101
|
Zou X, Gao C, Shang R, Chen H, Wang B. Knockdown of lncRNA LINC00707 alleviates LPS-induced injury in MRC-5 cells by acting as a ceRNA of miR-223-5p. Biosci Biotechnol Biochem 2021; 85:315-323. [PMID: 33604647 DOI: 10.1093/bbb/zbaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Pneumonia is a common respiratory disease worldwide. Long noncoding RNAs have been implicated in the pathogenesis of pneumonia. However, the effect and mechanism of long intergenic nonprotein-coding RNA (LINC00707) on pneumonia pathogenesis were still unclear. Lipopolysaccharide (LPS) reduced cell viability and promoted apoptosis and inflammation in MRC-5 cells. LINC00707 was increased, and miR-223-5p was decreased in LPS-treated MRC-5 cells. LINC00707 knockdown relieved LPS-triggered injury in MRC-5 cells. LINC00707 directly interacted with miR-223-5p through acting as a miR-223-5p sponge. Moreover, miR-223-5p mediated the regulation of LINC00707 silencing on LPS-stimulated cytotoxicity in MRC-5 cells. p38 mitogen-activated protein kinases and nuclear factor-κB signaling pathways were modulated by the LINC00707/miR-223-5p axis in LPS-induced MRC-5 cells. Our present study indicated that LINC00707 depletion alleviated LPS-induced injury in MRC-5 cells at least partly by acting as a sponge of miR-223-5p, highlighting a new potential therapeutic avenue for pneumonia treatment.
Collapse
Affiliation(s)
- Xiequn Zou
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Cheng Gao
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Rong Shang
- Department of Orthopaedics, Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Huan Chen
- Department of Obstetrics, Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, HuBei, China
| | - Bing Wang
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| |
Collapse
|
102
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
103
|
Moreira-Costa L, Barros AS, Lourenço AP, Leite-Moreira AF, Nogueira-Ferreira R, Thongboonkerd V, Vitorino R. Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes 2021; 9:proteomes9010008. [PMID: 33535467 PMCID: PMC7930981 DOI: 10.3390/proteomes9010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are widely recognized as the leading cause of mortality worldwide. Despite the advances in clinical management over the past decades, the underlying pathological mechanisms remain largely unknown. Exosomes have drawn the attention of researchers for their relevance in intercellular communication under both physiological and pathological conditions. These vesicles are suggested as complementary prospective biomarkers of CVDs; however, the role of exosomes in CVDs is still not fully elucidated. Here, we performed a literature search on exosomal biogenesis, characteristics, and functions, as well as the different available exosomal isolation techniques. Moreover, aiming to give new insights into the interaction between exosomes and CVDs, network analysis on the role of exosome-derived mediators in coronary artery disease (CAD) and heart failure (HF) was also performed to incorporate the different sources of information. The upregulated exosomal miRNAs miR-133a, miR-208a, miR-1, miR-499-5p, and miR-30a were described for the early diagnosis of acute myocardial infarction, while the exosome-derived miR-192, miR-194, miR-146a, and miR-92b-5p were considered as potential biomarkers for HF development. In CAD patients, upregulated exosomal proteins, including fibrinogen beta/gamma chain, inter-alpha-trypsin inhibitor heavy chain, and alpha-1 antichymotrypsin, were assessed as putative protein biomarkers. From downregulated proteins in CAD patients, albumin, clusterin, and vitamin D-binding protein were considered relevant to assess prognosis. The Vesiclepedia database included miR-133a of exosomal origin upregulated in patients with CAD and the exosomal miR-192, miR-194, and miR-146a upregulated in patients with HF. Additionally, Vesiclepedia included 5 upregulated and 13 downregulated exosomal proteins in patients in CAD. The non-included miRNAs and proteins have not yet been identified in exosomes and can be proposed for further research. This report highlights the need for further studies focusing on the identification and validation of miRNAs and proteins of exosomal origin as biomarkers of CAD and HF, which will enable, using exosomal biomarkers, the guiding of diagnosis/prognosis in CVDs.
Collapse
Affiliation(s)
- Liliana Moreira-Costa
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Correspondence: (L.M.-C.); (R.V.)
| | - António S. Barros
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - André P. Lourenço
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Rui Vitorino
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (L.M.-C.); (R.V.)
| |
Collapse
|
104
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
105
|
Coenen DM, Heinzmann ACA, Karel MFA, Cosemans JMEM, Koenen RR. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis 2021; 319:132-141. [PMID: 33468314 DOI: 10.1016/j.atherosclerosis.2020.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an underlying cause of a broad array of cardiovascular diseases characterized by plaques, arterial wall thickening initiated by hyperlipidemia, pro-inflammatory signals, endothelial dysfunction and the influx of inflammatory cells. By still incompletely characterized mechanisms, these plaques can destabilize or erode, leading to thrombosis and blood vessel occlusion and becomes clinically manifest as angina pectoris, myocardial infarction (MI) or stroke. Among the several blood cell types that are involved in the development of atherosclerosis, the role of platelets during the thrombotic occlusion of ruptured or eroded plaques is well established and clinically exploited as evident by the extensive use of platelet inhibitors. However, there is increasing evidence that platelets are also involved in the earlier stages of atheroma development by exhibiting pro-inflammatory activities. The scope of this review is to describe the role of platelets in the initiation and propagation stages of atherosclerosis and beyond; in atherothrombotic complications.
Collapse
Affiliation(s)
- Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Mieke F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
106
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:616161. [PMID: 33511124 PMCID: PMC7835482 DOI: 10.3389/fcell.2020.616161] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ming Huo
- Department of Day Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
107
|
Liu Q, Piao H, Wang Y, Zheng D, Wang W. Circulating exosomes in cardiovascular disease: Novel carriers of biological information. Biomed Pharmacother 2021; 135:111148. [PMID: 33412387 DOI: 10.1016/j.biopha.2020.111148] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a group of nanosized extracellular vesicles that include various bioactive nucleic acids, lipids, and proteins. They originate from membrane invagination and are released by exocytosis, which can transmit signals to target cells to achieve cell-to-cell communication and maintain homeostasis. The heart is a complex multicellular organ that contains resident cell types such as fibroblasts, endothelial cells, and smooth muscle cells. Communication between different cell types and immune systems is essential for the dynamic equilibrium of the cardiac internal environment. Intercellular communication is a universal phenomenon mediated by exosomes and their contents during several pathological processes in cardiovascular diseases, such as cardiomyocyte hypertrophy, apoptosis, and angiogenesis. Therefore, exosomes can be used as novel invasive diagnostic biomarkers in multiple diseases, including atherosclerosis, myocardial ischemia, cardiac fibrosis, and ischemia-reperfusion injury. In addition, the biocompatible nature and low immunogenicity of exosomes make them high-quality nanoparticle drug carriers with potential applications in translational medicine and therapeutic strategies. Here, we focus on the biogenesis, isolation, biological functions, and future application prospects of exosomes in cardiovascular disease.
