101
|
Farber PL, Isoldi FC, Ferreira LM. Electric Factors in Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:461-476. [PMID: 32870772 DOI: 10.1089/wound.2019.1114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Significance: Electric factors such as electric charges, electrodynamic field, skin battery, and interstitial exclusion permeate wound healing physiology and physiopathology from injury to re-epithelialization. The understanding of how electric factors contribute to wound healing and how treatments may interfere with them is fundamental for the development of better strategies for the management of pathological scarring and chronic wounds. Recent Advances: Angiogenesis, cell migration, macrophage activation hemorheology, and microcirculation can interfere and be interfered with electric factors. New treatments with various types of electric currents, laser, light emitting diode, acupuncture, and weak electric fields applied directly on the wound have been developed to improve wound healing. Critical Issues: Despite the basic and clinical development, pathological scars such as keloids and chronic wounds are still a challenge. Future Directions: New treatments can be developed to improve skin wound healing taking into account the influence of electrical charges. Monitoring electrical activity during skin healing and the influence of treatments on hemorheology and microcirculation are examples of how to use knowledge of electrical factors to increase their effectiveness.
Collapse
Affiliation(s)
| | - Felipe Contoli Isoldi
- Surgery Department, Plastic Surgery Division, Postgraduated Program in Translational Surgery, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Lydia Masako Ferreira
- Surgery Department, Plastic Surgery Division, Postgraduated Program in Translational Surgery, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| |
Collapse
|
102
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
103
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
104
|
Luo R, Dai J, Zhang J, Li Z. Accelerated Skin Wound Healing by Electrical Stimulation. Adv Healthc Mater 2021; 10:e2100557. [PMID: 33945225 DOI: 10.1002/adhm.202100557] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Indexed: 01/28/2023]
Abstract
When the integrity of the skin got damaged, an endogenous electric field will be generated in the wound and a series of physiological reactions will be initiated to close the wound. The existence of the endogenous electric field of the wound has a promoting effect on all stages of wound healing. For wounds that cannot heal on their own, the exogenous electric field can assist the treatment. In this review, the effects of exogenous electrical stimulation on wound healing, such as the inflammation phase, blood flow, cell proliferation and migration, and the wound scarring is overviewed. This article also reviews the new electrical stimulation methods that have emerged in recent years, such as small power supplies, nanogenerators (NGs), and other physical, chemical or biological strategies. These new electrical stimulation methods and devices are safe, low-cost, stable, and small in size. The challenge and perspective are discussed for the future trends of the electrical stimulation treatment in accelerating skin wound healing.
Collapse
Affiliation(s)
- Ruizeng Luo
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
| | - Jieyu Dai
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
| | - Jiaping Zhang
- Department of Plastic Surgery State Key Laboratory of Trauma, Burns and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Zhou Li
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro–Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
105
|
Shim G, Devenport D, Cohen DJ. Overriding native cell coordination enhances external programming of collective cell migration. Proc Natl Acad Sci U S A 2021; 118:e2101352118. [PMID: 34272284 PMCID: PMC8307614 DOI: 10.1073/pnas.2101352118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
106
|
Mateus R, Fuhrmann JF, Dye NA. Growth across scales: Dynamic signaling impacts tissue size and shape. Curr Opin Cell Biol 2021; 73:50-57. [PMID: 34182209 DOI: 10.1016/j.ceb.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
Organ and tissue growth result from an integration of biophysical communication across biological scales, both in time and space. In this review, we highlight new insight into the dynamic connections between control mechanisms operating at different length scales. First, we consider how the dynamics of chemical and electrical signaling in the shape of gradients or waves affect spatiotemporal signal interpretation. Then, we discuss the mechanics underlying dynamic cell behavior during oriented tissue growth, followed by the connections between signaling at the tissue and organismal levels.
Collapse
Affiliation(s)
- Rita Mateus
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jana F Fuhrmann
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Natalie A Dye
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany; Mildred Scheel Nachwuchszentrum (MSNZ) P2, Medical Faculty, Technische Universität Dresden, Germany.
| |
Collapse
|
107
|
Rajendran SB, Challen K, Wright KL, Hardy JG. Electrical Stimulation to Enhance Wound Healing. J Funct Biomater 2021; 12:40. [PMID: 34205317 PMCID: PMC8293212 DOI: 10.3390/jfb12020040] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical stimulation (ES) can serve as a therapeutic modality accelerating the healing of wounds, particularly chronic wounds which have impaired healing due to complications from underlying pathology. This review explores how ES affects the cellular mechanisms of wound healing, and its effectiveness in treating acute and chronic wounds. Literature searches with no publication date restrictions were conducted using the Cochrane Library, Medline, Web of Science, Google Scholar and PubMed databases, and 30 full-text articles met the inclusion criteria. In vitro and in vivo experiments investigating the effect of ES on the general mechanisms of healing demonstrated increased epithelialization, fibroblast migration, and vascularity around wounds. Six in vitro studies demonstrated bactericidal effects upon exposure to alternating and pulsed current. Twelve randomized controlled trials (RCTs) investigated the effect of pulsed current on chronic wound healing. All reviewed RCTs demonstrated a larger reduction in wound size and increased healing rate when compared to control groups. In conclusion, ES therapy can contribute to improved chronic wound healing and potentially reduce the financial burden associated with wound management. However, the variations in the wound characteristics, patient demographics, and ES parameters used across studies present opportunities for systematic RCT studies in the future.
Collapse
Affiliation(s)
- Saranya B. Rajendran
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire LA1 4AT, UK;
| | - Kirsty Challen
- Emergency Department, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston, Lancashire PR2 9HT, UK;
| | - Karen L. Wright
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire LA1 4YG, UK
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| |
Collapse
|
108
|
SIROF stabilized PEDOT/PSS allows biocompatible and reversible direct current stimulation capable of driving electrotaxis in cells. Biomaterials 2021; 275:120949. [PMID: 34153784 DOI: 10.1016/j.biomaterials.2021.120949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Electrotaxis is a naturally occurring phenomenon in which ionic gradients dictate the directed migration of cells involved in different biological processes such as wound healing, embryonic development, or cancer metastasis. To investigate these processes, direct current (DC) has been used to generate electric fields capable of eliciting an electrotactic response in cells. However, the need for metallic electrodes to deliver said currents has hindered electrotaxis research and the application of DC stimulation as medical therapy. This study aimed to investigate the capability of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) on sputtered iridium oxide film (SIROF) electrodes to generate stable direct currents. The electrochemical properties of PEDOT/PSS allow ions to be released and reabsorbed depending on the polarity of the current flow. SIROF stabilized PEDOT/PSS electrodes demonstrated exceptional stability in voltage and current controlled DC stimulation for periods of up to 12 hours. These electrodes were capable of directing cell migration of the rat prostate cancer cell line MAT-LyLu in a microfluidic chamber without the need for chemical buffers. This material combination shows excellent promise for accelerating electrotaxis research and facilitating the translation of DC stimulation to medical applications thanks to its biocompatibility, ionic charge injection mechanisms, and recharging capabilities in a biological environment.
