101
|
Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol 2017; 47:16-22. [PMID: 28575733 DOI: 10.1016/j.copbio.2017.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
Although skeletal muscle can naturally regenerate in response to minor injuries, more severe damage and myopathies can cause irreversible loss of muscle mass and function. Cell therapies, while promising, have not yet demonstrated consistent benefit, likely due to poor survival of delivered cells. Biomaterials can improve muscle regeneration by presenting chemical and physical cues to muscle cells that mimic the natural cascade of regeneration. This brief review describes strategies for muscle repair utilizing biomaterials that can provide signals to either transplanted or host muscle cells. These strategies range from approaches that utilize biomaterials alone to those that combine biomaterials with exogenous growth factors, ex vivo cultured cells, and extensive culture time.
Collapse
|
102
|
Dollinger BR, Gupta MK, Martin JR, Duvall CL. Reactive Oxygen Species Shielding Hydrogel for the Delivery of Adherent and Nonadherent Therapeutic Cell Types<sup/>. Tissue Eng Part A 2017; 23:1120-1131. [PMID: 28394196 DOI: 10.1089/ten.tea.2016.0495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell therapies suffer from poor survival post-transplant due to placement into hostile implant sites characterized by host immune response and innate production of high levels of reactive oxygen species (ROS). We hypothesized that cellular encapsulation within an injectable, antioxidant hydrogel would improve viability of cells exposed to high oxidative stress. To test this hypothesis, we applied a dual thermo- and ROS-responsive hydrogel comprising the ABC triblock polymer poly[(propylene sulfide)-block-(N,N-dimethyl acrylamide)-block-(N-isopropylacrylamide)] (PPS135-b-PDMA152-b-PNIPAAM225, PDN). The PPS chemistry reacts irreversibly with ROS such as hydrogen peroxide (H2O2), imparting inherent antioxidant properties to the system. Here, PDN hydrogels were successfully integrated with type 1 collagen to form ROS-protective, composite hydrogels amenable to spreading and growth of adherent cell types such as mesenchymal stem cells (MSCs). It was also shown that, using a control hydrogel substituting nonreactive polycaprolactone in place of PPS, the ROS-reactive PPS chemistry is directly responsible for PDN hydrogel cytoprotection of both MSCs and insulin-producing β-cell pseudo-islets against H2O2 toxicity. In sum, these results establish the potential of cytoprotective, thermogelling PDN biomaterials for injectable delivery of cell therapies.
Collapse
Affiliation(s)
- Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
103
|
Hu N, Zhang B, Gai M, Zheng C, Frueh J, He Q. Forecastable and Guidable Bubble-Propelled Microplate Motors for Cell Transport. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/16/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Narisu Hu
- Key Laboratory of Microsystems and Microstructures Manufacturing; Ministry of Education; Micro/Nano Technology Research Centre; Harbin Institute of Technology; Yikuang Street 2 Harbin 150080 China
- Oral Implant Center; Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Bin Zhang
- Oral Implant Center; Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Meiyu Gai
- School of Materials Engineering; Queen Mary University of London; Mile End Road 215 E1 4NS London UK
| | - Ce Zheng
- Medical Affairs Department; Harbin Medical University; Harbin 150001 China
| | - Johannes Frueh
- Key Laboratory of Microsystems and Microstructures Manufacturing; Ministry of Education; Micro/Nano Technology Research Centre; Harbin Institute of Technology; Yikuang Street 2 Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; Ministry of Education; Micro/Nano Technology Research Centre; Harbin Institute of Technology; Yikuang Street 2 Harbin 150080 China
| |
Collapse
|
104
|
Madl CM, Heilshorn SC. Tyrosine-Selective Functionalization for Bio-Orthogonal Cross-Linking of Engineered Protein Hydrogels. Bioconjug Chem 2017; 28:724-730. [PMID: 28151642 DOI: 10.1021/acs.bioconjchem.6b00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Engineered protein hydrogels have shown promise as artificial extracellular matrix materials for the 3D culture of stem cells due to the ability to decouple hydrogel biochemistry and mechanics. The modular design of these proteins allows for incorporation of various bioactive sequences to regulate cellular behavior. However, the chemistry used to cross-link the proteins into hydrogels can limit what bioactive sequences can be incorporated, in order to prevent nonspecific cross-linking within the bioactive region. Bio-orthogonal cross-linking chemistries may allow for the incorporation of any arbitrary bioactive sequence, but site-selective and scalable incorporation of bio-orthogonal reactive groups such as azides that do not rely on commonly used amine-reactive chemistry is often challenging. In response, we have optimized the reaction of an azide-bearing 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with engineered elastin-like proteins (ELPs) to selectively azide-functionalize tyrosine residues within the proteins. The PTAD-azide functionalized ELPs cross-link with bicyclononyne (BCN) functionalized ELPs via the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction to form hydrogels. Human mesenchymal stem cells and murine neural progenitor cells encapsulated within these hydrogels remain highly viable and maintain their phenotypes in culture. Tyrosine-specific modification may expand the number of bioactive sequences that can be designed into protein-engineered materials by permitting incorporation of lysine-containing sequences without concern for nonspecific cross-linking.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering and ‡Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Sarah C Heilshorn
- Department of Bioengineering and ‡Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
105
|
Geng XD, Zheng W, Wu CM, Wang SQ, Hong Q, Cai GY, Chen XM, Wu D. Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease. Chin Med J (Engl) 2017; 129:392-8. [PMID: 26879011 PMCID: PMC4800838 DOI: 10.4103/0366-6999.176088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD. Methods: Adult male Sprague–Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining. Results: In vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs. Conclusions: In a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Di Wu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853, China
| |
Collapse
|
106
|
Darnell M, Young S, Gu L, Shah N, Lippens E, Weaver J, Duda G, Mooney D. Substrate Stress-Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. Adv Healthc Mater 2017; 6. [PMID: 27995768 DOI: 10.1002/adhm.201601185] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 12/28/2022]
Abstract
The rate of stress relaxation of adhesion substrates potently regulates cell fate and function in vitro, and in this study the authors test whether it can regulate bone formation in vivo by implanting alginate gels with differing rates of stress-relaxation carrying human mesenchymal stem cells into rat calvarial defects. After three months, the rats that received fast-relaxing hydrogels (t1/2 ≈ 50 s) show significantly more new bone growth than those that received slow-relaxing, stiffness-matched hydrogels. Strikingly, substantial bone regeneration results from rapidly relaxing hydrogels even in the absence of transplanted cells. Histological analysis reveals that the new bone formed with rapidly relaxing hydrogels is mature and accompanied by extensive matrix remodeling and hydrogel disappearance. This tissue invasion is found to be prominent after just two weeks and the ability of stress relaxation to modulate cell invasion is confirmed with in vitro analysis. These results suggest that substrate stress relaxation can mediate scaffold remodeling and thus tissue formation, giving tissue engineers a new parameter for optimizing bone regeneration.