Collapse
Affiliation(s)
- Qing Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo, Tokyo 113-8655, Japan.
| | - Hulin Piao
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yong Wang
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
108
|
Frati G, Forte M, di Nonno F, Bordin A, Chimenti I, Picchio V, Cavarretta E, Stanzione R, Bianchi F, Carnevale R, Nocella C, Schiavon S, Vecchio D, Marchitti S, De Falco E, Rubattu S, Paneni F, Biondi‐Zoccai G, Versaci F, Volpe M, Pagano F, Sciarretta S. Inhibition of miR-155 Attenuates Detrimental Vascular Effects of Tobacco Cigarette Smoking. J Am Heart Assoc 2020; 9:e017000. [PMID: 33317369 PMCID: PMC7955400 DOI: 10.1161/jaha.120.017000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Background The role of microRNAs dysregulation in tobacco cigarette smoking-induced vascular damage still needs to be clarified. We assessed the acute effects of tobacco cigarette smoking on endothelial cell-related circulating microRNAs in healthy subjects. In addition, we investigated the potential role of microRNAs in smoking-dependent endothelial cell damage. Methods and Results A panel of endothelial-related microRNAs was quantified in healthy subjects before and after smoking 1 tobacco cigarette. Serum levels of miR-155 were found to be significantly increased shortly after smoking. We also observed a progressive and significant miR-155 accumulation in culture media of human endothelial cells after 30 minutes and up to 4 hours of cigarette smoke condensate treatment in vitro without evidence of cell death, indicating that miR-155 can be released by endothelial cells in response to smoking stress. Cigarette smoke condensate appeared to enhance oxidative stress and impair cell survival, angiogenesis, and NO metabolism in human endothelial cells. Notably, these effects were abrogated by miR-155 inhibition. We also observed that miR-155 inhibition rescued the deleterious effects of cigarette smoke condensate on endothelial-mediated vascular relaxation and oxidative stress in isolated mouse mesenteric arteries. Finally, we found that exogenous miR-155 overexpression mimics the effects of smoking stress by inducing the upregulation of inflammatory markers, impairing angiogenesis and reducing cell survival. These deleterious effects were associated with downregulation of vascular endothelial growth factor and endothelial NO synthetase. Conclusions Our results suggest that miR-155 dysregulation may contribute to the deleterious vascular effects of tobacco smoking.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- IRCCS NeuromedPozzilliItaly
| | | | | | - Antonella Bordin
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Isotta Chimenti
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Vittorio Picchio
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Elena Cavarretta
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | | | | | - Roberto Carnevale
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Cristina Nocella
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeItaly
| | - Sonia Schiavon
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Daniele Vecchio
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | | | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Speranza Rubattu
- IRCCS NeuromedPozzilliItaly
- Department of Clinical and Molecular MedicineSchool of Medicine and PsychologySapienza University of RomeOspedale S. AndreaRomeItaly
| | - Francesco Paneni
- Center for Molecular CardiologyUniversity of ZürichSwitzerland
- CardiologyUniversity Heart CenterUniversity Hospital ZurichZurichSwitzerland
| | - Giuseppe Biondi‐Zoccai
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | | | - Massimo Volpe
- IRCCS NeuromedPozzilliItaly
- Department of Clinical and Molecular MedicineSchool of Medicine and PsychologySapienza University of RomeOspedale S. AndreaRomeItaly
| | - Francesca Pagano
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Sebastiano Sciarretta
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- IRCCS NeuromedPozzilliItaly
| |
Collapse
|
109
|
Liu J, Wu J, Li L, Li T, Wang J. The Role of Exosomal Non-Coding RNAs in Coronary Artery Disease. Front Pharmacol 2020; 11:603104. [PMID: 33363474 PMCID: PMC7753098 DOI: 10.3389/fphar.2020.603104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Atherosclerosis (AS) is a major cause of CVD. Oxidative stress, endothelial dysfunction, and inflammation are key factors involved in the development and progression of AS. Exosomes are nano-sized vesicles secreted into the extracellular space by most types of cells, and are ideal substances for the transmission and integration of signals between cells. Cells can selectively encapsulate biologically active substances, such as lipids, proteins and RNA in exosomes and act through paracrine mechanisms. Non-coding RNAs (ncRNAs) are important for communication between cells. They can reach the recipient cells through exosomes, causing phenotypic changes and playing a molecular regulatory role in cell function. Elucidating their molecular mechanisms can help identify therapeutic targets or strategies for CVD. Coronary artery disease (CAD) is the most important disease in CVD. Here, we review the role and the regulatory mechanism of exosomal ncRNAs in the pathophysiology of CAD, as well as the potential contribution of exosomal ncRNA to diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
110
|
Tao J, Xia L, Cai Z, Liang L, Chen Y, Meng J, Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis. DNA Cell Biol 2020; 40:101-115. [PMID: 33259723 DOI: 10.1089/dna.2020.6138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease accompanied by complex pathological changes, such as endothelial dysfunction, foam cell formation, and vascular smooth muscle cell proliferation. Many approaches, including regulating AS-related gene expression in the transcriptional or post-transcriptional level, contribute to alleviating AS development. The DNA methylation is a crucial epigenetic modification in regulating cell function by silencing the relative gene expression. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene post-transcriptional regulation and disease development. The DNA methylation and the miRNA are important epigenetic factors in AS. However, recent studies have found a mutual regulation between these two factors in AS development. In this study, recent insights into the roles of miRNA and DNA methylation and their interaction in the AS progression are reviewed.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Zemin Cai
- Department of Pediatrics and The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
111
|
Du S, Ling H, Guo Z, Cao Q, Song C. Roles of exosomal miRNA in vascular aging. Pharmacol Res 2020; 165:105278. [PMID: 33166733 DOI: 10.1016/j.phrs.2020.105278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Aging is a major risk factor for human diseases. As global average life expectancy has lengthened, delaying or reducing aging and age-related diseases has become an urgent issue for improving the quality of life. The vascular aging process represents an important link between aging and age-related diseases. Exosomes are small extracellular vesicles (EV) that can be secreted by almost all eukaryotic cells, and they deliver characteristic biological information about donor cells to regulate the cellular microenvironment, mediate signal transmission between neighboring or distant cells, and affect the expression of target genes in recipient cells. Many recent studies have shown that exosomal microribonucleic acids (miRNA) are involved in the regulation of vascular aging by participating in the physiological functions of vascular cells and the destruction and remodeling of the extracellular matrix (ECM). This review summarizes the regulatory functions of exosomal miRNA in vascular aging because they interact with the ECM, and participate in vascular cell senescence, and the regulation of senescence-related functions such as proliferation, migration, apoptosis, inflammation, and differentiation.
