101
|
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile. Microrna 2019; 8:116-126. [PMID: 30474543 DOI: 10.2174/2211536608666181126093903] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Ketogenic Diet (KD) promotes metabolic changes and optimizes energy metabolism. It is unknown if microRNAs (miRs) are influenced by KD in obese subjects. The screening of circulating miRs was performed with the FDA approved platform n-counter flex and blood biochemical parameters were dosed by ADVIA 1800. OBJECTIVES The aim of this study was to evaluate mir profile under 6 weeks of biphasic KD in obese subjects. We enrolled 36 obese subjects (18 females and 18 males) in stage 1 of Edmonton Obesity Staging System (EOSS) parameter. RESULT Any correlation was found between biochemical parameter and three miRs, hsa-let-7b-5p, hsa-miR-143-3p and hsa-miR-504-5p influenced in an equal manner in both sexes. The KD resulted safe and ameliorate both biochemical and anthropometric factors in obese subjects re-collocating them into stage 0 of EOSS parameters. CONCLUSION The miRs herein identified under KD might be a useful tool to monitor low carbohydrate nutritional regimens which reflect indirectly the regulatory biochemical mechanisms and cell signaling that orchestrate metabolic and signaling pathways.
Collapse
Affiliation(s)
- Roberto Cannataro
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Mariarita Perri
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| |
Collapse
|
102
|
Riis S, Christensen B, Nellemann B, Møller AB, Husted AS, Pedersen SB, Schwartz TW, Jørgensen JOL, Jessen N. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J Appl Physiol (1985) 2018; 126:569-577. [PMID: 30571288 DOI: 10.1152/japplphysiol.00989.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endurance exercise training induces adaptations in metabolically active organs, but adaptations in human subcutaneous adipose tissue (scAT) remains incompletely understood. On the basis of animal studies, we hypothesized that endurance exercise training would increase the expression of proteins involved in lipolysis and glucose uptake in scAT. To test these hypotheses, 19 young and healthy males were randomized to either endurance exercise training (TR; age 18-24 yr; BMI 19.0-25.4 kg/m2) or a nonexercising control group (CON; age 21-35 yr; BMI 20.5-28.8 kg/m2). Abdominal subcutaneous fat biopsies and blood were obtained at rest before and after intervention. By using Western blotting and PCR, we determined expression of lipid droplet-associated proteins, various proteins involved in substrate metabolism, and mRNA abundance of cell surface G protein-coupled receptors (GPCRs). Adipose tissue insulin sensitivity was determined from fasting plasma insulin and nonesterified fatty acids (adipose tissue insulin resistance index; Adipo-IR). Adipo-IR improved in TR compared with CON ( P = 0.03). This was accompanied by increased insulin receptor (IR) protein expression in scAT with a 1.54-fold (SD 0.79) change from baseline in TR vs. 0.85 (SD 0.30) in CON ( P = 0.007). Additionally, hexokinase II (HKII) and succinate dehydrogenase complex subunit A (SDHA) protein increased in TR compared with CON ( P = 0.006 and P = 0.04, respectively). We did not observe changes in lipid droplet-associated proteins or mRNA abundance of GPCRs. Collectively, 10 weeks of endurance exercise training improved adipose tissue insulin sensitivity, which was accompanied by increased IR, HKII, and SDHA protein expression in scAT. We suggest that these adaptations contribute to an improved metabolic flexibility. NEW & NOTEWORTHY This study is the first to investigate the molecular adaptations in human subcutaneous adipose tissue (scAT) after endurance exercise training compared with a nonexercising control group. We show that endurance exercise training improves insulin sensitivity in human scAT, and this is accompanied by increased expression of insulin receptor, hexokinase II, and succinate dehydrogenase complex subunit A. Collectively, our data suggest that endurance exercise training induces molecular adaptations in human scAT, which may contribute to an improved metabolic flexibility.
