101
|
CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2020.100074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
102
|
Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. NANOMATERIALS 2021; 11:nano11030607. [PMID: 33671036 PMCID: PMC7997425 DOI: 10.3390/nano11030607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer-IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.
Collapse
|
103
|
Agboola O, Fayomi OSI, Ayodeji A, Ayeni AO, Alagbe EE, Sanni SE, Okoro EE, Moropeng L, Sadiku R, Kupolati KW, Oni BA. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. MEMBRANES 2021; 11:139. [PMID: 33669424 PMCID: PMC7920412 DOI: 10.3390/membranes11020139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.
Collapse
Affiliation(s)
- Oluranti Agboola
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | | | - Ayoola Ayodeji
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Augustine Omoniyi Ayeni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Edith E. Alagbe
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Samuel E. Sanni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Emmanuel E. Okoro
- Department of Petroleum Engineering, Covenant University, Ota PMB 1023, Nigeria;
| | - Lucey Moropeng
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Rotimi Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Kehinde Williams Kupolati
- Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Babalola Aisosa Oni
- Department of Chemical Engineering and Technology, China University of Petroleum, Beijing 102249, China;
| |
Collapse
|
104
|
Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation. Molecules 2021; 26:molecules26040990. [PMID: 33668455 PMCID: PMC7917730 DOI: 10.3390/molecules26040990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Novel polymer composites based on polyamide–imide Torlon and deep eutectic solvent (DES) were fabricated and adapted for separation processes. DES composed of zinc chloride and acetamide in a ratio of 1:3 M was first chosen as a Torlon-modifier due to the possibility of creating composites with a uniform filling of the DES through the formation of hydrogen bonds. The structure of the membranes was investigated by scanning electron microscopy and X-ray diffraction analysis; thermal stability was determined by thermogravimetric analysis and mass spectrometry. The surface of the composites was studied by determining the contact angles and calculating the surface tension. The transport properties were investigated by such membrane methods as pervaporation and gas separation. It was found that the inclusion of DES in the polymer matrix leads to a significant change in the structure and surface character of composites. It was also shown that DES plays the role of a plasticizer and increases the separation performance in the separation of liquids and gases. Torlon/DES composites with a small amount of modifier were effective in alcohol dehydration, and were permeable predominantly to water impurities in isopropanol. Torlon/DES-5 demonstrates high selectivity in the gas separation of O2/N2 mixture.
Collapse
|
105
|
|
106
|
Effect of porous organic polymers in gas separation properties of polycarbonate based mixed matrix membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Zamani A, Tezel FH, Thibault J. Modelling the Molecular Permeation through Mixed-Matrix Membranes Incorporating Tubular Fillers. MEMBRANES 2021; 11:membranes11010058. [PMID: 33466818 PMCID: PMC7829890 DOI: 10.3390/membranes11010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson's upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.
Collapse
|
108
|
A Review on CO2 Capture Technologies with Focus on CO2-Enhanced Methane Recovery from Hydrates. ENERGIES 2021. [DOI: 10.3390/en14020387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural gas is considered a helpful transition fuel in order to reduce the greenhouse gas emissions of other conventional power plants burning coal or liquid fossil fuels. Natural Gas Hydrates (NGHs) constitute the largest reservoir of natural gas in the world. Methane contained within the crystalline structure can be replaced by carbon dioxide to enhance gas recovery from hydrates. This technical review presents a techno-economic analysis of the full pathway, which begins with the capture of CO2 from power and process industries and ends with its transportation to a geological sequestration site consisting of clathrate hydrates. Since extracted methane is still rich in CO2, on-site separation is required. Focus is thus placed on membrane-based gas separation technologies widely used for gas purification and CO2 removal from raw natural gas and exhaust gas. Nevertheless, the other carbon capture processes (i.e., oxy-fuel combustion, pre-combustion and post-combustion) are briefly discussed and their carbon capture costs are compared with membrane separation technology. Since a large-scale Carbon Capture and Storage (CCS) facility requires CO2 transportation and storage infrastructure, a technical, cost and safety assessment of CO2 transportation over long distances is carried out. Finally, this paper provides an overview of the storage solutions developed around the world, principally studying the geological NGH formation for CO2 sinks.