Collapse
Affiliation(s)
- Shuangshuang Du
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ling
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ziyuan Guo
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qidong Cao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunli Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
112
|
Li M, Li S, Du C, Zhang Y, Li Y, Chu L, Han X, Galons H, Zhang Y, Sun H, Yu P. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. Eur J Med Chem 2020; 207:112784. [PMID: 33007722 DOI: 10.1016/j.ejmech.2020.112784] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are cystic vesicles secreted by living cells with a phospholipid bilayer membrane. Importantly, these vesicles could serve to carry lipids, proteins, genetic materials, and transmit biological information in vivo. The cell-specific proteins and genetic materials in exosomes are capable of reflecting their cell origin and physiological status. Based on the different tissues and cells (macrophage, dendritic cells, tumor cells, mesenchymal stem cells, various body fluids, and so on), exosomes exhibit different characteristics and functions. Furthermore, owing to their high delivery efficiency, biocompatibility, and multifunctional properties, exosomes are expected to become a new means of drug delivery, disease diagnosis, immunotherapy, and precise treatment. At the same time, in order to supplement or enhance the therapeutic applicability of exosomes, chemical or biological modifications can be used to broaden, change or improve their therapeutic capabilities. This review focuses on three aspects: the characteristics and original functions of exosomes secreted by different cells, the modification and transformation of exosomes, and the application of exosomes in different diseases.
Collapse
Affiliation(s)
- Mingyuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Shuangshuang Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Chunyang Du
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yinan Zhang
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Liqiang Chu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiao Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hervé Galons
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 Place Jussieu, 75005, Paris, France
| | - Hua Sun
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| | - Peng Yu
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| |
Collapse
|
113
|
Mercadal M, Herrero C, López-Rodrigo O, Castells M, de la Fuente A, Vigués F, Bassas L, Larriba S. Impact of Extracellular Vesicle Isolation Methods on Downstream Mirna Analysis in Semen: A Comparative Study. Int J Mol Sci 2020; 21:ijms21175949. [PMID: 32824915 PMCID: PMC7504614 DOI: 10.3390/ijms21175949] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
Seminal plasma (SP) contains a unique concentration of miRNA, mostly contained in small extracellular vesicles (sEVs) such as exosomes, some of which could be clinically useful for diagnosis and/or prognosis of urogenital diseases such as prostate cancer (PCa). We optimized several exosome-EV isolation technologies for their use in semen, evaluating EV purifying effectiveness and impact on the downstream analysis of miRNAs against results from the standard ultracentrifugation (UC) method to implement the use of SP sEV_miRNAs as noninvasive biomarkers for PCa. Our results evidenced that commercial kits designed to isolate exosomes/EVs from blood or urine are mostly applicable to SP, but showed quantitative and qualitative variability between them. ExoGAG 3500× g and the miRCURY Cell/Urine/CSF 1500× g methods resulted as equivalent alternative procedures to UC for isolating exosomes/sEVs from semen for nanoparticle characteristics and quality of RNA contained in vesicles. Additionally, the expression profile of the altered semen sEV-miRNAs in PCa varies depending on the EV isolation method applied. This is possibly due to different extraction techniques yielding different proportions of sEV subtypes. This is evidence that the exosome-EV isolation method has a significant impact on the analysis of the miRNAs contained within, with important consequences for their use as clinical biomarkers. Therefore, miRNA analysis results for EVs cannot be directly extrapolated between different EV isolation methods until clear markers for delineation between microvesicles and exosomes are established. However, EV extraction methodology affects combined models (semen exosome miRNA signatures plus blood Prostate specific antigen (PSA) concentration for PCa diagnosis) less; specifically our previously described (miR-142-3p + miR-142-5p + miR-223-3p + PSA) model functions as molecular marker from EVs from any of the three isolation methods, potentially improving the efficiency of PSA PCa diagnosis.
Collapse
Affiliation(s)
- Marina Mercadal
- Human Molecular Genetics Group-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain;
| | - Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (O.L.-R.); (L.B.)
| | - Manel Castells
- Urology Service, Bellvitge University Hospital-ICS, 08908 Hospitalet de Llobregat, Barcelona, Spain; (M.C.); (F.V.)
| | - Alexandre de la Fuente
- NASASBIOTECH S.L., Santiago de Compostela Hospital (CHUS), 15706 Santiago de Compostela, Spain;
| | - Francesc Vigués
- Urology Service, Bellvitge University Hospital-ICS, 08908 Hospitalet de Llobregat, Barcelona, Spain; (M.C.); (F.V.)
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (O.L.-R.); (L.B.)
| | - Sara Larriba
- Human Molecular Genetics Group-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-260-74-25 (ext. 7338)
| |
Collapse
|
114
|
Wang H, Xie Y, Salvador AM, Zhang Z, Chen K, Li G, Xiao J. Exosomes: Multifaceted Messengers in Atherosclerosis. Curr Atheroscler Rep 2020; 22:57. [PMID: 32772195 DOI: 10.1007/s11883-020-00871-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Atherosclerosis (AS) is a chronic inflammatory disease that contributes to the development of coronary artery disease, which has become a leading health burden worldwide. Though several strategies such as pharmacological treatment, exercise intervention, and surgery have been used in clinical practice, there is still no effective strategy to cure AS. Exosomes are extensively studied both as diagnostic markers as well as for therapeutic purposes due to their role in pathological processes related to AS. To elucidate the role of exosomes in AS and thus provide a new insight into AS therapy, we review recent advances concerning exosome targets and their function in mediating intercellular communication in AS, and expect to provide a reference for novel effective strategies to cure AS. RECENT FINDINGS Exosomes exert important roles in the diagnosis, development, and potential therapy of AS. For AS development, (1) activation of CD-137 in endothelial cells represses exosomal-TET2 production, causing a phenotypic switch of vascular smooth muscle cells (VSMC) and promoting plaque formation; (2) exosomal-MALTA1 derived from endothelial cells causes neutrophil extracellular traps (NETs) and M2 macrophage polarization, which aggravates AS; and (3) exosomal-miR-21-3p derived from macrophages inhibits PTEN expression and further promotes VSMC migration/proliferation, leading to AS development. For AS diagnosis, plasma exosomal-miR30e and miR-92a are considered to be potential diagnostic markers. For AS therapy, adipose mesenchymal stem cell-derived exosomes protect endothelial cells from AS aggravation, via inhibiting miR-342-5p. Exosome-mediated cross-talk between different cells within the vasculature exerts crucial roles in regulating endothelial function, proliferation and differentiation of vascular smooth muscle cells, and platelet activation as well as macrophage activation, collectively leading to the development and progression of AS. Exosomes can potentially be used as diagnostic biomarkers and constitute as a new therapeutic strategy for AS.