Collapse
Affiliation(s)
- Max Darnell
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Simon Young
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Luo Gu
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Nisarg Shah
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Evi Lippens
- Julius Wolff Institute; Charité-Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; 13353 Berlin Germany
| | - James Weaver
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Georg Duda
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
- Julius Wolff Institute; Charité-Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; 13353 Berlin Germany
| | - David Mooney
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| |
Collapse
|
107
|
|
108
|
Suzuki D, Akita D, Tsurumachi N, Kano K, Yamanaka K, Kaneko T, Kawano E, Iguchi S, Toriumi T, Arai Y, Matsumoto T, Sato S, Honda M. Transplantation of mature adipocyte-derived dedifferentiated fat cells into three-wall defects in the rat periodontium induces tissue regeneration. J Oral Sci 2017; 59:611-620. [DOI: 10.2334/josnusd.16-0878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Daigo Suzuki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | | | - Eisuke Kawano
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Shinya Iguchi
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | | | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
109
|
Morouço P, Ângelo D, Francisco L, Moura C, Alves N. Tissue engineering for temporomandibular joint disc repair and regeneration: a methodological perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.3402/acmo.v4.33709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pedro Morouço
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - David Ângelo
- Hospital de Santa Maria, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Francisco
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| |
Collapse
|
110
|
Kim M, Kim DI, Kim EK, Kim CW. CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model. Cell Transplant 2016; 26:191-204. [PMID: 27501830 DOI: 10.3727/096368916x692708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.
Collapse
|
111
|
Allen TA, Gracieux D, Talib M, Tokarz DA, Hensley MT, Cores J, Vandergriff A, Tang J, de Andrade JBM, Dinh PU, Yoder JA, Cheng K. Angiopellosis as an Alternative Mechanism of Cell Extravasation. Stem Cells 2016; 35:170-180. [PMID: 27350343 DOI: 10.1002/stem.2451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
Stem cells possess the ability to home in and travel to damaged tissue when injected intravenously. For the cells to exert their therapeutic effect, they must cross the blood vessel wall and enter the surrounding tissues. The mechanism of extravasation injected stem cells employ for exit has yet to be characterized. Using intravital microscopy and a transgenic zebrafish line Tg(fli1a:egpf) with GFP-expressing vasculature, we documented the detailed extravasation processes in vivo for injected stem cells in comparison to white blood cells (WBCs). While WBCs left the blood vessels by the standard diapedesis process, injected cardiac and mesenchymal stem cells underwent a distinct method of extravasation that was markedly different from diapedesis. Here, the vascular wall undergoes an extensive remodeling to allow the cell to exit the lumen, while the injected cell remains distinctively passive in activity. We termed this process Angio-pello-sis, which represents an alternative mechanism of cell extravasation to the prevailing theory of diapedesis. Stem Cells 2017;35:170-180 Video Highlight: https://youtu.be/i5EI-ZvhBps.
Collapse
Affiliation(s)
- Tyler A Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
| | - David Gracieux
- Department of Biochemistry, North Carolina State University, North Carolina, USA
| | - Maliha Talib
- Department of Biochemistry, North Carolina State University, North Carolina, USA
| | - Debra A Tokarz
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
| | - Adam Vandergriff
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
| | - Junnan Tang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - James B M de Andrade
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
- Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina, USA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangshu, People's Republic of China
| |
Collapse
|
112
|
Rahman SU, Arany PR. 3D bioprinting: prostheses-restorations…now, tissues and organ systems! Oral Dis 2016; 23:404-408. [PMID: 27318018 DOI: 10.1111/odi.12525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S U Rahman
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - P R Arany
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
113
|
Dong R, Zhao X, Guo B, Ma PX. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17138-50. [PMID: 27311127 DOI: 10.1021/acsami.6b04911] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair.
Collapse
Affiliation(s)
- Ruonan Dong
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Peter X Ma
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Biologic and Materials Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
114
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
115
|
Madl CM, Katz LM, Heilshorn SC. Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3612-3620. [PMID: 27642274 PMCID: PMC5019573 DOI: 10.1002/adfm.201505329] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.