Collapse
|
109
|
González-Varela D, Ovalle-Encinia O, Gómez-García JF, Tavizon G, Pfeiffer H. High-temperature CO 2 perm-selectivity of yttrium-doped SDC ceramic–carbonate dual-phase membranes. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Y-doped SDC ceramic–carbonate dual-phase membranes were prepared, characterized and evaluated, presenting high CO2 perm-selective properties.
Collapse
Affiliation(s)
- Daniela González-Varela
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Oscar Ovalle-Encinia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - J. Francisco Gómez-García
- Departamento de Física y Química Teórica
- Facultad de Química
- Universidad Nacional Autónoma de México
- CP 04510 Ciudad de México
- Mexico
| | - Gustavo Tavizon
- Departamento de Física y Química Teórica
- Facultad de Química
- Universidad Nacional Autónoma de México
- CP 04510 Ciudad de México
- Mexico
| | - Heriberto Pfeiffer
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| |
Collapse
|
110
|
Jheng LC, Rosidah AA, Hsu SLC, Ho KS, Pan CJ, Cheng CW. Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells. RSC Adv 2021; 11:9964-9976. [PMID: 35423528 PMCID: PMC8695395 DOI: 10.1039/d0ra09972d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Carbon nanofibers functionalized with aminobenzoyl groups (CNF–aminobenzoyl) were prepared via direct Friedel–Crafts acylation in polyphosphoric acid. The functionalization of CNFs was characterized using XPS, FTIR, TGA, and Raman analyses. Hexafluoroisopropylidene-containing polybenzimidazole (6FPBI) composite membranes containing pristine CNFs or CNF–aminobenzoyl were prepared using solvent-assisted dispersion and solvent-casting methods. In this work, the influence of the incorporation of functionalized CNFs on several physicochemical properties of the 6FPBI nanocomposite membranes, including their thermal stability, mechanical strength, and acid doping level, was studied. The results showed that CNF–aminobenzoyl provided better mechanical reinforcement for the nanocomposite membrane, compared to pristine CNF. The SEM observation confirmed the good compatibility between the CNF–aminobenzoyl fillers and the 6FPBI matrix. For the 0.3 wt% CNF–aminobenzoyl/6FPBI composite membrane, the tensile stress was increased by 12% to be 78.9 MPa (as compared to the 6FPBI membrane), the acid doping level was improved to 12.0, and the proton conductivity at 160 °C was measured above 0.2 S cm−1. Furthermore, the fuel cell performance of the membrane electrolyte assembly (MEA) for each nanocomposite membrane was evaluated. The maximum power density at 160 °C was found up to 461 mW cm−2 for the MEA based on the 0.3 wt% CNF–aminobenzoyl/6FPBI composite membrane. Carbon nanofibers functionalized with aminobenzoyl groups (CNF–aminobenzoyl) were prepared via direct Friedel–Crafts acylation in polyphosphoric acid.![]()
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Afira Ainur Rosidah
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Chun-Jern Pan
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| |
Collapse
|
111
|
Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117582] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
112
|
Influence of PLGA nanoparticles on the deposition of model water-soluble biocompatible polymers by dip coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
113
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
114
|
Wang C, Fu T, Zhu Q, Yang R, Cao Y, Zhu J. A novel polyethersulfone/modified activated carbon fiber composite membrane: potential for removal micropollutants from water under the electric field. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2234-2249. [PMID: 33339780 DOI: 10.2166/wst.2020.488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to develop a novel composite membrane based on polyethersulfone (PES) and modified activated carbon fibers (ACFs) to remove of sulfamethoxazole (SMZ) from water. The modification of ACFs was conducted by using acid, Fe, and Mn and was confirmed by Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDS), and water contact angle measurement. Later on, the composite membranes were prepared using PES (9 wt%), N-N-dimethylacetamide (DMAc) (75 wt%), polyethylene pyrrolidone (PVP) (5 wt%), anhydrous lithium chloride (LiCl) (1 wt%), and various types of modified ACFs (0.8 wt%) as additives. It was found that the contact angle of the membrane decreased by more than 20°, and the zeta potential decreased by more than 10 mV. ACF modified by Fe was used as an admixture, membrane obtained the high comprehensive performance. Especially bovine serum albumin (BSA) rejection rate and flux recovery ratio (FRR) reached 98.8% and 98.4%, respectively. And the removal rates of SMZ increased by 24.6% under the electric field. The degradation products were detected by high-performance liquid chromatography/mass spectrometry (HPLC/MS). Based on this result, the possible degradation pathways of SMZ are proposed.