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Ane M Salvador
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02214, USA
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Kaichuan Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
115
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
116
|
Wang Y, Zhang Y, Cai G, Li Q. Exosomes as Actively Targeted Nanocarriers for Cancer Therapy. Int J Nanomedicine 2020; 15:4257-4273. [PMID: 32606676 PMCID: PMC7306454 DOI: 10.2147/ijn.s239548] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, it has been found that exosomes can be used as nanocarriers, which can be used in the treatment of tumors by carrying contents. The exosomes are derived from the secretion of the organism's own cells and are characterized by a phospholipid bilayer structure and a small particle size. These characteristics guarantee that the exosomes can carry a wide range of tumor drugs, deliver the drug to the cancer, and reduce or eliminate the tumor drug band. The toxic side effects were significantly eliminated; meanwhile, the therapeutic effects of the drug on the tumor were remarkably improved. This paper reviewed the strategies and drugs presented by different scholars for the treatment of tumors based on the drugs carried by exosomes.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai201203, People’s Republic of China
| | - Yingru Zhang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai201203, People’s Republic of China
| | - Gang Cai
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai201203, People’s Republic of China
| | - Qi Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai201203, People’s Republic of China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai201203, People’s Republic of China
| |
Collapse
|
117
|
Sun J, Deng G, Ruan X, Chen S, Liao H, Liu X, Li J, Zhao G, Gao J. Exosomal MicroRNAs in Serum as Potential Biomarkers for Ectopic Pregnancy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3521859. [PMID: 32626740 PMCID: PMC7305552 DOI: 10.1155/2020/3521859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022]
Abstract
DESIGN From July 2016 to June 2018, 36 women with symptomatic early pregnancy around 4-8 weeks of gestation were recruited into the study. Among them, there were 16 women with viable intrauterine pregnancy (VIP), 9 women with spontaneous abortion (SA), and 11 women of EP. Serum exosomal miRNAs were extracted and measured at the first prenatal visit. Statistical analysis was performed to determine the clinical utility of these biomarkers as single markers and as multimarker panels for EP. RESULTS Concentrations of miR-378d in serum exosomes were significantly higher in EP than in VIP and also SA group. As a single marker, miR-378d had the highest specificity of 64% at the sensitivity of 89.1%. Comparatively, both combined panels of hCG, progesterone, miR-100-5p and hCG, progesterone, and miR-215-5P yielded the specificity of 96%. Panels for all markers achieved the highest specificity of 80% at the sensitivity of 91%. CONCLUSIONS Although further validation in large-scale prospective studies is necessary, our results suggest that serum exosomal miR-378d, miR-100-5p, and miR-215-5P are promising biomarkers for early EP.
Collapse
Affiliation(s)
- Jianhua Sun
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Gaopi Deng
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaofeng Ruan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Si Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Huiyan Liao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaorong Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Jing Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Guang Zhao
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jie Gao
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
118
|
Sellers A, Meoded A, Quintana J, Jallo G, Amankwah E, Nguyen ATH, Betensky M, Mills K, Goldenberg N, Shimony N. Risk factors for pediatric cerebral sinovenous thrombosis: A case-control study with case validation. Thromb Res 2020; 194:8-15. [PMID: 32554256 DOI: 10.1016/j.thromres.2020.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/09/2020] [Accepted: 06/06/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Cerebral sinovenous thrombosis (CSVT) represents the second most common type of venous thromboembolism (VTE) in children. Current literature includes limited evidence on risk factors for CSVT, particularly in the pediatric population. We sought to determine risk factors for CSVT in pediatric patients through a single-institutional case-control study. In addition, we evaluated thrombophilias, treatments and outcomes in CSVT among cases. METHODS A case-control study was performed at Johns Hopkins All Children's Hospital on patients admitted from March 31, 2006 through April 1, 2018. Cases were identified using diagnostic codes and confirmed based on electronic health record (EHR) and neuroimaging review. Controls were matched in a 2:1 fashion accounting for the month and year of admission. RESULTS A total of 60 CSVT cases and 120 controls were identified. Median (range) age was 4.8 years (0-21.3 years) for cases and 5.6 years (0-20.0 years) for controls. Factors putatively associated with CSVT in unadjusted analyses were: corticosteroid use, presence of a central venous catheter, mechanical ventilation, systemic infection, head/neck infection, head/neck trauma, and chronic inflammatory disease. In the multivariable model, head/neck infection (OR: 13.8, 95% CI: 4.87-38.7; P < 0.01), head/neck trauma (OR: 12.7, 95% CI: 2.88-56.2; P < 0.01), and mechanical ventilation (OR: 9.32, 95% CI: 2.35-36.9; P = 0.01) remained independent, statistically-significant risk factors. 61% of patients were subacutely treated with anticoagulants and of those, only two developed relevant bleeding after initiation of therapy. CONCLUSIONS This single-institutional case-control study reveals that head/neck infection, head/neck trauma, and mechanical ventilation are independent risk factors for pediatric CSVT. These findings will be further investigated via a cooperative registry of pediatric hospital-acquired VTE, by which a risk model for pediatric CSVT will be developed and validated, in order to inform future preventive strategies in at-risk pediatric patients.
