MM. Unusual Lipid A from a Cold-Adapted Bacterium: Detailed Structural Characterization. Chembiochem 2017. [PMID: 28650563 DOI: 10.1002/cbic.201700287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis. An unusual structure with a 3-hydroxy unsaturated tetradecenoic acid as a component of the primary acylation pattern was identified. In addition, the presence of a partially acylated phosphoglycerol moiety on the secondary acylation site at the 3-position of the reducing 2-amino-2-deoxyglucopyranose unit caused tremendous natural heterogeneity in the structure of lipid A. Biological-activity assays indicated that C. psychrerythraea 34H lipid A did not show an agonistic or antagonistic effect upon testing in human macrophages.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Marcello Ziaco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Lynn Verstrepen
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Filomena Sannino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
148
|
Cantine MD, Fournier GP. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. ORIGINS LIFE EVOL B 2017; 48:35-54. [PMID: 28685374 DOI: 10.1007/s11084-017-9542-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.
Collapse
Affiliation(s)
- Marjorie D Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
149
|
Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA. Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier. Front Microbiol 2017; 8:1105. [PMID: 28663747 PMCID: PMC5471330 DOI: 10.3389/fmicb.2017.01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Martin A. Fischer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbHNeuherberg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
150
|
Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS One 2017; 12:e0178968. [PMID: 28617823 PMCID: PMC5472292 DOI: 10.1371/journal.pone.0178968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/21/2017] [Indexed: 11/22/2022] Open
Abstract
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
Collapse
Affiliation(s)
- Michael B. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Amanda H. Freiborg
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine E. Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|