Collapse
Affiliation(s)
- Cunshi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail:
| | - Ting Fu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail: ; China Design Group Co. Ltd, Nanjing 210014, China
| | - Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail:
| | - Ruihong Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail: ; Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
| | - Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail:
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail:
| |
Collapse
|
115
|
Das S, Ben T, Qiu S, Valtchev V. Two-Dimensional COF-Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H 2/CO 2 Selectivity and Ultrahigh Gas Permeabilities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52899-52907. [PMID: 33175486 DOI: 10.1021/acsami.0c17794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Composite membranes embodying multilayered architecture have been on an uptrend to tap the synergy between different materials to attain new heights in gas separation performance. In the light of sustainable materials research, covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have emerged as cutting-edge platforms for molecular-sieving membranes owing to their phenomenal surface areas, ultrahigh porosities, and precise control over chemical functionalities. In this study, we report for the first time a three-dimensional (3D) MOF-mediated strategy where a specially designed MOF film provides the binding sites along the vertical direction to anchor the two-dimensional (2D) COF structural building units. The strong chemical bonding between the 3D MOF and 2D COF provides a new outlook to fabricate 2D COF-based composite membranes. The π-stacked columns of 2D H2P-DHPh COF that can contribute to direct pathways for gas transport render the resulting membrane incredibly promising for high-flux gas separation. Besides, the chemical synergy between the MOF and COF endows the thus-developed H2P-DHPh COF-UiO-66 composite membrane with unprecedented H2/CO2 gas mixture selectivity (32.9) as well as ultrahigh H2 (108 341.3 Barrer) and CO2 permeabilities, which significantly outperform the present Robeson upper bound and polymer membranes hitherto reported.
Collapse
Affiliation(s)
- Saikat Das
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Teng Ben
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Valentin Valtchev
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050 Caen, France
| |
Collapse
|
116
|
Gaxela NN, Nomngongo PN, Moutloali RM. Effect of the Zwitterion, p(MAO-DMPA), on the Internal Structure, Fouling Characteristics, and Dye Rejection Mechanism of PVDF Membranes. MEMBRANES 2020; 10:membranes10110323. [PMID: 33142710 PMCID: PMC7693441 DOI: 10.3390/membranes10110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes. The effect of the zwitterionization content on membrane performance indicators such as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the membranes showed that the increase in the zwitterion amount led to a general decrease in pore size with a concomitant increase in the number of membrane surface pores. The surface roughness was not particularly affected by the amount of the additive; however, the internal structure was greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the other hand, the wettability of the membranes initially decreased with increasing content to a certain point and then increased as the membrane homogeneity changed at higher zwitterion percentages. Flux and fouling properties were enhanced through the addition of zwitterion compared to the pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum content whereby membrane homogeneity was compromised, leading to poor performance at its higher loading.