Collapse
Affiliation(s)
- Simon Riis
- Section for Sport Science, Department of Public Health, Aarhus University , Aarhus , Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Britt Christensen
- Section for Sport Science, Department of Public Health, Aarhus University , Aarhus , Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| | - Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital , Aarhus , Denmark
| | - Anna Sofie Husted
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research , Copenhagen , Denmark
| | - Steen B Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research , Copenhagen , Denmark.,Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | | | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Department of Biomedicine, Aarhus University , Aarhus , Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
103
|
Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun Rev 2018; 17:1240-1250. [DOI: 10.1016/j.autrev.2018.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
104
|
Boccella S, Guida F, De Logu F, De Gregorio D, Mazzitelli M, Belardo C, Iannotta M, Serra N, Nassini R, de Novellis V, Geppetti P, Maione S, Luongo L. Ketones and pain: unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain. FASEB J 2018; 33:1062-1073. [PMID: 30085883 DOI: 10.1096/fj.201801033r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mechanisms underlying neuropathic pain are poorly understood. Here we show the unexplored role of the hydroxyl carboxylic acid receptor type 2 (HCAR2) in 2 models of neuropathic pain. We used an oral treatment with dimethyl fumarate and the HCAR2 endogenous ligand β-hydroxybutyrate (BHB) in wild-type (WT) and HCAR2-null mice. We found an up-regulation of the HCAR2 in the sciatic nerve and the dorsal root ganglia in neuropathic mice. Accordingly, acute and chronic treatment with dimethylfumarate (DMF) and BHB reduced the tactile allodynia. This effect was completely lost in the HCAR2-null mice after a 2-d starvation protocol, in which the BHB reached the concentration able to activate the HCAR2-reduced tactile allodynia in female WT mice, but not in the HCAR2-null mice. Finally, we showed that chronic treatment with DMF reduced the firing of the ON cells (cells responding with an excitation after noxious stimulation) of the rostral ventromedial medulla. Our results pave the way for investigating the mechanisms by which HCAR2 regulates neuropathic pain plasticity.-Boccella, S., Guida, F., De Logu, F., De Gregorio, D., Mazzitelli, M., Belardo, C., Iannotta, M., Serra, N., Nassini, R., de Novellis, V., Geppetti, P., Maione, S., Luongo, L. Ketones and pain: unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; and
| | - Carmela Belardo
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Nicola Serra
- Department of Radiology, University of Campania L. Vanvitelli, Naples, Italy
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Pierangelo Geppetti
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
105
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
106
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
107
|
Wu Y, Wang M, Zhang K, Li Y, Xu M, Tang S, Qu X, Li C. Lactate enhanced the effect of parathyroid hormone on osteoblast differentiation via GPR81-PKC-Akt signaling. Biochem Biophys Res Commun 2018; 503:737-743. [PMID: 29913143 DOI: 10.1016/j.bbrc.2018.06.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Osteoblast uses aerobic glycolysis to meet the metabolic needs in differentiation process. Lactate, the end product of glycolysis, presents in the environment with elevated PTH and osteoblast differentiation. Although previous findings showed that lactate promoted osteoblast differentiation, whether lactate affects PTH-mediated osteoblast differentiation is unclear. To investigate this, pre-osteoblast cell line MC3T3-E1 was treated PTH with or without physiological dose of lactate. Lactate increases ALP positive cell formation, increases ALP activity and expression of differentiation related markers, enriches the CREB transcriptional factor target genes in PTH treated cells. Using inhibitors for MCT-1 reveales that lactate effects are MCT-1 independent. Lactate selectively increases Akt and p38 activation but not Erk1/2 and β-Catenin activation. The inhibitors for Akt and p38 inhibit lactate effects on PTH mediated osteoblast differentiation. Using inhibitors for Gαi signaling of GPR81 further increases Alp mRNA levels in lactate and PTH co-treatment cells. However, with the inhibitors for Gβγ-PLC-PKC signaling, the effect of lactate on PTH mediated osteoblast differentiation is inhibited. Our data demonstrate that lactate activates GPR81-Gβγ-PLC-PKC-Akt signaling to regulate osteoblast differentiation that mediated by PTH treatment.
Collapse
Affiliation(s)
- Yu Wu
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China.
| | - Miaomiao Wang
- Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Kefan Zhang
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingjiang Li
- The Second Wuxi affiliated hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu, China
| | - Manlin Xu
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Shaidi Tang
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiuxia Qu
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunping Li
- Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, China.