Collapse
Affiliation(s)
- Austin Sellers
- Office of Medical Education, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA; Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Avner Meoded
- Department of Radiology, Division of Pediatric Neuroradiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Javier Quintana
- Department of Radiology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Johns Hopkins Medicine Pediatric Thrombosis Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Johns Hopkins All Children's Stroke Program, St. Petersburg, FL, USA
| | - George Jallo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins All Children's Institute for Brain Protection Sciences, St. Petersburg, FL, USA
| | - Ernest Amankwah
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Epidemiology and Biostatistics Unit, Johns Hopkins All Children's Health Informatics, St. Petersburg, FL, USA
| | - Anh Thy H Nguyen
- Epidemiology and Biostatistics Unit, Johns Hopkins All Children's Health Informatics, St. Petersburg, FL, USA
| | - Marisol Betensky
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins All Children's Cancer and Blood Disorders Institute, St. Petersburg, FL, USA
| | - Katie Mills
- Johns Hopkins All Children's Cancer and Blood Disorders Institute, St. Petersburg, FL, USA
| | - Neil Goldenberg
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Johns Hopkins Medicine Pediatric Thrombosis Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Johns Hopkins All Children's Stroke Program, St. Petersburg, FL, USA; Johns Hopkins All Children's Institute for Brain Protection Sciences, St. Petersburg, FL, USA; Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins All Children's Cancer and Blood Disorders Institute, St. Petersburg, FL, USA; Department of Medicine, Division of Hematology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Medicine Pediatric Thrombosis Program, Johns Hopkins Children's Center, Baltimore, MD, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins All Children's Institute for Brain Protection Sciences, St. Petersburg, FL, USA; Department of Neurosurgery, Geisinger Medical Center, Danville, PA, USA; Department of Neuroscience, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
119
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
120
|
Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 2020; 177:114-125. [PMID: 31790730 PMCID: PMC7198327 DOI: 10.1016/j.ymeth.2019.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), derived from cell membranes, demonstrate the potential to be excellent therapeutics and drug carriers. Although EVs are promising, the process to develop high-quality and scalable EVs for their translation is demanding. Within this research, we analyzed the production of EVs, their purification and their post-bioengineering, and we also discussed the biomedical applications of EVs. We focus on the developments of methods in producing EVs including biological, physical, and chemical approaches. Furthermore, we discuss the challenges and the opportunities that arose when we translated EVs in clinic. With the advancements in nanotechnology and immunology, genetically engineering EVs is a new frontier in developing new therapeutics in order to tailor to individuals and different disease stages in treatments of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
121
|
MicroRNAs in venous thrombo-embolism. Clin Chim Acta 2020; 504:66-72. [DOI: 10.1016/j.cca.2020.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
|
122
|
Qu H, Liu R, Chen J, Zheng L, Chen R. Aerobic Exercise Inhibits CUMS-Depressed Mice Hippocampal Inflammatory Response via Activating Hippocampal miR-223/TLR4/MyD88-NF-κB Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082676. [PMID: 32295141 PMCID: PMC7216071 DOI: 10.3390/ijerph17082676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Objective: To investigate the role of aerobic exercise in inhibiting chronic unpredictable mild stress (CUMS) depressed mice hippocampal inflammatory response and its potential mechanisms. Methods: Fifty-four male eight-week-old C57BL/6 mice were divided as control group (CG) (18 mice) and model group (36 mice). Model group mice were treated with 13 chronic stimulating factors for 28 days to set up the CUMS depression model. Neurobehavioral assessment was performed after modeling. The mice in the model group were randomly divided into the control model group (MG) and the aerobic exercise group (EG), with 18mice in each group. The EG group carried out the adaptive training of the running platform: 10 m/min, 0° slope, and increased by 10 minutes per day for 6 days. The formal training was carried for 8 weeks with 10 m/min speed, 0° slope, 60 min/d, 6 d/Week. After the training, a neurobehavioral assessment was performed, and hippocampus IL-1β and IL-10 protein levels were detected by ELISA. RT–PCR was used to detect the expression of miR-223 and TLR4, MyD88, and NF-κB in the hippocampus. Western blot was used to detect the expression of TLR4 and phosphorylated NF-κBp65 protein in the hippocampus. Results: The hippocampus function of CUMS depression model mice was impaired. The forced swimming and forced tail suspension time were significantly prolonged, and inflammatory factors IL-1β were significantly increased in the hippocampus. Aerobic exercise significantly improves CUMS-depressed mice hippocampal function, effectively reducing depressive behavior and IL-1β levels, and increasing IL-10 levels. Besides, aerobic exercise significantly upregulates the expression level of miR-223 and inhibits the high expression of TLR4, MyD88, and NF-κB. Conclusion: Aerobic exercise significantly increases the CUMS-depressed mice hippocampus expression of miR-223, and inhibits the downstream TLR4/MyD88-NF-κB signaling pathway and the hippocampal inflammatory response, which contributes to the improvement of the hippocampal function.
Collapse
Affiliation(s)
- Honglin Qu
- College of Physical Education, Yichun University, Yichun 336000, China; (H.Q.); (R.L.)
| | - Ruilian Liu
- College of Physical Education, Yichun University, Yichun 336000, China; (H.Q.); (R.L.)
| | - Jiaqin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China; (L.Z.); (R.C.)
- Correspondence:
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China; (L.Z.); (R.C.)
| | - Rui Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China; (L.Z.); (R.C.)
| |
Collapse
|
123
|
Kotyla PJ, Islam MA. MicroRNA (miRNA): A New Dimension in the Pathogenesis of Antiphospholipid Syndrome (APS). Int J Mol Sci 2020; 21:ijms21062076. [PMID: 32197340 PMCID: PMC7139820 DOI: 10.3390/ijms21062076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, endogenous RNA molecules that play a significant role in the regulation of gene expression as well as cell development, differentiation, and function. Recent data suggest that these small molecules are responsible for the regulation of immune responses. Therefore, they may act as potent modulators of the immune system and play an important role in the development of several autoimmune diseases. Antiphospholipid syndrome (APS) is an autoimmune systemic disease characterized by venous and/or arterial thromboses and/or recurrent fetal losses in the presence of antiphospholipid antibodies (aPLs). Several lines of evidence suggest that like other autoimmune disorders, miRNAs are deeply involved in the pathogenesis of APS, interacting with the function of innate and adaptive immune responses. In this review, we characterize miRNAs in the light of having a functional role in the immune system and autoimmune responses focusing on APS. In addition, we also discuss miRNAs as potential biomarkers and target molecules in treating APS.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
- Correspondence: (P.J.K.); (M.A.I.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (P.J.K.); (M.A.I.)