Collapse
Affiliation(s)
- Nelisa Ncumisa Gaxela
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/NRF SARChI: Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Richard Motlhaletsi Moutloali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
117
|
Suzuki T. Effects of phenylenediamines and alkoxysilanes on gas transport properties of polyimide ‐ silica hybrid membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomoyuki Suzuki
- Faculty of Materials Science and EngineeringKyoto Institute of Technology Kyoto Japan
| |
Collapse
|
118
|
Controlling the formation of porous polyketone membranes via a cross-linkable alginate additive for oil-in-water emulsion separations. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
119
|
Zhang Q, Luo S, Weidman J, Guo R. Surface modification of
ZIF
‐90 with triptycene for enhanced interfacial interaction in
mixed‐matrix
membranes for gas separation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qinnan Zhang
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Shuangjiang Luo
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Jennifer Weidman
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Ruilan Guo
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
120
|
López-González M, Flores A, Marra F, Ellis G, Gómez-Fatou M, J. Salavagione H. Graphene and Polyethylene: A Strong Combination Towards Multifunctional Nanocomposites. Polymers (Basel) 2020; 12:polym12092094. [PMID: 32942610 PMCID: PMC7569879 DOI: 10.3390/polym12092094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
The key to the preparation of polymer nanocomposites with new or improved properties resides in the homogeneous dispersion of the filler and in the efficient load transfer between components through strong filler/polymer interfacial interactions. This paper reports on the preparation of a series of nanocomposites of graphene and a polyolefin using different experimental approaches, with the final goal of obtaining multifunctional materials. A high-density polyethylene (HDPE) is employed as the matrix, while unmodified and chemically modified graphene fillers are used. By selecting the correct combination as well as the adequate preparation process, the nanocomposites display optimized thermal and mechanical properties, while also conferring good gas barrier properties and significant levels of electrical conductivity.
Collapse
Affiliation(s)
- Mar López-González
- Departamento de Química Física de Polímeros, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Araceli Flores
- Departamento de Física, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (A.F.); (G.E.); (M.G.-F.)
| | - Fabrizio Marra
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), SNNLab, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gary Ellis
- Departamento de Física, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (A.F.); (G.E.); (M.G.-F.)
| | - Marián Gómez-Fatou
- Departamento de Física, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (A.F.); (G.E.); (M.G.-F.)
| | - Horacio J. Salavagione
- Departamento de Física, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (A.F.); (G.E.); (M.G.-F.)
- Correspondence:
| |
Collapse
|
121
|
|
122
|
Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118219] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
123
|
Winarta J, Meshram A, Zhu F, Li R, Jafar H, Parmar K, Liu J, Mu B. Metal–organic framework
‐based mixed‐matrix
membranes for gas separation: An overview. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joseph Winarta
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Amogh Meshram
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Feifei Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Renjie Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Hasan Jafar
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Kunj Parmar
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Bin Mu
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
124
|
Casadei R, Giacinti Baschetti M, Yoo MJ, Park HB, Giorgini L. Pebax ® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. MEMBRANES 2020; 10:membranes10080188. [PMID: 32824239 PMCID: PMC7464092 DOI: 10.3390/membranes10080188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25.