Collapse
Affiliation(s)
| | - Lily M. Katz
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
116
|
Xu Y, Xiang J, Zhao H, Liang H, Huang J, Li Y, Pan J, Zhou H, Zhang X, Wang JH, Liu Z, Wang J. Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials 2016; 100:91-100. [PMID: 27244692 DOI: 10.1016/j.biomaterials.2016.05.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/11/2023]
Abstract
Human amniotic fluid stem (hAFS) cells have generated a great deal of excitement in cell-based therapies and regenerative medicine. Here, we examined the effect of hAFS cells labeled with dual-polymer-coated UCNP-PEG-PEI nanoparticles in a murine model of acute lung injury (ALI). We observed hAFS cells migration to the lung using highly sensitive in vivo upconversion luminescence (UCL) imaging. We demonstrated that hAFS cells remained viable and retained their ability to differentiate even after UCNP-PEG-PEI labeling. More importantly, hAFS cells displayed remarkable positive effects on ALI-damaged lung tissue repair compared with mouse bone marrow mesenchymal stem cells (mBMSCs), which include recovery of the integrity of alveolar-capillary membrane, attenuation of transepithelial leukocyte and neutrophil migration, and down-regulation of proinflammatory cytokine and chemokine expression. Our work highlights a promising role for imaging-guided hAFS cell-based therapy in ALI.
Collapse
Affiliation(s)
- Yunyun Xu
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Jian Xiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - He Zhao
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Hansi Liang
- Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province, State Key Laboratory Incubation Base, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jie Huang
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Yan Li
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Jian Pan
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Huiting Zhou
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China
| | - Xueguang Zhang
- Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province, State Key Laboratory Incubation Base, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jian Wang
- Institute for Pediatric Research, Affiliated Children's Hospital, Soochow University, Suzhou, Jiangsu 215025, China.
| |
Collapse
|
117
|
Yao S, Liu X, Yu S, Wang X, Zhang S, Wu Q, Sun X, Mao H. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. NANOSCALE 2016; 8:10252-65. [PMID: 27124547 DOI: 10.1039/c6nr01169a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.
Collapse
Affiliation(s)
- Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Gao Y, Lim J, Teoh SH, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem Soc Rev 2016; 44:6306-29. [PMID: 26505058 DOI: 10.1039/c4cs00322e] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine, which replaces or regenerates human cells, tissues or organs, to restore or establish normal function, is one of the fastest-evolving interdisciplinary fields in healthcare. Over 200 regenerative medicine products, including cell-based therapies, tissue-engineered biomaterials, scaffolds and implantable devices, have been used in clinical development for diseases such as diabetes and inflammatory and immune diseases. To facilitate the translation of regenerative medicine from research to clinic, nanotechnology, especially magnetic nanoparticles have attracted extensive attention due to their unique optical, electrical, and magnetic properties and specific dimensions. In this review paper, we intend to summarize current advances, challenges, and future opportunities of magnetic nanoparticles for regenerative medicine.
Collapse
|
119
|
RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 2016; 36:132-42. [PMID: 27000551 DOI: 10.1016/j.actbio.2016.03.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. STATEMENT OF SIGNIFICANCE For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This manuscript shed light on other ligands that play a crucial role in regulating MSCs fate. In concrete terms, it was demonstrated that the osteoinductive effect of BMP-2 peptide is 2 folds improved in the presence of adhesive RGD peptide. Compared to previous works highlighting this synergistic cooperation between RGD and BMP-2 peptides, the main strength of this work lies to the use of primitive human cells (hMSCs) and well-defined biomimetic material surfaces (controlled surface roughness and peptide densities). This work provides valuable insights to develop custom-designed in vitro cell culture models, capable of targeting the desired cell response.
Collapse
|
120
|
Birgani ZT, Malhotra A, van Blitterswijk CA, Habibovic P. Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. J Biomed Mater Res A 2016; 104:1946-60. [PMID: 27012665 DOI: 10.1002/jbm.a.35725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022]
Abstract
The incorporation of bioinorganics into synthetic biomaterials is a promising approach to improve the biological performance of bone graft substitutes, while still retaining their synthetic nature. Among these bioinorganics, strontium ions (Sr(2+) ) have reported enhanced bone formation, and a reduced risk of bone fractures. While previous results have been encouraging, more detailed studies are needed to further develop specific applications. This study demonstrates the effects of Sr(2+) on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) when introduced as either a dissolved salt, or incorporated into biomimetic calcium phosphate (CaP) coatings. Upon attachment, hMSCs seeded in the presence of higher Sr(2+) concentrations presented with a more elongated shape as compared to the controls without Sr(2+) . Both Sr(2+) as a dissolved salt in the medium, or incorporated into CaP coatings, positively influenced hMSC alkaline phosphatase (ALP) activity in a dose-dependent manner. At the mRNA level, the expression of osteogenic markers ALP, bone sialoprotein, bone morphogenetic protein 2, osteopontin, and osteoclacin were increased in the presence of Sr(2+) , independent of the delivery method. Overall, this study demonstrates the positive effects of strontium on the osteogenic differentiation of human MSCs, and supports the use of strontium-incorporated CaPs for bone regeneration applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1946-1960, 2016.
Collapse
Affiliation(s)
- Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Angad Malhotra
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
121
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
122
|
Akita D, Kano K, Saito-Tamura Y, Mashimo T, Sato-Shionome M, Tsurumachi N, Yamanaka K, Kaneko T, Toriumi T, Arai Y, Tsukimura N, Matsumoto T, Ishigami T, Isokawa K, Honda M. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration. Front Physiol 2016; 7:50. [PMID: 26941649 PMCID: PMC4763019 DOI: 10.3389/fphys.2016.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.