Collapse
|
109
|
Chen Y, Liang Y, Liu J, Yang J, Jia N, Zhu C, Zhang J. Optimizing microenvironment by integrating negative pressure and exogenous electric fields via a flexible porous conductive dressing to accelerate wound healing. Biomater Sci 2021; 9:238-251. [PMID: 33184620 DOI: 10.1039/d0bm01172j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wound healing is a complex and sequential biological process that involves multiple stages. Current treatments for nonhealing or chronic wounds are unsatisfactory as they exert a single effect on one specific activity. Herein, we constructed a silver nanowire (AgNW)-based, three-dimensional (3D), porous foam dressing that is flexible and conductive. This conductive foam dressing was composed of AgNWs modified with a stable hydrophobic coating and porous polyurethane (PU), providing a skeleton to support the 3D conductive networks. The AgNWs-PU foam dressing exhibited favorable biocompatibility, outstanding electrical properties, excellent bending-compression durability, and long-term stability under wet conditions, making it suitable for wound treatment. Via the conductive foam dressing, negative pressure and exogenous wound directional electric fields (EFs) could be integrated for simultaneous implementation, and the artificial jointly constructed microenvironment promoted wound healing in a system. This novel "all-in-one" device presented intrinsic multifunctionality, including the drainage of pus and necrotic tissue, mitigation of inflammation, promotion of cell proliferation, direction of keratinocyte migration, and induction of angiogenesis. An immunohistochemical assay and western blot analysis illustrated that the angiogenesis and cell proliferation pathways in the tissue were significantly activated when this novel therapy was adopted. More importantly, the practical performance of this "all-in-one" device was demonstrated by assessment of full-thickness defect wounds in model pigs. Comparing the percentage of residual wound area after administration of traditional treatment (25.82 ± 3.52%) and the novel treatment (3.07 ± 1.23%) demonstrated the promising applications of this novel treatment in clinical wound healing.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | | | | | | | | | | | | |
Collapse
|
110
|
Long Y, Li J, Yang F, Wang J, Wang X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004023. [PMID: 33898184 PMCID: PMC8061371 DOI: 10.1002/advs.202004023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Indexed: 05/21/2023]
Abstract
Wearable and implantable electroceuticals (WIEs) for therapeutic electrostimulation (ES) have become indispensable medical devices in modern healthcare. In addition to functionality, device miniaturization, conformability, biocompatibility, and/or biodegradability are the main engineering targets for the development and clinical translation of WIEs. Recent innovations are mainly focused on wearable/implantable power sources, advanced conformable electrodes, and efficient ES on targeted organs and tissues. Herein, nanogenerators as a hotspot wearable/implantable energy-harvesting technique suitable for powering WIEs are reviewed. Then, electrodes for comfortable attachment and efficient delivery of electrical signals to targeted tissue/organ are introduced and compared. A few promising application directions of ES are discussed, including heart stimulation, nerve modulation, skin regeneration, muscle activation, and assistance to other therapeutic modalities.
Collapse
Affiliation(s)
- Yin Long
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jun Li
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Fan Yang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jingyu Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Xudong Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| |
Collapse
|
111
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
112
|
Lv H, Liu J, Zhen C, Wang Y, Wei Y, Ren W, Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif 2021; 54:e12982. [PMID: 33554390 PMCID: PMC7941227 DOI: 10.1111/cpr.12982] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair and even amputation. Wound management in people with diabetes is an extremely clinical and social concern. Nowadays, physical interventions gain much attention and have been widely developed in the fields of tissue regeneration and wound healing. Magnetic fields (MFs)-based devices are translated into clinical practice for the treatment of bone diseases and neurodegenerative disorder. This review attempts to give insight into the mechanisms and applications of MFs in wound care, especially in improving the healing outcomes of diabetic wounds. First, we discuss the pathological conditions associated with chronic diabetic wounds. Next, the mechanisms involved in MFs' effects on wounds are explored. At last, studies and reports regarding the effects of MFs on diabetic wounds from both animal experiments and clinical trials are reviewed. MFs exhibit great potential in promoting wound healing and have been practised in the management of diabetic wounds. Further studies on the exact mechanism of MFs on diabetic wounds and the development of suitable MF-based devices could lead to their increased applications into clinical practice.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Heye Health Technology Co., Ltd.AnjiZhejiangChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Junyu Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Chenxiao Zhen
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yijia Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yunpeng Wei
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
| | - Weihao Ren
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Peng Shang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| |
Collapse
|
113
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
114
|
Urdeitx P, Doweidar MH. Enhanced Piezoelectric Fibered Extracellular Matrix to Promote Cardiomyocyte Maturation and Tissue Formation: A 3D Computational Model. BIOLOGY 2021; 10:biology10020135. [PMID: 33572184 PMCID: PMC7914718 DOI: 10.3390/biology10020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell-cell and cell-extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell-cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.
Collapse
Affiliation(s)
- Pau Urdeitx
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Mohamed H. Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
115
|
STIM-Orai1 signaling regulates fluidity of cytoplasm during membrane blebbing. Nat Commun 2021; 12:480. [PMID: 33473127 PMCID: PMC7817837 DOI: 10.1038/s41467-020-20826-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The cytoplasm in mammalian cells is considered homogeneous. In this study, we report that the cytoplasmic fluidity is regulated in the blebbing cells; the cytoplasm of rapidly expanding membrane blebs is more disordered than the cytoplasm of retracting blebs. The increase of cytoplasmic fluidity in the expanding bleb is caused by a sharp rise in the calcium concentration. The STIM-Orai1 pathway regulates this rapid and restricted increase of calcium in the expanding blebs. Conversely, activated ERM protein binds to Orai1 to inhibit the store-operated calcium entry in retracting blebs, which results in decreased in cytoplasmic calcium, rapid reassembly of the actin cortex. The cytoplasm in mammalian cells is considered homogeneous. Here authors report that the cytoplasmic fluidity is regulated in the blebbing cells, which is regulated by calcium concentration in the expanding blebs and involves the STIM-Orai1 pathway.