Collapse
Affiliation(s)
- Riccardo Casadei
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-20-9-0408
| | - Myung Jin Yoo
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| |
Collapse
|
125
|
Dickmann M, Tarter S, Egger W, Pegoretti A, Rigotti D, Brusa R, Checchetto R. Interface nanocavities in poly (lactic acid) membranes with dispersed cellulose nanofibrils: Their role in the gas barrier performances. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
126
|
Rostamizadeh M, Sadatnia B, Norouzbahari S, Ghadimi A. Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases with metal and nonmetal promoters. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
127
|
Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CO2 separation is an important process for a wide spectrum of industries including petrochemical, refinery and coal-fired power plant industries. The membrane-based process is a promising operation for CO2 separation owing to its fundamental engineering and economic benefits over the conventionally used separation processes. Asymmetric polymer–inorganic nanocomposite membranes are endowed with interesting properties for gas separation processes. The presence of nanosized inorganic nanofiller has offered unprecedented opportunities to address the issues of conventionally used polymeric membranes. Surface modification of nanofillers has become an important strategy to address the shortcomings of nanocomposite membranes in terms of nanofiller agglomeration and poor dispersion and polymer–nanofiller incompatibility. In the context of CO2 gas separation, surface modification of nanofiller is also accomplished to render additional CO2 sorption capacity and facilitated transport properties. This article focuses on the current strategies employed for the surface modification of nanofillers used in the development of CO2 separation nanocomposite membranes. A review based on the recent progresses made in physical and chemical modifications of nanofiller using various techniques and modifying agents is presented. The effectiveness of each strategy and the correlation between the surface modified nanofiller and the CO2 separation performance of the resultant nanocomposite membranes are thoroughly discussed.
Collapse
|
128
|
Karahan HE, Goh K, Zhang CJ, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae TH. MXene Materials for Designing Advanced Separation Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906697. [PMID: 32484267 DOI: 10.1002/adma.201906697] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chuanfang John Zhang
- ETH Domain, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Euntae Yang
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- Department of Marine Environmental Engineering, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongnam, 53064, Republic of Korea
| | - Cansu Yıldırım
- Polymer Science and Technology Graduate Program, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Chong Yang Chuah
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - M Göktuğ Ahunbay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Jaewoo Lee
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | | | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
129
|
Abstract
In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host–guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.
Collapse
Affiliation(s)
- Saikat Das
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| |
Collapse
|
130
|
Fakhar A, Dinari M, Lammertink R, Sadeghi M. Enhanced CO2 capture through bulky poly(urethane-urea)-based MMMs containing hyperbranched triazine based silica nanoparticles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
131
|
On the effects of water exposure of as-synthesized LTA membranes on their structural properties and dehydration performances. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
132
|
Talavari A, Ghanavati B, Azimi A, Sayyahi S. Preparation and characterization of PVDF-filled MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid absorbent via gas–liquid membrane contactor. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
133
|
Wang Y, Li L, Zhang X, Li J, Wang J, Li N. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
134
|
Hwang K, Ahn J, Cho I, Kang K, Kim K, Choi J, Polychronopoulou K, Park I. Microporous Elastomer Filter Coated with Metal Organic Frameworks for Improved Selectivity and Stability of Metal Oxide Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13338-13347. [PMID: 32073247 DOI: 10.1021/acsami.0c00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite various advantages and usefulness of semiconductor metal oxide gas sensors, low selectivity and humidity interference have limited their practical applications. In order to resolve these issues, we propose a new concept of a selective gas filtering structure that increases the gas selectivity and decreases the moisture interference of metal oxide gas sensors by coating metal organic frameworks (MOFs) on a microporous elastomer scaffold. Cu(BTC) with an excellent selective adsorption capacity for carbon monoxide (CO) compared to hydrogen (H2) and MIL-160 with an excellent moisture adsorption capacity were uniformly coated on the microporous polydimethylsiloxane (PDMS) structure through a squeeze coating method, resulting in a high content of MOFs with a large effective surface area. A Cu(BTC)-coated microporous PDMS filter showed an excellent adsorption efficiency (62.4%) for CO, thereby dramatically improving the selectivity of H2/CO by up to 2.6 times. In addition, an MIL-160 coated microporous PDMS filter showed a high moisture adsorption efficiency (76.2%).