| |
Collapse
|
108
|
Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol 2018; 8:1091-1115. [PMID: 29978895 DOI: 10.1002/cphy.c170050] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nutrient sensing is a mechanism for organisms to sense their environment. In larger animals, including humans, the intestinal tract is a major site of nutrient sensing for the body, not surprisingly, as this is the central location where nutrients are absorbed. In the gut, bacterial fermentation results in generation of short chain fatty acids (SCFAs), a class of nutrients, which are sensed by specific membrane bound receptors, FFA2, FFA3, GPR109a, and Olfr78. These receptors are expressed uniquely throughout the gut and signal through distinct mechanisms. To date, the emerging data suggests a role of these receptors in normal and pathological conditions. The overall function of these receptors is to regulate aspects of intestinal motility, hormone secretion, maintenance of the epithelial barrier, and immune cell function. Besides in intestinal health, a prominent role of these receptors has emerged in modulation of inflammatory and immune responses during pathological conditions. Moreover, these receptors are being revealed to interact with the gut microbiota. This review article updates the current body of knowledge on SCFA sensing receptors in the gut and their roles in intestinal health and disease as well as in whole body energy homeostasis. © 2017 American Physiological Society. Compr Physiol 8:1091-1115, 2018.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Kumar U Kotlo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
109
|
Alarcon P, Manosalva C, Carretta MD, Hidalgo AI, Figueroa CD, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. Fatty and hydroxycarboxylic acid receptors: The missing link of immune response and metabolism in cattle. Vet Immunol Immunopathol 2018; 201:77-87. [PMID: 29914687 DOI: 10.1016/j.vetimm.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023]
Abstract
Fatty and hydroxycarboxylic acids are one of the main intermediates of energy metabolism in ruminants and critical in the milk production of cattle. High production demands on a dairy farm can induce nutritional imbalances and metabolism disorders, which have been widely associated with the onset of sterile inflammatory processes and increased susceptibility to infections. The literature suggests that short-chain fatty acids (SCFA), long-chain fatty acids (LCFA) and hydroxycarboxylic acids are relevant modulators of the host innate inflammatory response. For instance, increased SCFA and lactate levels are associated with subacute ruminal acidosis (SARA) and the activation of pro-inflammatory processes mediated by diverse leukocyte and vascular endothelial cells. As such, free LCFA and the ketone body β-hydroxybutyrate are significantly increased in the plasma 1-2 weeks postpartum, coinciding with the time period in which cows are more susceptible to acquiring infectious diseases that the host innate immune system should actively oppose. Today, many of these pro-inflammatory responses can be related to the activation of specific G protein-coupled receptors, including GPR41/FFA3 and GPR43/FFA2 for SCFA; GPR40/FFA1 and GPR120/FFA4 for LCFA, GPR109A/HCA2 for ketone body β-hydroxybutyrate, and GPR81/HCA1 for lactate, all expressed in different bovine tissues. The activation of these receptors modulates the release of intracellular granules [e.g., metalloproteinase-9 (MMP-9) and lactoferrin], radical oxygen species (ROS) production, chemotaxis, and the production of relevant pro-inflammatory mediators. The article aimed to review the role of natural ligands and receptors and the resulting impact on the host innate immune reaction of cattle and, further, to address the most recent evidence supporting a potential connection to metabolic disorders.
Collapse
Affiliation(s)
- P Alarcon
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - C Manosalva
- Pharmacy Institute, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - M D Carretta
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - A I Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - C D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Universidad Austral de Chile, Valdivia, Chile
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - R A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
110
|
Masuda Y, Kurikawa N, Nishizawa T. Overexpressing human GPR109A leads to pronounced reduction in plasma triglyceride levels in BAC transgenic rats. Atherosclerosis 2018; 272:182-192. [DOI: 10.1016/j.atherosclerosis.2018.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022]
|
111
|
Discovery of coumarin-dihydroquinazolinone analogs as niacin receptor 1 agonist with in-vivo anti-obesity efficacy. Eur J Med Chem 2018; 152:208-222. [DOI: 10.1016/j.ejmech.2018.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|
112
|
Dimethyl fumarate downregulates the immune response through the HCA 2/GPR109A pathway: Implications for the treatment of multiple sclerosis. Mult Scler Relat Disord 2018; 23:46-50. [PMID: 29763776 DOI: 10.1016/j.msard.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of action of dimethyl fumarate (DMF), and its metabolite, monomethyl fumarate (MMF), for the treatment of multiple sclerosis are not completely elucidated. OBJECTIVES To discuss the role of DMF/MMF-induced hydroxycarboxylic acid receptor 2 (HCA2/GPR109A) pathway activation in the immune response and treatment of MS. METHODS A narrative (traditional) review of the current literature. RESULTS Studies have shown that binding of DMF/MMF to HCA2 on dendritic cells inhibits the production of pro-inflammatory cytokines in vitro and in MS murine models. Evidence suggests that activation of HCA2 expressed in immune cells and gut epithelial cells by DMF/MMF, may induce anti-inflammatory responses in the intestinal mucosa. CONCLUSION Although the DMF/MMF mechanism of action remains unclear, evidence suggests that the activation of HCA2/GPR109A pathway downregulates the immune response and may activate anti-inflammatory response in the intestinal mucosa, possibly leading to reduction in CNS tissue damage in MS patients.