Collapse
|
116
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
117
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
118
|
Guette-Marquet S, Roques C, Bergel A. Theoretical analysis of the electrochemical systems used for the application of direct current/voltage stimuli on cell cultures. Bioelectrochemistry 2021; 139:107737. [PMID: 33494030 DOI: 10.1016/j.bioelechem.2020.107737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
Endogenous electric fields drive many essential functions relating to cell proliferation, motion, differentiation and tissue development. They are usually mimicked in vitro by using electrochemical systems to apply direct current or voltage stimuli to cell cultures. The many studies devoted to this topic have given rise to a wide variety of experimental systems, whose results are often difficult to compare. Here, these systems are analysed from an electrochemical standpoint to help harmonize protocols and facilitate optimal understanding of the data produced. The theoretical analysis of single-electrode systems shows the necessity of measuring the Nernst potential of the electrode and of discussing the results on this basis rather than using the value of the potential gradient. The paper then emphasizes the great complexity that can arise when high cell voltage is applied to a single electrode, because of the possible occurrence of anode and cathode sites. An analysis of two-electrode systems leads to the advice to change experimental practices by applying current instead of voltage. It also suggests that the values of electric fields reported so far may have been considerably overestimated in macro-sized devices. It would consequently be wise to revisit this area by testing considerably lower electric field values.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
119
|
Xu X, Zhang H, Yan Y, Wang J, Guo L. Effects of electrical stimulation on skin surface. ACTA MECHANICA SINICA = LI XUE XUE BAO 2021; 37:1843-1871. [PMID: 33584001 PMCID: PMC7866966 DOI: 10.1007/s10409-020-01026-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
ABSTRACT Skin is the largest organ in the body, and directly contact with the external environment. Articles on the role of micro-current and skin have emerged in recent years. The function of micro-current is various, including introducing various drugs into the skin locally or throughout the body, stimulating skin wounds healing through various currents, suppressing pain caused by various diseases, and promoting blood circulation for postoperative muscle rehabilitation, etc. This article reviews these efforts. Compared with various physical and chemical medical therapies, micro-current stimulation provides a relatively safe, non-invasive therapy with few side effects, giving modern medicine a more suitable treatment option. At the same time, the cost of the electrical stimulation generating device is relatively low, which makes it have wider space to and more clinical application value. The current micro-current stimulation technology has become more and more mature, but there are still many problems in its research. The design of the experiment and the selection of the current parameters not standardized and rigorous. Now, clear regulations are needed to regulate this field. Micro-current skin therapy has become a robust, reliable, and well-structured system.
Collapse
Affiliation(s)
- Xinkai Xu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Han Zhang
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Noise and Vibration, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yan Yan
- Cosmetic Technology Center, Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Jianru Wang
- Xi’an Aerospace Propulsion Institute, Xi’an, 710100 China
| | - Liang Guo
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
120
|
Wang XF, Li ML, Fang QQ, Zhao WY, Lou D, Hu YY, Chen J, Wang XZ, Tan WQ. Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioact Mater 2021; 6:230-243. [PMID: 32913931 PMCID: PMC7451868 DOI: 10.1016/j.bioactmat.2020.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Meng-Lu Li
- Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Dong Lou
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Jun Chen
- Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Xiao-Zhi Wang
- Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| |
Collapse
|
121
|
Iwasa SN, Shi HH, Hong SH, Chen T, Marquez-Chin M, Iorio-Morin C, Kalia SK, Popovic MR, Naguib HE, Morshead CM. Novel Electrode Designs for Neurostimulation in Regenerative Medicine: Activation of Stem Cells. Bioelectricity 2020; 2:348-361. [PMID: 34471854 PMCID: PMC8370381 DOI: 10.1089/bioe.2020.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neural stem and progenitor cells (i.e., neural precursors) are found within specific regions in the central nervous system and have great regenerative capacity. These cells are electrosensitive and their behavior can be regulated by the presence of electric fields (EFs). Electrical stimulation is currently used to treat neurological disorders in a clinical setting. Herein we propose that electrical stimulation can be used to enhance neural repair by regulating neural precursor cell (NPC) kinetics and promoting their migration to sites of injury or disease. We discuss how intrinsic and extrinsic factors can affect NPC migration in the presence of an EF and how this impacts electrode design with the goal of enhancing tissue regeneration. We conclude with an outlook on future clinical applications of electrical stimulation and highlight technological advances that would greatly support these applications.
Collapse
Affiliation(s)
- Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
| | - HaoTian H Shi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Melissa Marquez-Chin
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Christian Iorio-Morin
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, Canada
| | - Milos R Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Hani E Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
122
|
Jia N, Liu J, Zhu G, Liang Y, Wang Y, Wang W, Chen Y, Yang J, Zhang W, Zhang J. Polarization of ADAM17-driven EGFR signalling in electric field-guided collective migration of epidermal sheets. J Cell Mol Med 2020; 24:14073-14085. [PMID: 33164313 PMCID: PMC7753989 DOI: 10.1111/jcmm.16019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Endogenous electric field is considered to play an important role in promoting collective migration of epidermis to the wound centre. However, most studies are focused on the effect of bioelectric field on the movement and migration of single epithelial cell; the molecular mechanisms about collective migration of epidermal monolayers remain unclear. Here, we found that EFs dramatically promoted the collective migration of HaCaT cells towards the anode, activated the sheddase activity of ADAM17 and increased the phosphorylation level of EGFR. Moreover, EGFR phosphorylation and HB-EGF shedding level were significantly decreased by the ADAM17 inhibitor TAPI-2 or siADAM17 under EFs, which subsequently attenuated the directed migration of HaCaT sheets. Notably, the inhibition of EF-regulated collective migration by siADAM17 was rescued by addition of recombinant HB-EGF. Furthermore, we observed that F-actin was dynamically polarized along the leading edge of the migrated sheets under EFs and that this polarization was regulated by ADAM17/HB-EGF/EGFR signalling. In conclusion, our study indicated that ADAM17 contributed to the collective directional movement of the epidermal monolayer by driving HB-EGF release and activating EGFR under EFs, and this pathway also mediated the polarization of F-actin in migrating sheets, which is essential in directional migration.
Collapse
Affiliation(s)
- Naixin Jia
- Key Laboratory of Freshwater Fish Reproduction and DevelopmentMinistry of EducationLaboratory of Molecular Developmental BiologySchool of Life SciencesSouthwest UniversityChongqingChina
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Jie Liu
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Guoqin Zhu
- Key Laboratory of Freshwater Fish Reproduction and DevelopmentMinistry of EducationLaboratory of Molecular Developmental BiologySchool of Life SciencesSouthwest UniversityChongqingChina
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Yi Liang
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Yuan Wang
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Weiyi Wang
- Dalian Rehabilitation Recuperation Center of PLA Joint Logistics Support ForceDalianChina
| | - Ying Chen
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Jinrui Yang
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| | - Wangjun Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Jiaping Zhang
- Department of Plastic and Aesthetic SurgeryState Key Laboratory of Trauma, Burns and Combined InjurySouthwest HospitalThe Third Military Medical University(Army Medical University)ChongqingChina
| |
Collapse
|
123
|
Li M, Wang X, Rajagopalan P, Zhang L, Zhan S, Huang S, Li W, Zeng X, Ye Q, Liu Y, Zhong K, Kim JM, Luo J, Dong S, Gu R, Wang X, Tan WQ. Toward Controlled Electrical Stimulation for Wound Healing Based on a Precision Layered Skin Model. ACS APPLIED BIO MATERIALS 2020; 3:8901-8910. [DOI: 10.1021/acsabm.0c01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Menglu Li
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province PR China
| | - Pandey Rajagopalan
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Liang Zhang
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Shijie Zhan
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Shuyi Huang
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Wei Li
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Xiangyu Zeng
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Qikai Ye
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Yulu Liu
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Kai Zhong
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Jong Min Kim
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Jikui Luo
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Shurong Dong
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Rongcheng Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaozhi Wang
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of ISEE, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310018, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province PR China
| |
Collapse
|
124
|
A Computational Model for Cardiomyocytes Mechano-Electric Stimulation to Enhance Cardiac Tissue Regeneration. MATHEMATICS 2020. [DOI: 10.3390/math8111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrical and mechanical stimulations play a key role in cell biological processes, being essential in processes such as cardiac cell maturation, proliferation, migration, alignment, attachment, and organization of the contractile machinery. However, the mechanisms that trigger these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult to abstract conclusions. In this sense, computational models can establish parametric assays with a low economic and time cost to determine the optimal conditions of in-vitro experiments. Here, a computational model has been developed, using the finite element method, to study cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices, under mechano-electric stimulation. Different types of electric fields (continuous, pulsating, and alternating) in an intensity range of 50–350 Vm−1, and extracellular matrix with stiffnesses in the range of 10–40 kPa, are studied. In these experiments, the group’s morphology and cell orientation are compared to define the best conditions for cell culture. The obtained results are qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the formation of elongated groups. Group lengthening is observed when applying higher electric fields in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical stimulation, with better results for alternating electric fields.