Collapse
Affiliation(s)
- Kyoungjin Hwang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyungnam Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyuyoung Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyriaki Polychronopoulou
- Department of Nano Manufacturing Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
135
|
Ghazali AA, Rahman SA, Samah RA. Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review. GREEN PROCESSING AND SYNTHESIS 2020; 9:219-229. [DOI: 10.1515/gps-2020-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractMixed matrix membrane (MMM), formed by dispersing fillers in polymer matrix, has attracted researchers’ attention due to its outstanding performance compared to polymeric membrane. However, its widespread use is limited due to high cost of the commercial filler which leads to the studies on alternative low-cost fillers. Recent works have focused on utilizing agricultural wastes as potential fillers in fabricating MMM. A membrane with good permeability and selectivity was able to be prepared at low cost. The objective of this review article is to compile all the available information on the potential agricultural wastes as fillers in fabricating MMM for gas separation application. The gas permeation mechanisms through polymeric and MMM as well as the chemical and physical properties of the agricultural waste fillers were also reviewed. Additionally, the economic study and future direction of MMM development especially in gas separation field were discussed.
Collapse
Affiliation(s)
- Alia Aqilah Ghazali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sunarti Abd Rahman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Rozaimi Abu Samah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
136
|
Huang M, Wang Z, Jin J. Two‐Dimensional Microporous Material‐based Mixed Matrix Membranes for Gas Separation. Chem Asian J 2020; 15:2303-2315. [DOI: 10.1002/asia.202000053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Menghui Huang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhenggong Wang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jian Jin
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
137
|
Zhang Q, Li S, Wang C, Chang HC, Guo R. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
138
|
Delavar M, Bakeri G, Hosseini M, Nabian N. Fabrication and characterization of polyvinyl chloride mixed matrix membranes containing high aspect ratio anatase titania and hydrous manganese oxide nanoparticle for efficient removal of heavy metal ions: Competitive removal study. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maedeh Delavar
- Advanced Membrane and Biotechnology Research Center, Faculty of Chemical EngineeringBabol Noshirvani University of Technology Babol Iran
| | - Gholamreza Bakeri
- Advanced Membrane and Biotechnology Research Center, Faculty of Chemical EngineeringBabol Noshirvani University of Technology Babol Iran
| | - Morteza Hosseini
- Faculty of Chemical EngineeringBabol Noshirvani University of Technology Babol Iran
| | - Nima Nabian
- Faculty of Chemical EngineeringUniversity of Science and Technology of Mazandaran Behshahr Iran
| |
Collapse
|
139
|
Hailemariam RH, Woo YC, Damtie MM, Kim BC, Park KD, Choi JS. Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv Colloid Interface Sci 2020; 276:102100. [PMID: 31935555 DOI: 10.1016/j.cis.2019.102100] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
Reverse osmosis (RO) is the most widely used technology in water treatment and desalination technologies for potable water production. Since its invention, RO has undergone significant developments in terms of material science, process, system optimization, methods of membrane synthesis, and modifications. Among various materials used for the synthesis of an RO membrane, the polyamide thin-film composite (PA-TFC) is by far the most common, owing to its excellent water permeability high salt rejection, and stability. However, a tradeoff between membrane permeability and salt rejection and membrane fouling has been a major hindrance for the effective application of this membrane. Thus, a broad investigation has been carried out to address these problems, and among which co-solvent interfacial polymerization (CAIP) and the surface modification of substrates and active layers of RO membrane have been the most effective approaches for controlling and improving the surface properties of the PA-TFC membrane. In this review paper, the problems associated with the RO membrane processes and strategies has been discussed and addressed in detail. Furthermore, as the focus of this review, the major advancements in the strategies used for enhancement of RO membrane performance through CAIP, and surface modifications were scrutinized and summarized.