Collapse
Affiliation(s)
- Daisuke Akita
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University Fujisawa, Japan
| | - Yoko Saito-Tamura
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Juntendo University Tokyo, Japan
| | - Momoko Sato-Shionome
- Department of Pediatric Dentistry, School of Dentistry, Nihon University Tokyo, Japan
| | - Niina Tsurumachi
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | | | | | - Taku Toriumi
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | | | - Naoki Tsukimura
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, School of Medicine, Nihon University Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Keitaro Isokawa
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University Nagoya, Japan
| |
Collapse
|
123
|
Jiang Q, Yu T, Huang K, Lu J, Zhang H, Hu S. Remote Ischemic Postconditioning Ameliorates the Mesenchymal Stem Cells Engraftment in Reperfused Myocardium. PLoS One 2016; 11:e0146074. [PMID: 26760781 PMCID: PMC4712013 DOI: 10.1371/journal.pone.0146074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives Remote Ischemic postconditioning (RIPoC) is a cardioprotective strategy for alleviating the reperfusion injury. We hypothesized that RIPoC or ischemic postconditioning (IPoC) could protect the engrafted mesenchymal stem cells (MSCs) in reperfusion myocardium. Methods Female Sprague-Dawley rats were subject to 30 minutes of occlusion of left anterior descending (LAD). Ischemia reperfusion (IR) received reperfusion without interruption after ischemia. RIPoC received 3 cycles of 30 seconds reperfusion and re-occlusion on the limb at the onset of reperfusion. IPoC received 3 cycles of 30 seconds reperfusion and re-occlusion on the LAD at the same time. Male MSCs were intramyocardially administered after ischemia. Results Compared with that in IR group, ischemic myocardium in RIPoC+IPoC group, RIPoC group and IPoC group were found to have higher anti-oxidative stress and mitochondrial function level, lower lipid peroxidation and inflammational injury level, higher level of stromal cell derived factor-1 alpha and vascular endothelium growth factor gene expression at 3 days later. By immunohistochemical examination and quantitative polymerase chain reaction, more engrafted MSCs, better cardiac function and less cardiac fibrosis in RIPoC+IPoC group, RIPoC group and IPoC group were detected at 3 weeks after delivery. There were no significant differences between RIPoC and RIPoC+IPoC group. Conclusions Combination therapy using intramyocardial MSCs transplantation with RIPoC enhanced transplantation efficiency and cardiac function, and reduced cardiac fibrosis. These beneficial effects were mainly attributed to hospitable milieu for engrafted cells. IPoC could not render additional effect on MSCs engraftment elicited by RIPoC.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
- * E-mail: (KLH); (JL)
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
- * E-mail: (KLH); (JL)
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
124
|
Yu Y, Wu RX, Gao LN, Xia Y, Tang HN, Chen FM. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adh Migr 2016; 10:342-59. [PMID: 26745021 DOI: 10.1080/19336918.2016.1139287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Directing cell trafficking toward a target site of interest is critical for advancing stem cell therapy in clinical theranostic applications. In this study, we investigated the effects of inflammatory and/or hypoxic stimuli on the migration of bone marrow mesenchymal stem cells (BMMSCs) during in vitro culture and after in vivo implantation. Using tablet scratch experiments and observations from a transwell system, we found that both inflammatory and hypoxic stimuli significantly enhanced cell migration. However, the combination of inflammatory and hypoxic stimuli did not result in a synergistic effect. The presence of stromal cell-derived factor-1 (SDF-1) significantly enhanced cell migration irrespective of the incubation conditions, and these positive effects could be blocked by treatment with AMD3100. Based on a time course experiment, we found that preconditioning cells with either inflammatory or hypoxic stimuli for 24 h or with both stimuli for 12 h led to high levels of chemokine receptor type 4 (CXCR4) expression. In vivo studies further demonstrated that pretreatment of BMMSCs with inflammatory and/or hypoxic stimuli resulted in an increased number of systemically injected cells migrating toward skin injuries, and local SDF-1 administration significantly increased cell migration. These findings suggest that in vitro control of either inflammatory or hypoxic stimuli has significant potential to enhance SDF-1-directed BMMSC migration via the upregulation of CXCR4 expression. Although combining the stimuli did not necessarily lead to a synergistic effect, the potential to reduce the dose and time required for cell preconditioning indicates that combinations of various strategies warrant further exploration.
Collapse
Affiliation(s)
- Yang Yu
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Rui-Xin Wu
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Li-Na Gao
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Yu Xia
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Hao-Ning Tang
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Fa-Ming Chen
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| |
Collapse
|
125
|
Rana D, Tabasum A, Ramalingam M. Cell-laden alginate/polyacrylamide beads as carriers for stem cell delivery: preparation and characterization. RSC Adv 2016. [DOI: 10.1039/c5ra26447b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rationale behind present investigation was to enhance the encapsulation efficacy of stem cells within the polymeric gel system and retain their 3D morphology as in the native microenvironment.
Collapse
Affiliation(s)
- Deepti Rana
- Centre for Stem Cell Research (CSCR)
- A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru
- Christian Medical College Campus
- Vellore 632002
- India
| | - Aleya Tabasum
- Centre for Stem Cell Research (CSCR)
- A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru
- Christian Medical College Campus
- Vellore 632002
- India
| | - Murugan Ramalingam
- Centre for Stem Cell Research (CSCR)
- A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru
- Christian Medical College Campus
- Vellore 632002
- India
| |
Collapse
|
126
|
Park JY, Gao G, Jang J, Cho DW. 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. J Mater Chem B 2016; 4:7521-7539. [DOI: 10.1039/c6tb01662f] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the current approaches to using 3D printed structures to deliver bioactive factors (e.g., cells and biomolecules) for tissue repair and regeneration.