Collapse
|
125
|
Li L, Hu C, Lu C, Zhang K, Han R, Lin C, Zhao S, A C, Cheng C, Zhao M, He Y. Applied electric fields suppress osimertinib-induced cytotoxicity via inhibiting FOXO3a nuclear translocation through AKT activation. Carcinogenesis 2020; 41:600-610. [PMID: 31504249 DOI: 10.1093/carcin/bgz150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not fully understood. Endogenous electric fields (EFs), components of the tumor microenvironment, are associated with cancer cell migration and proliferation. However, the impact of EFs on drug efficiency has not been studied. In this study, we observed that EFs counteracted the effects of osimertinib. EFs of 100 mV/mm suppressed osimertinib-induced cell death and promoted cell proliferation. Transcriptional analysis revealed that the expression pattern induced by osimertinib was altered by EFs stimulation. KEGG analysis showed that differential expression genes were mostly enriched in PI3K-AKT pathway. Then, we found that osimertinib inhibited AKT phosphorylation, while EFs stimulation resulted in significant activation of AKT, which could override the effects generated by osimertinib. Importantly, pharmacological inhibition of PI3K/AKT by LY294002 diminished EF-induced activation of AKT and restored the cytotoxicity of osimertinib suppressed by EFs, which proved that AKT activation was essential for EFs to attenuate the efficacy of osimertinib. Furthermore, activation of AKT by EFs led to phosphorylation of forkhead box O3a (FOXO3a), and reduction in nuclear translocation of FOXO3a induced by osimertinib, resulting in decreased expression of Bim and attenuated cytotoxicity of osimertinib. Taken together, we demonstrated that EFs suppressed the antitumor activity of osimertinib through AKT/FOXO3a/Bim pathway, and combination of PI3K/AKT inhibitor with osimertinib counteracted the effects of EFs. Our findings provided preliminary data for therapeutic strategies to enhance osimertinib efficacy in NSCLC patients.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Chunxian A
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | | | - Min Zhao
- Department of Dermatology, Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, CA, USA
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
126
|
Application of stable continuous external electric field promotes wound healing in pig wound model. Bioelectrochemistry 2020; 135:107578. [DOI: 10.1016/j.bioelechem.2020.107578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
|
127
|
Urabe H, Akimoto R, Kamiya S, Hosoki K, Ichikawa H, Nishiyama T. Effects of pulsed electrical stimulation on growth factor gene expression and proliferation in human dermal fibroblasts. Mol Cell Biochem 2020; 476:361-368. [PMID: 32968926 DOI: 10.1007/s11010-020-03912-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
Human dermal fibroblast proliferation plays an important role in skin wound healing, and electrical stimulation (ES) promotes skin wound healing. Although the use of ES for skin wound healing has been investigated, the mechanism underlying the effects of ES on cells is still unclear. This study examined the effects of pulsed electrical stimulation (PES) on human dermal fibroblasts. Normal adult human dermal fibroblasts were exposed to a frequency of 4800 Hz, voltage of 1-5 V, and PES exposure time of 15, 30, and 60 min. Dermal fibroblast proliferation and growth factor gene expression were investigated for 6-48 h post PES. Dermal fibroblast proliferation significantly increased from 24 to 48 h post PES at a voltage of 5 V and PES exposure time of 60 min. Under the same conditions, post PES, platelet-derived growth factor subunit A (PDGFA), fibroblast growth factor 2 (FGF2), and transforming growth factor beta 1 (TGF-β1) expression significantly increased from 6 to 24 h, 12 to 48 h, and 24 to 48 h, respectively. Imatinib, a specific inhibitor of platelet-derived growth factor receptor, significantly inhibited the proliferation of dermal fibroblasts promoted by PES, suggesting that PDGFA expression, an early response of PES, was involved in promoting the cell proliferation. Therefore, PES at 4800 Hz may initially promote PDGFA expression and subsequently stimulate the expression of two other growth factors, resulting in dermal fibroblast proliferation after 24 h or later. In conclusion, PES may activate the cell growth phase of wound healing.
Collapse
Affiliation(s)
- Hiroya Urabe
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan.
| | - Ryuji Akimoto
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Shohei Kamiya
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Hideyuki Ichikawa
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Toshio Nishiyama
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan.,Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
128
|
Kamaldinov T, Hahn MS. Dual Bioelectrical Assessment of Human Mesenchymal Stem Cells Using Plasma and Mitochondrial Membrane Potentiometric Probes. Bioelectricity 2020; 2:238-250. [PMID: 34476356 DOI: 10.1089/bioe.2020.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Bioelectrical properties are known to impact stem cell fate, state, and function. However, assays that measure bioelectrical properties are generally limited to the plasma membrane potential. In this study, we propose an assay to simultaneously assess cell plasma membrane and mitochondrial membrane potentials. Materials and Methods: Mesenchymal stem cell (MSC) plasma and mitochondrial membrane potentials were measured using flow cytometry and a combination of tetramethylrhodamine, methyl ester (TMRM), and bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC) dyes. We investigated the shifts in the bioelectrical phenotype of MSCs due to extended culture in vitro, activation with interferon-gamma (IFN-γ), and aggregate conditions. Results: MSCs subjected to extended culture in vitro acquired plasma and mitochondrial membrane potentials consistent with a hyperpolarized bioelectrical phenotype. Activation with IFN-γ shifted MSCs toward a state associated with increased levels of both DiBAC and TMRM. MSCs in aggregate conditions were associated with a decrease in TMRM levels, indicating mitochondrial depolarization. Conclusions: Our proposed assay described distinct MSC bioelectrical transitions due to extended in vitro culture, exposure to an inflammatory cytokine, and culture under aggregate conditions. Overall, our assay enables a more complete characterization of MSC bioelectrical properties within a single experiment, and its relative simplicity enables researchers to apply it in variety of settings.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
129
|
All Roads Lead to Directional Cell Migration. Trends Cell Biol 2020; 30:852-868. [PMID: 32873438 DOI: 10.1016/j.tcb.2020.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
Directional cell migration normally relies on a variety of external signals, such as chemical, mechanical, or electrical, which instruct cells in which direction to move. Many of the major molecular and physical effects derived from these cues are now understood, leading to questions about whether directional cell migration is alike or distinct under these different signals, and how cells might be directed by multiple simultaneous cues, which would be expected in complex in vivo environments. In this review, we compare how different stimuli are spatially distributed, often as gradients, to direct cell movement and the mechanisms by which they steer cells. A comparison of the downstream effectors of directional cues suggests that different external signals regulate a common set of components: small GTPases and the actin cytoskeleton, which implies that the mechanisms downstream of different signals are likely to be closely related and underlies the idea that cell migration operates by a common set of physical principles, irrespective of the input.