Collapse
|
113
|
Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. EBioMedicine 2018; 30:317-325. [PMID: 29627390 PMCID: PMC5952406 DOI: 10.1016/j.ebiom.2018.03.030] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
G Protein Coupled Receptor 109A (GPR109A), which belongs to the G protein coupled receptor family, can be activated by niacin, butyrate, and β-hydroxybutyric acid. Here, we assessed the anti-inflammatory activity of sodium butyrate (SB) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mice, an experimental model that resembles Crohn's disease, and explored the potential mechanism of SB in inflammatory bowel disease (IBD). In vivo, experimental GPR109a-/- and wild-type (WT) mice were administered SB (5g/L) in their drinking water for 6weeks. The mice were then administered TNBS via rectal perfusion to imitate colitis. In vitro, RAW246.7 macrophages, Caco-2 cells, and primary peritoneal macrophages were used to investigate the protective roles of SB on lipopolysaccharide (LPS)-induced inflammatory response and epithelium barrier dysfunction. In vivo, SB significantly ameliorated the inflammatory response and intestinal epithelium barrier dysfunction in TNBS-induced WT mice, but failed to provide a protective effect in TNBS-induced GPR109a-/- mice. In vitro, pre-treatment with SB dramatically inhibited the expression of TNF-α and IL-6 in LPS-induced RAW246.7 macrophages. SB inhibited the LPS-induced phosphorylation of the NF-κB p65 and AKT signaling pathways, but failed to inhibit the phosphorylation of the MAPK signaling pathway. Our data indicated that SB ameliorated the TNBS-induced inflammatory response and intestinal epithelium barrier dysfunction through activating GPR109A and inhibiting the AKT and NF-κB p65 signaling pathways. These findings therefore extend the understanding of GPR109A receptor function and provide a new theoretical basis for treatment of IBD.
Collapse
|
114
|
Mrowietz U, Morrison PJ, Suhrkamp I, Kumanova M, Clement B. The Pharmacokinetics of Fumaric Acid Esters Reveal Their In Vivo Effects. Trends Pharmacol Sci 2018; 39:1-12. [DOI: 10.1016/j.tips.2017.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
|
115
|
Kambe Y, Kurihara T, Miyata A. [Astrocyte-neuron lactate shuttle, the major effector of astrocytic PACAP signaling for CNS functions]. Nihon Yakurigaku Zasshi 2018; 151:239-243. [PMID: 29887572 DOI: 10.1254/fpj.151.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transfer of lactate from astrocytes to neurons is activated when synaptic activity is increased, and this mechanism is now known as the astrocyte-neuron lactate shuttle (ANLS), that could account for the coupling between synaptic activity and energy delivery. Many lines of evidence suggested that ANLS contributes to neuronal activation or synaptic plasticity at the cellular level as well as learning/memory and cocaine addiction at the behavioral level. However, the candidate neurotransmitters which evoke ANLS activation are still under discussion. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotransmitter which distributed widely in central nervous system. Since PACAP might activate ANLS from very low concentration in cultured forebrain astrocytes, PACAP might be one of the candidates for the endogenous ANLS activator. In the present study, we investigated the potential relevance of PACAP/ANLS signaling in the learning/memory and spinal nociceptive transmission. In this study, we made the following findings: 1) PACAP could be an endogenous inducer for ANLS activation in central nervous system; 2) ANLS activation by PACAP/PAC1 receptor signaling contributed to learning/memory and induced long-lasting nociceptive behaviors; 3) PKC activation played an important role in the PACAP/PAC1 receptor-evoked ANLS.
Collapse
Affiliation(s)
- Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
116
|
Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P, Ng CP, Huang Y, Haldar S, Verdin E. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metab 2017; 26:547-557.e8. [PMID: 28877458 PMCID: PMC5605815 DOI: 10.1016/j.cmet.2017.08.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice.
Collapse
Affiliation(s)
- John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | | | - Minghao Zhao
- UCSF Global Health Sciences, San Francisco, CA 94158, USA
| | - Xinxing Yu
- UCSF Division of Geriatrics, San Francisco, CA 94118, USA
| | - Philipp Gut
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Che-Ping Ng
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Saptarsi Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
117
|
Ristic B, Bhutia YD, Ganapathy V. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:246-257. [PMID: 28512002 PMCID: PMC5997391 DOI: 10.1016/j.bbcan.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.
Collapse
Affiliation(s)
- Bojana Ristic
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
118
|
Hertz L, Chen Y. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning. Neuroscience 2017; 370:27-36. [PMID: 28668486 DOI: 10.1016/j.neuroscience.2017.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
Abstract
In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K+) concentrations - possibly because noradrenaline in contrast to high K+ stimulates glycogenolysis by an increase not only in free cytosolic Ca2+ concentration ([Ca2+]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K+ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K+ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA.
| |
Collapse
|