Collapse
Affiliation(s)
- Ju Young Park
- Division of Integrative Biosciences and Biotechnology
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
127
|
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal Stem Cells Derived from Dental Pulp: A Review. Stem Cells Int 2015; 2016:4709572. [PMID: 26779263 PMCID: PMC4686712 DOI: 10.1155/2016/4709572] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.
Collapse
Affiliation(s)
- Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, MEX, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, MEX, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, MEX, Mexico
| |
Collapse
|
128
|
Heissig B, Dhahri D, Eiamboonsert S, Salama Y, Shimazu H, Munakata S, Hattori K. Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cell Mol Life Sci 2015; 72:4759-70. [PMID: 26350342 PMCID: PMC11113371 DOI: 10.1007/s00018-015-2035-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Tissue regeneration during wound healing or cancer growth and progression depends on the establishment of a cellular microenvironment. Mesenchymal stem cells (MSC) are part of this cellular microenvironment, where they functionally modulate cell homing, angiogenesis, and immune modulation. MSC recruitment involves detachment of these cells from their niche, and finally MSC migration into their preferred niches; the wounded area, the tumor bed, and the BM, just to name a few. During this recruitment phase, focal proteolysis disrupts the extracellular matrix (ECM) architecture, breaks cell-matrix interactions with receptors, and integrins, and causes the release of bioactive fragments from ECM molecules. MSC produce a broad array of proteases, promoting remodeling of the surrounding ECM through proteolytic mechanisms. The fibrinolytic system, with its main player plasmin, plays a crucial role in cell migration, growth factor bioavailability, and the regulation of other protease systems during inflammation, tissue regeneration, and cancer. Key components of the fibrinolytic cascade, including the urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1), are expressed in MSC. This review will introduce general functional properties of the fibrinolytic system, which go beyond its known function of fibrin clot dissolution (fibrinolysis). We will focus on the role of the fibrinolytic system for MSC biology, summarizing our current understanding of the role of the fibrinolytic system for MSC recruitment and the functional consequences for tissue regeneration and cancer. Aspects of MSC origin, maintenance, and the mechanisms by which these cells contribute to altered protease activity in the microenvironment under normal and pathological conditions will also be discussed.
Collapse
Affiliation(s)
- Beate Heissig
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Atopy (Allergy) Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Douaa Dhahri
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Salita Eiamboonsert
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yousef Salama
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Shimazu
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shinya Munakata
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Koichi Hattori
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Center for Genome and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
129
|
Xia Y, Tang HN, Wu RX, Yu Y, Gao LN, Chen FM. Cell Responses to Conditioned Media Produced by Patient-Matched Stem Cells Derived From Healthy and Inflamed Periodontal Ligament Tissues. J Periodontol 2015; 87:e53-63. [PMID: 26609694 DOI: 10.1902/jop.2015.150462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) derived from clinically compromised teeth with periodontitis are considered a readily accessible cell source, but their impaired stem cell functionalities, as observed in various in vitro and in vivo models, necessitate further investigation of these inflamed cells before their translation into therapeutic applications. In this study, the effects of conditioned media (CM) produced by stem cells derived from human healthy periodontal ligament tissues (H-PDLSCs) or inflamed periodontal ligament tissues (I-PDLSCs), referred to as H-CM and I-CM, respectively, on the biologic properties of H-PDLSCs and I-PDLSCs from the same donor are compared to explore the extent to which inflamed cells can be rescued by their extrinsic environment (i.e., by H-CM). METHODS H-CM and I-CM were prepared from in vitro cell cultures, and the cellular responses of H-PDLSCs and I-PDLSCs to patient-matched H-CM and I-CM were investigated in terms of colony-forming ability, cell proliferation, and adipogenic/osteogenic differentiation. RESULTS In H-CM and I-CM, H-PDLSCs and I-PDLSCs exhibited similar adipogenic potential. However, when incubated in I-CM, both cell types demonstrated an increased capacity to proliferate but a decreased capacity to differentiate into osteoblasts. Significantly, the impaired osteogenic differentiation of I-PDLSCs was partially rescued by incubation in H-CM under osteo-inducing conditions. CONCLUSION The CM of patient-matched H-PDLSCs and I-PDLSCs differed, and the impaired osteogenic differentiation of inflamed stem cells had the potential to be rescued, at least partially, for therapeutic use via changing the cell culture microenvironment in vitro.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| | - Hao-Ning Tang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| | - Li-Na Gao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University
| |
Collapse
|
130
|
Kar M, Vernon Shih YR, Velez DO, Cabrales P, Varghese S. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery. Biomaterials 2015; 77:186-97. [PMID: 26606444 DOI: 10.1016/j.biomaterials.2015.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yu-Ru Vernon Shih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Ortiz Velez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
131
|
Yuan J, Li W, Huang J, Guo X, Li X, Lu X, Huang X, Zhang H. Transplantation of human adipose stem cell-derived hepatocyte-like cells with restricted localization to liver using acellular amniotic membrane. Stem Cell Res Ther 2015; 6:217. [PMID: 26541667 PMCID: PMC4635993 DOI: 10.1186/s13287-015-0208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Adult stem cell-derived hepatocytes transplantation holds considerable promise for future clinical individualized therapy of liver failure or dysfunction. However, the low engraftment of the available hepatocytes in the liver disease microenvironment has been a major obstacle. Methods Acellular human amniotic membrane was developed as a three-dimensional scaffold and combined with hepatocyte-like cells derived from human adipose stem cells to engineer a hepatic tissue graft that would allow hepatocyte engraftment in the liver effectively. Results The hepatic tissue grafts maintained hepatocyte-specific gene expression and functionality in vitro. When transplanted into the surgical incision in livers for engraftment, the engineered hepatic grafts significantly decreased the degree of liver injury caused by a carbon tetrachloride treatment and generated cords that were similar to the ductal plates in the liver between the acellular human amniotic membrane and the liver of receipts at day 3 post-transplantation. The hepatic tissue grafts maintained the expression of human hepatocyte-specific markers albumin, hepatocyte nuclear factor 4α, and cytochrome P450 2B6 in the liver of receipts, and acquired human-specific drug metabolism ability at eight weeks post-transplantation. Conclusions The acellular human amniotic membrane has the ability to maintain the functional phenotype of the hepatocyte-like cells derived from human adipose stem cells. Functional acellular human amniotic membrane-hepatocytes grafts integrated with the liver decreases the acute liver injury of mice. These engineered tissue constructs may support stem cell-based individualized therapy for liver disease and for bioartificial liver establishment. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0208-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Weihong Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Jieqiong Huang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xinyue Guo
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xueyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xin Lu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, No. 20, Fu xing men wai, Beijing, 100038, China.