| |
Collapse
|
124
|
Xing X, Li Z, Yang X, Li M, Liu C, Pang Y, Zhang L, Li X, Liu G, Xiao Y. Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis. Aging (Albany NY) 2020; 12:3880-3898. [PMID: 32096479 PMCID: PMC7066923 DOI: 10.18632/aging.102857] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are reported to mediate several disease-related microRNAs (miRNAs) to affect the progression of diseases, including atherosclerosis. Here, we aimed to screen the atherosclerosis-associated miRNAs and preliminarily investigate the potential regulatory mechanism of atherosclerosis. First, the lesion model for human umbilical vein endothelial cells (HUVECs) was favorably constructed. Later, through RNA-sequencing and bioinformatics analyses, miR-342-5p was identified in lesion model for HUVECs. MiR-342-5p overexpression or knockdown evidently promoted or inhibited the apoptosis of HUVECs impaired by H2O2. Mechanistically, PPP1R12B was found to have great potential as a target of miR-342-5p in HUVECs impaired by H2O2, supported by RNA-sequencing and a series of bioinformatics analyses. Meanwhile, the effect of miR-342-5p on PPP1R12B expression in HUVECs’ lesion model was explored, revealing that miR-342-5p had an inhibitory role in PPP1R12B expression. Additionally, adipose-derived mesenchymal stem cells (ADSCs) in spindle-like shape and their derived exosomes with 30 to 150 nm diameter were characterized. Furthermore, results showed miR-342-5p was evidently decreased in the presence of ADSCs-derived exosomes. These findings indicated ADSCs-derived exosomes restrained the expression of miR-324-5p in lesion model. Collectively, this work demonstrates an atherosclerosis-associated miR-342-5p and reveals a preliminary possible mechanism in which miR-342-5p mediated by ADSCs-derived exosomes protects endothelial cells against atherosclerosis.
Collapse
Affiliation(s)
- Xiaohui Xing
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250000, Shandong Province, P.R. China.,Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China.,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong Province, P.R. China
| | - Xin Yang
- Department of Otolaryngology, General Hospital of Central Theater Command of PLA, Wuhan 430070, Hubei, China
| | - Mengyou Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Yuejiu Pang
- Department of Senile Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Xueyuan Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Guangcun Liu
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250000, Shandong Province, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 250000, Shandong Province, P.R. China
| |
Collapse
|
125
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
126
|
Tian J, Popal MS, Zhao Y, Liu Y, Chen K, Liu Y. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application. Aging Dis 2019; 10:1302-1310. [PMID: 31788341 PMCID: PMC6844582 DOI: 10.14336/ad.2018.1020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
Abstract
Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinfan Tian
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mohammad Sharif Popal
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingke Zhao
- 3Li Ka Shing Faculty of Medicine, The University of HongKong, Pokfulam, Hong Kong
| | - Yanfei Liu
- 4Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
127
|
Peng M, Liu X, Xu G. Extracellular Vesicles as Messengers in Atherosclerosis. J Cardiovasc Transl Res 2019; 13:121-130. [PMID: 31664614 DOI: 10.1007/s12265-019-09923-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is a major cause of cardiovascular diseases. Most cells involved in atherosclerosis can shed extracellular vesicles (EVs). Both atherogenic factors, such as hypoxia and oxidative stress, and atheroprotective factors, such as laminar blood flow, can influence the production of EV shedding. EVs can carry protein, DNA, mRNA, and noncoding RNA and act as mediators or messengers for cell-to-cell communications. EVs have been proven to promote or inhibit atherogenesis under particular circumstances. Therefore, EVs might be targeted for preventing or treating atherosclerotic diseases. The level of circulating EVs has been associated with the presence, progressiveness, or severity of atherosclerosis. Therefore, EVs may be utilized as indexes for diagnosing and grading atherosclerosis. Here, we reviewed the progress concerning the involvements of EVs in atherogenesis and atheroprotection. We also discussed the potential applications of EVs in managing atherosclerotic diseases.
Collapse
Affiliation(s)
- Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
128
|
Wimmer K, Sachet M, Oehler R. Circulating biomarkers of cell death. Clin Chim Acta 2019; 500:87-97. [PMID: 31655053 DOI: 10.1016/j.cca.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Numerous disease states are associated with cell death. For many decades, apoptosis and accidental necrosis have been assumed to be the two ways how a cell can die. The recent discovery of additional cell death processes such as necroptosis, ferroptosis or pyroptosis revealed a complex interplay between cell death mechanisms and diseases. Depending on the particular cell death pathway, cells secrete distinct molecular patterns, which differ between cell death types. This review focusses on released molecules, detectable in the blood flow, and their potential role as circulating biomarkers of cell death. We elucidate the molecular background of different biomarkers and give an overview on their correlation with disease stage, therapy response and prognosis in patients.
Collapse
Affiliation(s)
- Kerstin Wimmer
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Monika Sachet
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rudolf Oehler
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
129
|
Exosomes in ischemic heart disease: novel carriers for bioinformation. Biomed Pharmacother 2019; 120:109451. [PMID: 31586900 DOI: 10.1016/j.biopha.2019.109451] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
The occurrence of ischemic heart disease(IHD) is a multi-step chain process from potential risk factors to overt clinical diseases. Vascular cells, blood cells, cardiomyocytes and stem cells are all involved in the pathophysiological links via continual and polynary crosstalk. Exosomes,as powerful vectors for intercellular communication,have been a hotspot for basic and clinical research. Plenty of evidence has shown that exosomes largely participate in the evolution of IHD, including endothelial dysfunction, lipid deposition, atheromatous plaque formation and rupture, myocardial ischemia-reperfusion(I/R) injury,and heart failure (HF), while the rules for detailed communication in the different stages of this continuous disease are still poorly understood. This review will systematically describe characteristics of exosomal crosstalk between different cells in the diverse periods, and also cast light on the potential and challenges for exosome application as therapeutic targets, hoping to offer supporting background for the following research.