Collapse
|
130
|
Zhao S, Mehta AS, Zhao M. Biomedical applications of electrical stimulation. Cell Mol Life Sci 2020; 77:2681-2699. [PMID: 31974658 PMCID: PMC7954539 DOI: 10.1007/s00018-019-03446-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive overview on the biomedical applications of electrical stimulation (EStim). EStim has a wide range of direct effects on both biomolecules and cells. These effects have been exploited to facilitate proliferation and functional development of engineered tissue constructs for regenerative medicine applications. They have also been tested or used in clinics for pain mitigation, muscle rehabilitation, the treatment of motor/consciousness disorders, wound healing, and drug delivery. However, the research on fundamental mechanism of cellular response to EStim has fell behind its applications, which has hindered the full exploitation of the clinical potential of EStim. Moreover, despite the positive outcome from the in vitro and animal studies testing the efficacy of EStim, existing clinical trials failed to establish strong, conclusive supports for the therapeutic efficacy of EStim for most of the clinical applications mentioned above. Two potential directions of future research to improve the clinical utility of EStim are presented, including the optimization and standardization of the stimulation protocol and the development of more tissue-matching devices.
Collapse
Affiliation(s)
- Siwei Zhao
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Surgery, University of Nebraska Medical Center, Nebraska Medical Center 985965, Omaha, NE, 68198, USA.
| | - Abijeet Singh Mehta
- Department of Dermatology, University of California, Davis, CA, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| |
Collapse
|
131
|
Naghibzadeh M, Gholampour S, Naghibzadeh M, Sadeghian-Nodoushan F, Nikukar H. The effect of electromagnetic field on decreasing and increasing of the growth and proliferation rate of dermal fibroblast cell. Dermatol Ther 2020; 33:e13803. [PMID: 32526050 DOI: 10.1111/dth.13803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/06/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Maintaining the health of dermal fibroblast cells and controlling their growth and proliferation would directly affect the health of skin tissues. The present study encompassed three control and three experimental specimens, which were different in terms of the duration of exposure to electromagnetic field (EMF) and intensity. With a decrease in intensity from 2 to 1 mT during 24, 48, and 72 h after exposing the cells to EMF, the frequency of the sample fibroblast cells increased by 60.3%, 144.9%, and 90.1%, respectively. With an increase in intensity from 3 to 4 mT during 48 and 72 h of exposure to EMF, the frequencies of the sample fibroblast cells decreased by 6.8% and 86.7%, respectively. It seems to be possible to achieve the most desirable condition to help the restoration of wounds and skin lesions through decreasing the exposure intensity from 2 to 0.5 mT and increasing EMF exposure time from 24 to 72 h simultaneously and non-invasively. The most desirable approach to improve the treatment of skin cancers non-invasively is to increase the intensity from 3 to 5 mT and to enhance EMF exposure time from 48 to 72 h.
Collapse
Affiliation(s)
- Mehran Naghibzadeh
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Naghibzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadeghian-Nodoushan
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Nikukar
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
132
|
Electric Fields at Breast Cancer and Cancer Cell Collective Galvanotaxis. Sci Rep 2020; 10:8712. [PMID: 32457381 PMCID: PMC7250931 DOI: 10.1038/s41598-020-65566-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer growth interferes with local ionic environments, membrane potentials, and transepithelial potentials, resulting in small electrical changes in the tumor microenvironment. Electrical fields (EFs) have significant effects on cancer cell migration (galvanotaxis/electrotaxis), however, their role as a regulator of cancer progression and metastasis is poorly understood. Here, we employed unique probe systems to characterize the electrical properties of cancer cells and their migratory ability under an EF. Subcutaneous tumors were established from a triple-negative murine breast cancer cell line (4T1), electric currents and potentials of tumors were measured using vibrating probe and glass microelectrodes, respectively. Steady outward and inward currents could be detected at different positions on the tumor surface and magnitudes of the electric currents on the tumor surface strongly correlated with tumor weights. Potential measurements also showed the non-homogeneous intratumor electric potentials. Cancer cell migration was then surveyed in the presence of EFs in vitro. Parental 4T1 cells and metastatic sublines in isolation showed random migration in EFs of physiological strength, whereas cells in monolayer migrated collectively to the anode. Our data contribute to an improved understanding of breast cancer metastasis, providing new evidence in support of an electrical mechanism that promotes this phenomenon.
Collapse
|
133
|
Enayati S, Chang K, Achour H, Cho KS, Xu F, Guo S, Z. Enayati K, Xie J, Zhao E, Turunen T, Sehic A, Lu L, Utheim TP, Chen DF. Electrical Stimulation Induces Retinal Müller Cell Proliferation and Their Progenitor Cell Potential. Cells 2020; 9:E781. [PMID: 32210151 PMCID: PMC7140850 DOI: 10.3390/cells9030781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Non-invasive electrical stimulation (ES) is increasingly applied to improve vision in untreatable eye conditions, such as retinitis pigmentosa and age-related macular degeneration. Our previous study suggested that ES promoted retinal function and the proliferation of progenitor-like glial cells in mice with inherited photoreceptor degeneration; however, the underlying mechanism remains obscure. Müller cells (MCs) are thought to be dormant residential progenitor cells that possess a high potential for retinal neuron repair and functional plasticity. Here, we showed that ES with a ramp waveform of 20 Hz and 300 µA of current was effective at inducing mouse MC proliferation and enhancing their expression of progenitor cell markers, such as Crx (cone-rod homeobox) and Wnt7, as well as their production of trophic factors, including ciliary neurotrophic factor. RNA sequencing revealed that calcium signaling pathway activation was a key event, with a false discovery rate of 5.33 × 10-8 (p = 1.78 × 10-10) in ES-mediated gene profiling changes. Moreover, the calcium channel blocker, nifedipine, abolished the observed effects of ES on MC proliferation and progenitor cell gene induction, supporting a central role of ES-induced Ca2+ signaling in the MC changes. Our results suggest that low-current ES may present a convenient tool for manipulating MC behavior toward neuroregeneration and repair.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Hamida Achour
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Katarina Z. Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Eric Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Tytteli Turunen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Amer Sehic
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0027 Oslo, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| |
Collapse
|
134
|
McNamara HM, Salegame R, Al Tanoury Z, Xu H, Begum S, Ortiz G, Pourquie O, Cohen AE. Bioelectrical domain walls in homogeneous tissues. NATURE PHYSICS 2020; 16:357-364. [PMID: 33790984 PMCID: PMC8008956 DOI: 10.1038/s41567-019-0765-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Electrical signaling in biology is typically associated with action potentials, transient spikes in membrane voltage that return to baseline. Hodgkin-Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction-diffusion equations which could, in principle, support spontaneous emergence of patterns of membrane voltage which are stable in time but structured in space. Here we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signaling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical symmetry breaking.