| | - Haiyan Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
132
|
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 2015; 94:53-62. [PMID: 25861724 DOI: 10.1016/j.addr.2015.03.013] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
Collapse
|
133
|
Ryu S, Yoo J, Jang Y, Han J, Yu SJ, Park J, Jung SY, Ahn KH, Im SG, Char K, Kim BS. Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets. ACS NANO 2015; 9:10186-202. [PMID: 26361723 DOI: 10.1021/acsnano.5b03823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering & KI for Nano Century, Korea Advanced Institute of Science and Technology , Daejeon 305-701, Republic of Korea
| | | | | | | | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering & KI for Nano Century, Korea Advanced Institute of Science and Technology , Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
134
|
Zeng Y, Zhu L, Han Q, Liu W, Mao X, Li Y, Yu N, Feng S, Fu Q, Wang X, Du Y, Zhao RC. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater 2015; 25:291-303. [PMID: 26234487 DOI: 10.1016/j.actbio.2015.07.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/18/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
Wound dressings of cell-laden bulk hydrogel or scaffold were mainly applied for enhanced cell engraftment in contrast to free cell injection. However, dressing of cells laden in biomaterials on wound surface might not effectively and timely exert functions on deep or chronic wounds where insufficient blood supply exists. Previously, we developed injectable gelatin microcryogels (GMs) which could load cells for enhanced cell delivery and cell therapy. In this study, biological changes of human adipose-derived stem cells (hASCs) laden in GMs were compared in varied aspects with traditional two dimensional (2D) cell culture, such as cell phenotype markers, stemness genes, differentiation, secretion of growth factors, cell apoptosis and cell memory by FACS, QRT-PCR and ELISA, that demonstrated the priming effects of GMs on upregulation of stemness genes and improved secretion of growth factors of hASCs for potential augmented wound healing. In a full-thickness skin wound model in nude mice, multisite injection and dressing of hASCs-laden GMs could significantly accelerate the healing compared to free cell injection. Bioluminescence imaging and protein analysis indicated improved cell retention and secretion of multiple growth factors. Our study suggests that GMs as primed injectable 3D micro-niches represent a new cell delivery methodology for skin wound healing which could not only benefit on the recovery of wound bed but also play direct effects on wound basal layer for healing enhancement. Injectable GMs as facile multisite cell delivery approach potentially provide new minimally-invasive therapeutic strategy for refractory wounds such as diabetic ulcer or radiative skin wound. STATEMENT OF SIGNIFICANCE This work applied a type of elastic micro-scaffold (GMs) to load and prime hMSCs for skin wound healing. Due to the injectability of GMs, the 3D cellular micro-niches could simply realize minimally-invasive and multisite cell delivery approach for accelerating the wound healing process superior to free cell injection. The biological features of MSCs has been thoroughly characterized during 3D culture in GMs (i.e. cell proliferation, characterization of cell surface markers, stemness of MSCs in GMs, differentiation of MSCs in GMs, secretion of MSCs in GMs, induced apoptosis of MSCs in GMs). Multiple methods such as bioluminescent imaging, immunohistochemistry, immunofluorescence, qRT-PCR, ELSA and western blot were used to assess the in vivo results between groups.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Lin Zhu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qin Han
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xiaojing Mao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yaqian Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Siyu Feng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qinyouen Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Wang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Center of Translational Medicine Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
135
|
Chen W, Fu L, Chen X. Improving cell-based therapies by nanomodification. J Control Release 2015; 219:560-575. [PMID: 26423238 DOI: 10.1016/j.jconrel.2015.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023]
Abstract
Cell-based therapies are emerging as a promising approach for various diseases. Their therapeutic efficacy depends on rational control and regulation of the functions and behaviors of cells during their treatments. Different from conventional regulatory strategy by chemical adjuvants or genetic engineering, which is restricted by limited synergistic regulatory efficiency or uncertain safety problems, a novel approach based on nanoscale artificial materials can be applied to modify living cells to endow them with novel functions and unique properties. Inspired by natural "nano shell" and "nano compass" structures, cell nanomodification can be developed through both external and internal pathways. In this review, some novel cell surface engineering and intracellular nanoconjugation strategies are summarized. Their potential applications are also discussed, including cell protection, cell labeling, targeted delivery and in situ regulation. It is believed that these novel cell-material complexes can have great potentials for biomedical applications.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
136
|
Mitsiadis TA, Harada H. Regenerated teeth: the future of tooth replacement. An update. Regen Med 2015; 10:5-8. [PMID: 25562346 DOI: 10.2217/rme.14.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development & Regeneration Unit, ZZM, Faculty of Medicine, University of Zurich, Plattenstrasse 11, Zurich CH-8032, Switzerland
| | | |
Collapse
|
137
|
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6:638-53. [PMID: 26088192 PMCID: PMC4537472 DOI: 10.1007/s13238-015-0179-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Collapse
Affiliation(s)
- Chunxiao Qi
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xiaojun Yan
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Chenyu Huang
- />Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, 102218 China
| | - Alexander Melerzanov
- />Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny, 141701 Russia
| | - Yanan Du
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
- />Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003 China
| |
Collapse
|
138
|
Webber MJ, Tongers J, Renault MA, Roncalli JG, Losordo DW, Stupp SI. Reprint of: Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 2015; 23 Suppl:S42-51. [PMID: 26235345 DOI: 10.1016/j.actbio.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 07/21/2009] [Indexed: 12/19/2022]
Abstract
There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90 wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.