Collapse
Affiliation(s)
- Ruth Habte Hailemariam
- Department of Civil and Environment Engineering, University of Science and Technology, (UST), 217, Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Yun Chul Woo
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| | - Mekdimu Mezemir Damtie
- Department of Civil and Environment Engineering, University of Science and Technology, (UST), 217, Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Bong Chul Kim
- Water Environment Center, Environmental Technology Division, Korea Testing Laboratory (KTL), 87, Digital-Ro 26-Gil, Guro-Gu, Seoul 08389, Republic of Korea
| | - Kwang-Duck Park
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - June-Seok Choi
- Department of Civil and Environment Engineering, University of Science and Technology, (UST), 217, Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea; Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|
140
|
Poly(piperazine trimesamide) thin film nanocomposite membrane formation based on MIL-101: Filler aggregation and interfacial polymerization dynamics. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
141
|
Hu CC, Cheng PH, Chou SC, Lai CL, Huang SH, Tsai HA, Hung WS, Lee KR. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
142
|
Castro-Muñoz R, Ahmad MZ, Fíla V. Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation. Front Chem 2020; 7:897. [PMID: 32039141 PMCID: PMC6985281 DOI: 10.3389/fchem.2019.00897] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023] Open
Abstract
Several concepts of membranes have emerged, aiming at the enhancement of separation performance, as well as some other physicochemical properties, of the existing membrane materials. One of these concepts is the well-known mixed matrix membranes (MMMs), which combine the features of inorganic (e.g., zeolites, metal–organic frameworks, graphene, and carbon-based materials) and polymeric (e.g., polyimides, polymers of intrinsic microporosity, polysulfone, and cellulose acetate) materials. To date, it is likely that such a concept has been widely explored and developed toward low-permeability polyimides for gas separation, such as oxydianiline (ODA), tetracarboxylic dianhydride–diaminophenylindane (BTDA-DAPI), m-phenylenediamine (m-PDA), and hydroxybenzoic acid (HBA). When dealing with the gas separation performance of polyimide-based MMMs, these membranes tend to display some deficiency according to the poor polyimide–filler compatibility, which has promoted the tuning of chemical properties of those filling materials. This approach has indeed enhanced the polymer–filler interfaces, providing synergic MMMs with superior gas separation performance. Herein, the goal of this review paper is to give a critical overview of the current insights in fabricating MMMs based on chemically modified filling nanomaterials and low-permeability polyimides for selective gas separation. Special interest has been paid to the chemical modification protocols of the fillers (including good filler dispersion) and thus the relevant experimental results provoked by such approaches. Moreover, some principles, as well as the main drawbacks, occurring during the MMM preparation are also given.
Collapse
Affiliation(s)
| | - Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), University of Manchester, Manchester, United Kingdom
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
143
|
Fang M, Zhang G, Liu Y, Xiong R, Wu W, Yang F, Liu L, Chen J, Li J. Exploiting Giant-Pore Systems of Nanosized MIL-101 in PDMS Matrix for Facilitated Reverse-Selective Hydrocarbon Transport. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1511-1522. [PMID: 31804058 DOI: 10.1021/acsami.9b17516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane gas separation offers high energy efficiency, easy operation, and reduced environmental impacts for vast hydrocarbon recovery in the petrochemical industry. However, the recovery of real light hydrocarbon mixtures (e.g., olefin/nitrogen) remains challenging for lack of high-performance membranes with sufficient reverse selectivity (large molecules permeate faster) and permeability. Here, we report the incorporation of fine-tuned, giant-pore featured MIL-101 nanocrystals into rubbery polymers to fabricate hybrid membranes, which successfully exploited the giant-pore channels and large sorption volume of the MIL-101 pore system. The synthesized MIL-101/poly(dimethylsiloxane) (PDMS) hybrid membranes demonstrated remarkably simultaneous improvement of gas permeance and separation factor for the model gas mixture propylene/nitrogen. Compared with the pristine PDMS, the propylene permeance and separation factor could be improved by more than 50% by adjusting MIL-101 loading and operating conditions. By consulting molecular simulations and gas sorption analysis, we verified that the giant-pore system of MIL-101 and the elastic PDMS chains exhibited a synergistic effect on improving both hydrocarbon solution and diffusion. Pore properties of MIL-101 contributed favorably to accelerated propylene diffusion in MIL-101 that is 236% faster than that in PDMS. In the meantime, MIL-101 reinforced the hydrocarbon solution additionally to PDMS, which further facilitated hydrocarbon transport.