Collapse
Affiliation(s)
- Harold M. McNamara
- Department of Physics, Harvard University
- Harvard-MIT Division of Health Sciences and Technology
| | - Rajath Salegame
- Department of Chemistry and Chemical Biology, Harvard University
| | - Ziad Al Tanoury
- Department of Genetics, Harvard Medical School
- Department of Pathology, Brigham and Women’s Hospital
| | - Haitan Xu
- Department of Chemistry and Chemical Biology, Harvard University
- Current address: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University
| | - Shahinoor Begum
- Department of Chemistry and Chemical Biology, Harvard University
| | - Gloria Ortiz
- Department of Chemistry, University of California Berkeley
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School
- Department of Pathology, Brigham and Women’s Hospital
| | - Adam E. Cohen
- Department of Physics, Harvard University
- Department of Chemistry and Chemical Biology, Harvard University
- Howard Hughes Medical Institute
- Correspondence:
| |
Collapse
|
135
|
URDEITX PAU, FARZANEH SOLMAZ, MOUSAVI SJAMALEDDIN, DOWEIDAR MOHAMEDH. ROLE OF OXYGEN CONCENTRATION IN THE OSTEOBLASTS BEHAVIOR: A FINITE ELEMENT MODEL. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxygen concentration plays a key role in cell survival and viability. Besides, it has important effects on essential cellular biological processes such as cell migration, differentiation, proliferation and apoptosis. Therefore, the prediction of the cellular response to the alterations of the oxygen concentration can help significantly in the advances of cell culture research. Here, we present a 3D computational mechanotactic model to simulate all the previously mentioned cell processes under different oxygen concentrations. With this model, three cases have been studied. Starting with mesenchymal stem cells within an extracellular matrix with mechanical properties suitable for its differentiation into osteoblasts, and under different oxygen conditions to evaluate their behavior under normoxia, hypoxia and anoxia. The obtained results, which are consistent with the experimental observations, indicate that cells tend to migrate toward zones with higher oxygen concentration where they accelerate their differentiation and proliferation. This technique can be employed to control cell migration toward fracture zones to accelerate the healing process. Besides, as expected, to avoid cell apoptosis under conditions of anoxia and to avoid the inhibition of the differentiation and proliferation processes under conditions of hypoxia, the state of normoxia should be maintained throughout the entire cell-culture process.
Collapse
Affiliation(s)
- PAU URDEITX
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - SOLMAZ FARZANEH
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - S. JAMALEDDIN MOUSAVI
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - MOHAMED H. DOWEIDAR
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
136
|
Bonzanni M, Payne SL, Adelfio M, Kaplan DL, Levin M, Oudin MJ. Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential. Biol Open 2020; 9:bio048553. [PMID: 31852666 PMCID: PMC6994931 DOI: 10.1242/bio.048553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
All cells possess an electric potential across their plasma membranes and can generate and receive bioelectric signals. The cellular resting membrane potential (RMP) can regulate cell proliferation, differentiation and apoptosis. Current approaches to measure the RMP rely on patch clamping, which is technically challenging, low-throughput and not widely available. It is therefore critical to develop simple strategies to measure, manipulate and characterize the RMP. Here, we present a simple methodology to study the RMP of non-excitable cells and characterize the contribution of individual ions to the RMP using a voltage-sensitive dye. We define protocols using extracellular solutions in which permeable ions (Na+, Cl- and K+) are substituted with non-permeable ions [N-Methyl-D-glucamine (NMDG), gluconate, choline, SO42-]. The resulting RMP modifications were assessed with both patch clamp and a voltage sensitive dye. Using an epithelial and cancer cell line, we demonstrate that the proposed ionic solutions can selectively modify the RMP and help determine the relative contribution of ionic species in setting the RMP. The proposed method is simple and reproducible and will make the study of bioelectricity more readily available to the cell biology community.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, Medford, 02155 MA, USA
- Allen Discovery Center, Tufts University, Medford, 02155 MA, USA
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, Medford, 02155 MA, USA
| | - Miryam Adelfio
- Department of Biomedical Engineering, Tufts University, Medford, 02155 MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, 02155 MA, USA
- Allen Discovery Center, Tufts University, Medford, 02155 MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, 02155 MA, USA
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, 02155 MA, USA
| |
Collapse
|
137
|
Thinakaran S, Loordhuswamy A, Venkateshwapuram Rengaswami G. Electrophoretic deposition of chitosan/nano silver embedded micro sphere on centrifugal spun fibrous matrices - A facile biofilm resistant biocompatible material. Int J Biol Macromol 2020; 148:68-78. [PMID: 31931057 DOI: 10.1016/j.ijbiomac.2020.01.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
Micro fibrous polycaprolactone (PCL) mat generally used for biomedical application was produced by facile centrifugal spinning system (C-Spin). The produced mat exhibited good structural integrity and good flexibility. The developed mat was used as substrate for electrophoretic deposition (EPD) of chitosan and polyethylene glycol (PEG) along with silver nano particles (AgNPs). During the EPD process, polymeric micro spheres embedded with silver nano particles were formed and deposited on the C-Spun substrates and the size of AgNPs were found to be around 15 nm. Surface topography of all coated samples were analyzed and found that the deposition was neat and uniform. Swelling behavior of the coated substrates were studied and found that CS/HMP/AgNPs coated substrates showed 274% swelling compared to their own dry weight. Release profile of silver nanoparticles confirmed that initial burst release followed by sustained release for CS/HMP/AgNPs coated substrates and this might be attributed to the hydrophilicity and high swellability of HMP. All AgNPs coated samples were completely prevent the bacterial biofilm formation and CS/HMP/AgNPs showed better reduction in bacterial growth on matured biofilm model. Cell proliferation studies confirmed that CS/HMP/AgNPs is biocompatible and can be used as a wound dressing material.
Collapse
|
138
|
Ji R, Teng M, Zhang Z, Wang W, Zhang Q, Lv Y, Zhang J, Jiang X. Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway. Int J Med Sci 2020; 17:865-873. [PMID: 32308539 PMCID: PMC7163358 DOI: 10.7150/ijms.42840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Endogenous electric field (EF)-directed keratinocytes migration is known to play a key role in the wound re-epithelialization process. Although many molecules and signaling pathways are reported important for directional keratinocytes migration under EF, the underlying mechanism remains unclear. Our previous research found that CD9, a trans-membrane protein, is involved in wound re-epithelialization and CD9 downregulation contributes to keratinocytes migration. In this study, we observed the effect of EF on CD9 expression and keratinocytes migration. The keratinocytes migrated directionally toward the cathode and CD9 expression was down-regulated under EF (200mV/mm). In addition, CD9 overexpression reversed EF-induced migratory speed and the electrotactic response of keratinocytes. Also, we found that EF reduced AMP-activated protein kinase (AMPK) activity. Furthermore, AICAR, an AMPK activator, increased CD9 expression under EF, while compound C, an AMPK inhibitor, decreased CD9 expression in keratinocytes. Our results demonstrate that EF regulates CD9 expression and keratinocytes directional migration, in which AMPK pathway plays an important role.