Collapse
Affiliation(s)
- Matthew J Webber
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA; Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Marie-Ange Renault
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Jerome G Roncalli
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Evanston, IL 60208, USA; Department of Chemistry, Evanston, IL 60208, USA.
| |
Collapse
|
139
|
Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:55-64. [PMID: 26234504 DOI: 10.1002/cmmi.1658] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
To develop effective stem cell therapies, it is important to track therapeutic cells non-invasively and monitor homing to areas of pathology. The purpose of this study was to design and evaluate the labeling efficiency of commercially available dextran-coated superparamagnetic iron oxide nanoparticles, FeraTrack Direct (FTD), in various stem and immune cells; assess the cytotoxicity and tolerability of the FTD in stem cells; and monitor stem cell homing using FTD-labeled bone-marrow-derived mesenchymal stromal cells (BMSCs) and neural stem cells (NSCs) in a tumor model by in vivo MRI. BMSCs, NSCs, hematopoietic stem cells (HSCs), T-lymphocytes, and monocytes were labeled effectively with FTD without the need for transfection agents, and Prussian blue (PB) staining and transmission electron microscopy (TEM) confirmed intracellular uptake of the agent. The viability, proliferation, and functionality of the labeled cells were minimally or not affected after labeling. When 10(6) FTD-labeled BMSCs or NSCs were injected into C6 glioma bearing nude mice, the cells homing to the tumors were detected as hypointense regions within the tumor using 3 T clinical MRI up to 10 days post injection. Histological analysis confirmed the homing of injected cells to the tumor by the presence of PB positive cells that are not macrophages. Labeling of stem cells or immune cells with FTD was non-toxic, and should facilitate the translation of this agent to clinical trials for evaluation of trafficking of cells by MRI.
Collapse
Affiliation(s)
- Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bobbi Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
140
|
Jun I, Lee YB, Choi YS, Engler AJ, Park H, Shin H. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties. Biomaterials 2015; 54:44-54. [DOI: 10.1016/j.biomaterials.2015.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
141
|
Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 2015; 31:1058-70. [PMID: 25958832 DOI: 10.1002/btpr.2103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies.
Collapse
Affiliation(s)
- Andrea Gray
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Timothy Maguire
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Rene Schloss
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Martin L Yarmush
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| |
Collapse
|
142
|
Hun Yeon J, Chan KYT, Wong TC, Chan K, Sutherland MR, Ismagilov RF, Pryzdial ELG, Kastrup CJ. A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli. Sci Rep 2015; 5:10274. [PMID: 25975772 PMCID: PMC4432564 DOI: 10.1038/srep10274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022] Open
Abstract
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Karen Y T Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ting-Chia Wong
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kelvin Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Sutherland
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Edward L G Pryzdial
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
143
|
Levato R, Planell JA, Mateos-Timoneda MA, Engel E. Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy. Acta Biomater 2015; 18:59-67. [PMID: 25702533 DOI: 10.1016/j.actbio.2015.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 01/09/2023]
Abstract
Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue - such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways. The effect of different functionalization strategies on MSC migratory behavior from the μCs is studied in vitro in relation to SDF-1α/CXCR4 axis, - a major actor in MSC recruitment, chemotaxis and homing. Collagen and arginine-glycine-aspartic acid (RGD) peptides were either covalently grafted or physisorbed on μC surface. While stable covalent modifications promoted better cell adhesion and higher proliferation compared to physisorption, the functionalization method of the μCs also affected the cells migratory behavior in response to SDF-1α (CXCL12) stimulation. Less stable coatings (physisorbed) showed sensibly higher number of migrating cells than covalent collagen/RGD coatings. The combination of physic-chemical cues provided by protein/peptide functionalization and stimuli induced by 3D culture on μCs improved MSC expression of CXCR4, and exerted a control over cell migration, a condition suitable to promote cell homing after transplantation in vivo. These are key findings to highlight the impact of surface modification approaches on chemokine-triggered cell release, and allow designing biomaterials for efficient and controlled cell delivery to damaged tissues.