Collapse
Affiliation(s)
- Manquan Fang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Guanghui Zhang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Yuting Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Renjin Xiong
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Wenqing Wu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Feilong Yang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Lang Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Jinxun Chen
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Jiding Li
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
144
|
Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1872-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
145
|
Nuhnen A, Klopotowski M, Tanh Jeazet HB, Sorribas S, Zornoza B, Téllez C, Coronas J, Janiak C. High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation. Dalton Trans 2020; 49:1822-1829. [DOI: 10.1039/c9dt03222c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable and unexpected increase in selectivity for the MOF-199 MMMs is reasoned by pore blocking and reduction of the MOF window size through polyimide together with the high adsorption of CO2 by MOF-199.
Collapse
Affiliation(s)
- Alexander Nuhnen
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Maximilian Klopotowski
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Harold B. Tanh Jeazet
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Sara Sorribas
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragon
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
| | - Beatriz Zornoza
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragon
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
| | - Carlos Téllez
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragon
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragon
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| |
Collapse
|
146
|
Qin Y, Xiao Z, Jian S, Wang Y, Fan S, Wang Y, Qiu B, Liu J, Wang Z, Wan Q. Deep-Permeation Nanocomposite Structure of ZIF-8 inside Porous Poly(tetrafluoroethylene) by Flow Synergistic Synthesis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yangmei Qin
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shizhao Jian
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yuyang Wang
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yinan Wang
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Boya Qiu
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jingyun Liu
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zexue Wang
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Qidong Wan
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
147
|
Zhang M, Yao L, Maleki E, Liao BQ, Lin H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
148
|
Chawla M, Saulat H, Masood Khan M, Mahmood Khan M, Rafiq S, Cheng L, Iqbal T, Rasheed MI, Farooq MZ, Saeed M, Ahmad NM, Khan Niazi MB, Saqib S, Jamil F, Mukhtar A, Muhammad N. Membranes for CO
2
/CH
4
and CO
2
/N
2
Gas Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900375] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhammad Chawla
- Tianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology 300350 Tianjin China
| | - Hammad Saulat
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Muhammad Masood Khan
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Muhammad Mahmood Khan
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Sikander Rafiq
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | - Linjuan Cheng
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Tanveer Iqbal
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | - M. Imran Rasheed
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | | | | | - Nasir M. Ahmad
- National University of Sciences and TechnologySchool of Chemical and Materials Engineering 44000 Islamabad Pakistan
| | - Muhammad Bilal Khan Niazi
- National University of Sciences and TechnologySchool of Chemical and Materials Engineering 44000 Islamabad Pakistan
| | - Sidra Saqib
- COMSATS University IslamabadDepartment of Chemical Engineering Lahore Campus 54000 Lahore Pakistan
| | - Farrukh Jamil
- COMSATS University IslamabadDepartment of Chemical Engineering Lahore Campus 54000 Lahore Pakistan
| | - Ahmad Mukhtar
- Universiti Teknologi PETRONASDepartment of Chemical Engineering Bandar Seri Iskandar 32610 Perak Malaysia
| | - Nawshad Muhammad
- COMSATS University IslamabadInterdisciplinary Research Centre in Biomedical Materials (IRCBM) Lahore Campus, Defense Road Off Raiwind Road Lahore Pakistan
| |
Collapse
|
149
|
Borgohain R, Mandal B. High‐speed CO
2
transport channel containing carboxymethyl chitosan/hydrotalcite membrane for CO
2
separation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rajashree Borgohain
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Bishnupada Mandal
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
150
|
Wang F, Zhang B, Liu S, Wu Y, Wang T, Qiu J. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|