Collapse
Affiliation(s)
- Ran Ji
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ze Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenping Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
139
|
Abasi S, Aggas JR, Venkatesh N, Vallavanatt IG, Guiseppi-Elie A. Design, fabrication and testing of an electrical cell stimulation and recording apparatus (ECSARA) for cells in electroculture. Biosens Bioelectron 2020; 147:111793. [DOI: 10.1016/j.bios.2019.111793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
140
|
Charge-Balanced Electrical Stimulation Can Modulate Neural Precursor Cell Migration in the Presence of Endogenous Electric Fields in Mouse Brains. eNeuro 2019; 6:ENEURO.0382-19.2019. [PMID: 31772032 PMCID: PMC6978916 DOI: 10.1523/eneuro.0382-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/04/2022] Open
Abstract
Electric fields (EFs) can direct cell migration and are crucial during development and tissue repair. We previously reported neural precursor cells (NPCs) are electrosensitive cells that can undergo rapid and directed migration towards the cathode using charge-balanced electrical stimulation in vitro. Here, we investigate the ability of electrical stimulation to direct neural precursor migration in mouse brains in vivo. To visualize migration, fluorescent adult murine neural precursors were transplanted onto the corpus callosum of adult male mice and intracortical platinum wire electrodes were implanted medial (cathode) and lateral (anode) to the injection site. We applied a charge-balanced biphasic monopolar stimulation waveform for three sessions per day, for 3 or 6 d. Irrespective of stimulation, the transplanted neural precursors had a propensity to migrate laterally along the corpus callosum, and applied stimulation affected that migration. Further investigation revealed an endogenous EF along the corpus callosum that correlated with the lateral migration, suggesting that the applied EF would need to overcome endogenous cues. There was no difference in transplanted cell differentiation and proliferation, or inflammatory cell numbers near the electrode leads and injection site comparing stimulated and implanted non-stimulated brains. Our results support that endogenous and applied EFs are important considerations for designing cell therapies for tissue repair in vivo.
Collapse
|
141
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
142
|
Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23:25. [PMID: 31844552 PMCID: PMC6896676 DOI: 10.1186/s40824-019-0176-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease treatment, wound healing, and mechanism study because of significant experimental performance. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review, we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of electrical stimulation on cell proliferation and differentiation are also discussed.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 People’s Republic of China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 People’s Republic of China
- People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
143
|
Ebrahimdamavandi S, Mobasheri H. Application of a static magnetic field as a complementary aid to healing in an in vitro wound model. J Wound Care 2019; 28:40-52. [PMID: 30625046 DOI: 10.12968/jowc.2019.28.1.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Static magnetic field (SMF) has long been used as a therapeutic means, though its effects on the activity of cells and the mechanism(s) involved remain unknown. The purpose of this study is to determine the effect of a moderate-intensity SMF on the activity, growth and migration of mouse embryonic fibroblast (NIH 3T3), aiming to mimic wound healing and to study it in real time. METHOD A cell-free area (a scratch with a 200-500µm width) was formed in NIH 3T3 cultured cells and used as a wound model. The effects of a SMF (10, 50, 80 and 100mT) on the survival rate (MTT assay), integrity of cell membranes (lactate dehydrogenase (LDH) assay), the morphology of the cell (circularity, number and length of filopodia), cell orientation, and migration (speed, direction, rate) were studied as a function of the incubation time in a time-lapse manner. RESULTS The exposure of cells to SMF at all intensities had no cytotoxic effect, as revealed by the MTT assay. The integrity of the membranes of the SMF-treated cells studied by the LDH assay test showed no effects. The structure of the membrane at the leading edge of the cells changed and showed several filopodia extended parallel to the field direction. The exposure to the SMF elongated the cells and decreased their circularity at SMF 10mT. The migration of the cells from one edge of the gap towards the other was affected by the applied SMF. The maximum and minimum effects were monitored at 80mT and 10mT, respectively. Analysis of cell migration revealed an average directness of 0.73, 0.66, 0.78, 0.78 and 0.69 under SMF 10, 50, 80, 100mT and control, respectively. CONCLUSION The morphological and functional changes of the cells in the presence of SMF revealed particular effects on the membrane and cytoskeleton. Cells were affected by physicochemical changes caused by the applied SMF, though the extent of the incurred effects was not a linear function of the field intensity. This low cost, non-invasive approach can be used as a magneto-manipulative means to tailor a practical, independent or complementary means of manipulating the activities of cells and tissues for clinical purposes.
Collapse
Affiliation(s)
- Sajedeh Ebrahimdamavandi
- PhD student, Laboratory of Membrane Biophysics and Macromolecules. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Mobasheri
- Professor of Biophysics, Head of Laboratory, Laboratory of Membrane Biophysics and Macromolecules. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Biomaterials Research Center (BRC), University of Tehran and Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
144
|
Physiological strength electric fields modulate human T cell activation and polarisation. Sci Rep 2019; 9:17604. [PMID: 31772211 PMCID: PMC6879562 DOI: 10.1038/s41598-019-53898-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
The factors and signals driving T cell activation and polarisation during immune responses have been studied mainly at the level of cells and chemical mediators. Here we describe a physical driver of these processes in the form of physiological-strength electric fields (EFs). EFs are generated at sites where epithelium is disrupted (e.g. wounded skin/bronchial epithelia) and where T cells frequently are present. Using live-cell imaging, we show human primary T cells migrate directionally to the cathode in low strength (50/150 mV/mm) EFs. Strikingly, we show for the first time that EFs significantly downregulate T cell activation following stimulation with antigen-activated APCs or anti-CD3/CD28 antibodies, as demonstrated by decreased IL-2 secretion and proliferation. These EF-induced functional changes were accompanied by a significant dampening of CD4+ T cell polarisation. Expression of critical markers of the Th17 lineage, RORγt and IL-17, and the Th17 polarisation mediator phospho-STAT3 were reduced significantly, while STAT1, ERK and c-Jun phosphorylation were comparatively unaffected suggesting STAT3 modulation by EFs as one mechanism driving effects. Overall, we identify electrical signals as important contributors to the co-ordination and regulation of human T cell functions, paving the way for a new research area into effects of naturally occurring and clinically-applied EFs in conditions where control of T cell activity is paramount.