Collapse
|
144
|
|
145
|
Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med 2015; 11:1195-1211. [PMID: 25846217 DOI: 10.1002/term.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/20/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
Controlled delivery of biological cues through synthetic scaffolds to enhance the healing capacity of bone defects is yet to be realized clinically. The purpose of this study was development of a bioactive tissue-engineered scaffold providing the sustained delivery of an osteoinductive drug, dexamethasone disodium phosphate (DXP), encapsulated within chitosan nanoparticles (CN). Porous baghdadite (BD; Ca3 ZrSi2 O9 ) scaffolds, a zirconia-modified calcium silicate ceramic, was coated with DXP-encapsulated CN nanoparticles (DXP-CN) using nanostructured gellan and xanthan hydrogel (GX). Crosslinker and GX polymer concentrations were optimized to achieve a homogeneous distribution of hydrogel coating within BD scaffolds. Dynamic laser scattering indicated an average size of 521 ± 21 nm for the DXP-CN nanoparticles. In vitro drug-release studies demonstrated that the developed DXP-CN-GX hydrogel-coated BD scaffolds (DXP-CN-GX-BD) resulted in a sustained delivery of DXP over the 5 days (78 ± 6% of drug release) compared with burst release over 1 h, seen from free DXP loaded in uncoated BD scaffolds (92 ± 8% release in 1 h). To estimate the influence of controlled delivery of DXP from the developed scaffolds, the effect on MG 63 cells was evaluated using various bone differentiation assays. Cell culture within DXP-CN-GX-BD scaffolds demonstrated a significant increase in the expression of early and late osteogenic markers of alkaline phosphatase activity, collagen type 1 and osteocalcin, compared to the uncoated BD scaffold. The results suggest that the DXP-releasing nanostructured hydrogel integrated within the BD scaffold caused sustained release of DXP, improving the potential for osteogenic differentiation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rekha R Sehgal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - S I Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Australia
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
146
|
Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 2015; 84:146-58. [PMID: 25174310 DOI: 10.1016/j.addr.2014.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 12/30/2022]
Abstract
Low back pain is generally attributed to intervertebral disc (IVD) degeneration. This is a multifactorial disease induced by genetic and environmental factors and that progresses with aging. Disc degeneration is characterized by a limited ability of IVD cells to produce functional matrix while producing abnormal amounts of matrix-degrading enzymes. The prolonged imbalance between anabolism and catabolism in degenerative discs alters their composition and hydration. In turn, this results in increased angiogenesis and the loss of the disc's ability to maintain its aneural condition. Inflammation in the IVD, in particular the presence of pro-inflammatory cytokines, was found to favor innervation and also sensitization of the nociceptive pathways, thereby exacerbating degenerative symptoms. In this review, we discuss anti-inflammatory approaches to encounter disc catabolism, potential treatments to lower discogenic pain and pro-anabolic approaches in the form of protein delivery, gene therapy and cell delivery, to trigger regeneration in the IVD.
Collapse
|
147
|
Cai X, Yang F, Yan X, Yang W, Yu N, Oortgiesen DAW, Wang Y, Jansen JA, Walboomers XF. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo. J Clin Periodontol 2015; 42:380-9. [DOI: 10.1111/jcpe.12379] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xinjie Cai
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Fang Yang
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - Xiangzhen Yan
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - Wanxun Yang
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Na Yu
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
148
|
Chuck NC, Azzabi Zouraq F, Rottmar M, Eberli D, Boss A. MR Imaging Relaxometry Allows Noninvasive Characterization of in Vivo Differentiation of Muscle Precursor Cells. Radiology 2015; 274:800-9. [DOI: 10.1148/radiol.14140483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
149
|
Fan C, Wang DA. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model. Macromol Biosci 2015; 15:535-45. [PMID: 25557976 DOI: 10.1002/mabi.201400453] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/27/2014] [Indexed: 01/20/2023]
Abstract
One bottleneck in tissue regeneration with hydrogel scaffolds is the limited understanding of the crucial factors for controlling hydrogel's physical microenvironments to regulate cell fate. Here, the effects of permeability and living space of hydrogels on encapsulated cells' behavior were evaluated, respectively. Three model hydrogel-based constructs are fabricated by using photo-crosslinkable hyaluronic acid as precursor and chondrocytes as model cell type. The better permeable hydrogels facilitate better cell viability and rapid proliferation, which lead to increased production of extracellular matrix (ECM), e.g. collagen, glycosaminoglycan. By prolonged culture, nano-sized hydrogel networks inhibit neo-tissue development, and the presence of macro-porous living spaces significantly enhance ECM deposition via forming larger cell clusters and eventually induce formation of scaffold-free neo-tissue islets. The results of this work demonstrate that the manipulation and optimization of hydrogel microenvironments, namely permeability and living space, are crucial to direct cell fate and neo-tissue formation.
Collapse
Affiliation(s)
- Changjiang Fan
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | | |
Collapse
|
150
|
Ereath Beeran A, Fernandez FB, John A, Varma PR H. Self-assembled superparamagnetic nanocomposite-labelled cells for noninvasive, controlled, targeted delivery and therapy. RSC Adv 2015. [DOI: 10.1039/c4ra16185h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Efficient delivery of cells to targeted sites at optimal concentrations within rational limits of damage to normal tissue is a major challenge for cell delivery.
Collapse
Affiliation(s)
- Ansar Ereath Beeran
- Bioceramics Laboratory
- Thiruvananthapuram-695 019
- India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Thiruvananthapuram-695 019
| | - Francis Boniface Fernandez
- Transmission Electron Microscopy Laboratory
- Thiruvananthapuram-695 019
- India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Thiruvananthapuram-695 019
| | - Annie John
- Transmission Electron Microscopy Laboratory
- Thiruvananthapuram-695 019
- India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Thiruvananthapuram-695 019
| | - Harikrishna Varma PR
- Bioceramics Laboratory
- Thiruvananthapuram-695 019
- India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Thiruvananthapuram-695 019
| |
Collapse
|