Collapse
|
130
|
Yao Y, Sun W, Sun Q, Jing B, Liu S, Liu X, Shen G, Chen R, Wang H. Platelet-Derived Exosomal MicroRNA-25-3p Inhibits Coronary Vascular Endothelial Cell Inflammation Through Adam10 via the NF-κB Signaling Pathway in ApoE -/- Mice. Front Immunol 2019; 10:2205. [PMID: 31632389 PMCID: PMC6783608 DOI: 10.3389/fimmu.2019.02205] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Coronary artery disease originates from the blockage of the inner walls of the coronary arteries due to a plaque buildup. Accumulating studies have highlighted the role of microRNAs (miRs) delivered by exosomes in the progression of coronary artery disease. Thus, the current study was to elucidate the role and mechanism by which miR-25-3p influences oxidized low density lipoprotein (ox-LDL)-induced coronary vascular endothelial cell (CVEC) inflammation. Methods: Primarily isolated CVECs were treated with ox-LDL to induce inflammation. Atherosclerosis models were induced in ApoE-/- mice and the peripheral blood platelet exosomes (PLT-Exo) were extracted and induced by thrombin, followed by co-culture with CVECs. The relationship between miR-25-3p and A disintegrin and metalloprotease 10 (Adam10) as well as the involvement of the NF-κB signaling pathway was evaluated. In order to evaluate the effect of PLT-Exo containing miR-25-3p on ox-LDL-induced CVEC inflammation, lipid accumulation and fibrosis, miR-25-3p mimic/inhibitor (in vitro), miR-25-3p agomir (in vivo), and si-Adam10 were delivered. Results: MiR-25-3p was expressed poorly in ox-LDL-induced CVECs and vascular tissues but exhibited high levels of expression in thrombin-induced PLT-Exo of atherosclerosis models of ApoE-/- mice. CVECs endocytosed PLT-Exo upregulated the miR-25-3p expression. Adam10 was identified as a target gene of miR-25-3p. The thrombin-induced activated PLT-Exo carrying miR-25-3p reduced Adam10 expression to inhibit ox-LDL-induced CVEC inflammation and lipid deposition through downregulating levels of α-smooth muscle actin, Collagen I a1, Collagen III a1, triglycerides, total cholesterol, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, the NF-κB signaling pathway participated in the inhibitory effect of PLT-Exo carrying miR-25-3p. Conclusion: Collectively, PLT-Exo overexpressing miR-25-3p attenuates ox-LDL-induced CVEC inflammation in ApoE-/- mouse models of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiyang Wang
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
131
|
Gao XF, Wang ZM, Wang F, Gu Y, Zhang JJ, Chen SL. Exosomes in Coronary Artery Disease. Int J Biol Sci 2019; 15:2461-2470. [PMID: 31595163 PMCID: PMC6775305 DOI: 10.7150/ijbs.36427] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes, the nanosized vesicles released from various cell types, contain many bioactive molecules, such as proteins, lipids, and nucleic acids, which can participate in intercellular communication in a paracrine manner or an endocrine manner, in order to maintain the homeostasis and respond to stress adaptively. Currently, exosomes have already been utilized as diagnostic biomarkers and therapeutic tools in cancer clinical trials. There has also been great progress in cell and animal exosomes studies of coronary artery disease (CAD). Emerging evidence suggests that exosomes released from endothelial cells, smooth muscle cells, adipose cells, platelets, cardiomyocytes, and stem cells have been reported to play crucial roles in the development and progression of CAD. Moreover, it has been showed that exosomes released from different cell types exhibit diverse biological functions, either detrimental or protective, depending on the cell state and the microenvironment. However, the systematic knowledge of exosomes in CAD at the patient level has not been well established, which are far away from clinical application. This review summarizes the basic information about exosomes and provides an update of the recent findings on exosome-mediated intercellular communication in the development and progression of CAD, which could be helpful for understanding the pathophysiology of CAD and promoting the further potential clinical translation.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
132
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
133
|
Aghabozorgi AS, Ahangari N, Eftekhaari TE, Torbati PN, Bahiraee A, Ebrahimi R, Pasdar A. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: New emerging hopes. J Cell Physiol 2019; 234:21796-21809. [PMID: 31273798 DOI: 10.1002/jcp.28942] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality. Standard therapies have failed to significantly increase patients' survival. Moreover, the majority of conventional screening procedures are ineffective for the diagnosis of CVDs at early stages. Accumulating evidence suggests that numerous cell types release a class of nano-sized vesicles named exosomes into the extracellular space. Exosomes are widely distributed in various body fluids and contain a number of diverse biomolecules such as proteins, lipids, and both mRNA and noncoding RNAs which reflect host-cell molecular architecture. MicroRNAs (miRNAs), which can be found in exosomes, could be taken up by both neighboring and distal cells. Not only has recent evidence indicated the regulatory role of exosomal miRNAs in the pathogenesis of CVD, but it has also been shown that differential expression of exosomal miRNAs in CVDs has made them promising biomarkers for early detection of CVDs. Owing to these remarkable features, exosomal miRNAs have emerged as hot spots in research. This review summarizes the role of exosomal miRNAs in the pathogenesis of CVDs and discusses their potential application in the clinical setting as both therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Amirsaeed S Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Najmeh Ahangari
- Department of Modern Sciences & Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tasnim E Eftekhaari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Paria N Torbati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Pasdar
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
134
|
Inflammation‐regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 2019; 97:1242-1252. [DOI: 10.1002/jnr.24487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
135
|
Zhang H, Wang L, Li C, Yu Y, Yi Y, Wang J, Chen D. Exosome-Induced Regulation in Inflammatory Bowel Disease. Front Immunol 2019; 10:1464. [PMID: 31316512 PMCID: PMC6611439 DOI: 10.3389/fimmu.2019.01464] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
An exosome (30-150 nm size) is a cell-derived vesicle. Exosome-induced regulation in inflammatory bowel disease (IBD) is becoming increasingly popular due to their potential functions of exosomal pathways. Exosomes, which are involved in the regulation of IBD, can be released from various cell types, or found in many physiological fluids, and plants. The specific functions of exosomes in IBD primarily depend on the internal functional components, including RNAs, proteins, and other substances. However, exosome-induced transport mechanisms involving cell-cell communications or cell-environment interactions are also very important. Recent studies have revealed that exosome crosstalk mechanisms may influence major IBD-related pathways, such as immune responses, barrier functions, and intestinal flora. This review highlights the advancements in the biology of exosome secretions and their regulation in IBD. The functional roles of exosomal components, including nucleic acids, proteins, and some other components, are the main focus of this review. More animal and clinical research is needed to study the functions of exosomes on IBD. Designing new drug dosage form using exosome-like-structure may provide new insights into IBD treatment. This review suggests a potential significance for exosomes in IBD diagnosis and treatment.
Collapse
Affiliation(s)
- Huiting Zhang
- Comparative Medicine Department, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Changyi Li
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yue Yu
- Comparative Medicine Department, Dalian Medical University, Dalian, China
| | - Yanlin Yi
- Comparative Medicine Department, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Comparative Medicine Department, Dalian Medical University, Dalian, China
| |
Collapse
|
136
|
Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 2019; 20:ijms20112840. [PMID: 31212641 PMCID: PMC6600675 DOI: 10.3390/ijms20112840] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | | | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy.