Collapse
|
145
|
Zortea M, Ramalho L, Alves RL, Alves CFDS, Braulio G, Torres ILDS, Fregni F, Caumo W. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 2019; 13:1218. [PMID: 31803005 PMCID: PMC6876542 DOI: 10.3389/fnins.2019.01218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Opioid long-term therapy can produce tolerance, opioid-induced hyperalgesia (OIH), and it induces dysfunction in pain descending pain inhibitory system (DPIS). Objectives: This integrative review with meta-analysis aimed: (i) To discuss the potential mechanisms involved in analgesic tolerance and opioid-induced hyperalgesia (OIH). (ii) To examine how the opioid can affect the function of DPIS. (ii) To show evidence about the tDCS as an approach to treat acute and chronic pain. (iii) To discuss the effect of tDCS on DPIS and how it can counter-regulate the OIH. (iv) To draw perspectives for the future about the tDCS effects as an approach to improve the dysfunction in the DPIS in chronic non-cancer pain. Methods: Relevant published randomized clinical trials (RCT) comparing active (irrespective of the stimulation protocol) to sham tDCS for treating chronic non-cancer pain were identified, and risk of bias was assessed. We searched trials in PubMed, EMBASE and Cochrane trials databases. tDCS protocols accepted were application in areas of the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), or occipital area. Results: Fifty-nine studies were fully reviewed, and 24 with moderate to the high-quality methodology were included. tDCS improved chronic pain with a moderate effect size [pooled standardized mean difference; -0.66; 95% confidence interval (CI) -0.91 to -0.41]. On average, active protocols led to 27.26% less pain at the end of treatment compared to sham [95% CI; 15.89-32.90%]. Protocol varied in terms of anodal or cathodal stimulation, areas of stimulation (M1 and DLPFC the most common), number of sessions (from 5 to 20) and current intensity (from 1 to 2 mA). The time of application was 20 min in 92% of protocols. Conclusion: In comparison with sham stimulation, tDCS demonstrated a superior effect in reducing chronic pain conditions. They give perspectives that the top-down neuromodulator effects of tDCS are a promising approach to improve management in refractory chronic not-cancer related pain and to enhance dysfunctional neuronal circuitries involved in the DPIS and other pain dimensions and improve pain control with a therapeutic opioid-free. However, further studies are needed to determine individualized protocols according to a biopsychosocial perspective.
Collapse
Affiliation(s)
- Maxciel Zortea
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rael Lopes Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gilberto Braulio
- Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Service of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Pain Treatment and Palliative Medicine Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
146
|
Baglivo M, Martelli F, Paolacci S, Manara E, Michelini S, Bertelli M. Electrical Stimulation in the Treatment of Lymphedema and Associated Skin Ulcers. Lymphat Res Biol 2019; 18:270-276. [PMID: 31730410 DOI: 10.1089/lrb.2019.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Lymphedema is a disorder in which lymph accumulates in the interstitial spaces due to poor lymphatic flow resulting from hypoplasia or aplasia of the lymphatic vessels, or to morpho-functional alterations that impair lymphatic flow. Lymphedema is a debilitating condition associated initially with inflammation that then degenerates into hardening of affected tissues and the formation of ulcers on the skin of affected limbs. No definitive treatment is available. The only therapy for lymphedema consists of physiotherapy, surgery, and compression to reduce impairment, which only treats the symptoms, not the causes. A possible new therapy that could reinforce the treatment of lymphedema progression and complications is electrical stimulation (ES). Many studies underline the effects of electric currents on the different cell mechanisms associated with disease. Methods and Results: In this review, we summarize the effects of ES on the molecular and cellular processes involved in the pathophysiology of lymphedema, highlighting their therapeutic potential for edema reduction, ulcer repair, and restoration of lymphatic flow in vitro and in vivo. Conclusions: ES exerts its effect on the main stages that characterize lymphedema, from its onset to ulcer formation. There are few evidences on lymphatic models and more molecular studies are needed to understand the mechanism of action of this application in the treatment of lymphedema.
Collapse
Affiliation(s)
| | - Francesco Martelli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, National Institute of Health, Roma, Italy
| | | | - Elena Manara
- Research Unit, MAGI-Euregio, Bolzano, Italy.,Research Unit, EBTNA-Lab, Rovereto, Italy
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Rome, Italy
| | | |
Collapse
|
147
|
Ni L, KC P, Zhang G, Zhe J. Enabling single cell electrical stimulation and response recording via a microfluidic platform. BIOMICROFLUIDICS 2019; 13:064126. [PMID: 31867086 PMCID: PMC6910869 DOI: 10.1063/1.5128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/30/2019] [Indexed: 05/12/2023]
Abstract
Electrical stimulation (ES) has been recognized to play important roles in regulating cell behaviors. A microfluidic device was developed for the electrical stimulation of single cells and simultaneous recording of extracellular field potential (EFP). Each single cell was trapped onto an electrode surface by a constriction channel for ES testing and was then driven to the outlet by the pressure afterward. This design allows the application of ES on and detection of EFP of single cells continuously in a microfluidic channel. Human cardiomyocytes and primary rat cortex neurons were tested with specific ES with the device. Each cell's EFP signal was detected and analyzed during the ES process. Results have shown that after applying specific ES on the excitable single cells, the cells evoked electrical responses. In addition, increased secretion of glutamic acid was detected from the stimulated neurons. Altogether, these results indicated that the developed device can be used to continuously apply ES on and accurately determine cell responses of single cells with shorter probing time. The throughput of the measurement can achieve 1 cell per minute, which is higher than the traditional ES methods that need culturing cells or manually positioning the cells onto the electrode surface. Before and after the application of ES, the cell viability had no significant change. Such a device can be used to study the biological process of various types of cells under electrical stimulation.
Collapse
Affiliation(s)
- Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Pawan KC
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
148
|
Electromigration of cell surface macromolecules in DC electric fields during cell polarization and galvanotaxis. J Theor Biol 2019; 478:58-73. [DOI: 10.1016/j.jtbi.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
149
|
Electric-Induced Reversal of Morphogenesis in Hydra. Biophys J 2019; 117:1514-1523. [PMID: 31570230 PMCID: PMC6817546 DOI: 10.1016/j.bpj.2019.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis involves the dynamic interplay of biochemical, mechanical, and electrical processes. Here, we ask to what extent can the course of morphogenesis be modulated and controlled by an external electric field? We show that at a critical amplitude, an external electric field can halt morphogenesis in Hydra regeneration. Moreover, above this critical amplitude, the electric field can lead to reversal dynamics: a fully developed Hydra folds back into its incipient spheroid morphology. The potential to renew morphogenesis is reexposed when the field is reduced back to amplitudes below criticality. These dynamics are accompanied by modulations of the Wnt3 activity, a central component of the head organizer in Hydra. The controlled backward-forward cycle of morphogenesis can be repeated several times, showing that the reversal trajectory maintains the integrity of the tissue and its regeneration capability. Each cycle of morphogenesis leads to a newly emerged body plan in the redeveloped folded tissue, which is not necessarily similar to the one before the reversal process. Reversal of morphogenesis is shown to be triggered by enhanced electrical excitations in the Hydra tissue, leading to intensified calcium activity. Folding back of the body-plan morphology together with the decay of a central biosignaling system, indicate that electrical processes are tightly integrated with biochemical and mechanical-structural processes in morphogenesis and play an instructive role to a level that can direct developmental trajectories. Reversal of morphogenesis by external fields calls for extending its framework beyond program-like, forward-driven, hierarchical processes based on reaction diffusion and positional information.
Collapse
|
150
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|