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Amadio
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| |
Collapse
|
137
|
Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol 2019; 18:72. [PMID: 31164120 PMCID: PMC6549308 DOI: 10.1186/s12933-019-0870-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global burden of type 2 diabetes mellitus (T2DM), together with the presence of cardiovascular risk in this population, is reaching pandemic levels. A prominent feature of T2DM is chronic and systemic inflammation, with the accompanying presence of circulating and dysregulated inflammatory biomarkers; which in turn is associated with abnormal clot formation. METHODS Here, we investigate the correlation between abnormal blood clotting, using thromboelastography (TEG), clot ultrastructure using scanning electron microscopy (SEM) and the presence of a dysregulated inflammatory cytokine profile, by examining various circulating biomarkers. RESULTS Our results show that many biomarkers, across TEG, cytokine and lipid groups, were greatly dysregulated in the T2DM sample. Furthermore, our T2DM sample's coagulation profiles were significantly more hypercoagulable when compared to our heathy sample, and ultrastructural analysis confirmed a matted and denser clot structure in the T2DM sample. CONCLUSIONS We suggest that dysregulated circulating molecules may in part be responsible for a hypercoagulable state and vascular dysfunction in the T2DM sample. We propose further that a personalized approach could be of great value when planning treatment and tracking the patient health status after embarking on a treatment regimes, and that looking to novel inflammatory and vascular biomarkers might be crucial.
Collapse
Affiliation(s)
- Shehan N Randeria
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Greig J A Thomson
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Theo A Nell
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
138
|
Wang Y, Xie Y, Zhang A, Wang M, Fang Z, Zhang J. Exosomes: An emerging factor in atherosclerosis. Biomed Pharmacother 2019; 115:108951. [PMID: 31078042 DOI: 10.1016/j.biopha.2019.108951] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is the main reason for morbidity and death caused by cardiovascular disease which leads to approximately 20% of total death around the world. Exosomes secreted by the cells is a kind of extracellular vesicles with lipid bilayer structure, containing a variety of cell specific lipid, nucleic acid and protein, involved in intercellular communication, plays an important role in different physiological and pathological process. In recent years, with the deepening of research, the role of exosomes in cardiovascular diseases has received extensive attention. This review summarizes the roles of exosomes and exosome-derived from microRNAs, proteins and DNA as biomarkers in the development of atherosclerosis, and explores the mechanism of exosome-mediated intercellular crosstalk in atherosclerosis, providing potential roles for diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Yingyu Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Ao Zhang
- 726 broadway, Epidemiology, College of global public health, New York University, New York, 10003, United States
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Zihan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
| |
Collapse
|
139
|
Feng L, Yang X, Liang S, Xu Q, Miller MR, Duan J, Sun Z. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol 2019; 16:16. [PMID: 30975181 PMCID: PMC6460825 DOI: 10.1186/s12989-019-0300-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Safety evaluation is a prerequisite for nanomaterials in a wide range of fields, including chemical industries, medicine or food sciences. Previously, we had demonstrated that SiNPs could trigger the thrombotic effects in vivo, but the underlying mechanisms remain unknown. This study was aimed to explore and verify the role of miR-451a on SiNPs-induced vascular endothelial dysfunction and pre-thrombotic state. RESULTS The color doppler ultrasound results showed that SiNPs had the inhibitory effects on aorta velocity and cardiac output. The histological and ultrastructural analysis manifested that SiNPs could induce the vascular endothelial damage. In addition, the expression level of MDA was elevated while the activity of SOD and GSH-Px were decreased in aortic arch triggered by SiNPs, accompanied with the release of iNOS and decline of eNOS in blood serum. The immunohistochemistry results showed that the positive staining of TF and PECAM-1 were elevated in a dose-dependent manner induced by SiNPs. The activation of coagulation function occurred via shortened TT, PT and APTT while the FIB was elevated markedly induced by SiNPs. Coagulant factors (TF, FXa and vWF) and PLT numbers were increased whereas the levels of anticoagulant factors (ATIII, TFPI and t-PA) were decreased. Microarray analysis showed that the down-regulated miR-451a could target the gene expression of IL6R, which further activated the JAK/STAT signaling pathway triggered by SiNPs. Dual-luciferase reporter gene assay confirmed the directly target relationship between miR-451a and IL6R. Additionally, the chemical mimics of miR-451a led to attenuate the expression of IL6R/STAT/TF signaling pathway in vitro and in vivo induced by SiNPs, while the inhibitor of miR-451a enhanced the activation of IL6R/STAT/TF signaling pathway. CONCLUSIONS In summary, SiNPs could accelerate the vascular endothelial dysfunction and prethrombotic state via miR-451a negative regulating the IL6R/STAT/TF signaling pathway.
Collapse
Affiliation(s)
- Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facility Center, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
140
|
Jeffries J, Zhou W, Hsu AY, Deng Q. miRNA-223 at the crossroads of inflammation and cancer. Cancer Lett 2019; 451:136-141. [PMID: 30878527 DOI: 10.1016/j.canlet.2019.02.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
miR-223 is an evolutionarily conserved anti-inflammatory microRNA primarily expressed in myeloid cells. miR-223 post-transcriptionally regulates many genes essential in inflammation, cell proliferation, and invasion. Recent studies show that miR-223 is either endogenously expressed or transferred in exosomes or extracellular vesicles to non-phagocytic cells including cancer cells, where it exerts biological functions. In cancerous cells, miR-223 acts either as an oncomiR promoting tumors or as a tumor suppressor in a context-dependent manner. Taken together, miR-223 can regulate tumorigenesis at multiple levels, including by suppressing the inflammatory tumor microenvironment and modulating malignancy of cancer cells.
Collapse
Affiliation(s)
- Jacob Jeffries
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
141
|
Qi H, Liu DP, Xiao DW, Tian DC, Su YW, Jin SF. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. In Vitro Cell Dev Biol Anim 2019; 55:203-210. [PMID: 30783864 DOI: 10.1007/s11626-019-00330-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most common chronic joint disease worldwide. Chondrocyte, as the only resident cell type in cartilage, its apoptosis is of pathogenetic significance in OA. Mesenchymal stem cell (MSC)-based-therapy has been proved effective in OA in animals and clinical studies. Nowadays, the regenerative potential of MSC-based therapy is mostly attributed to its paracrine secretion, in which exosomes may play an important role. In the present study, we aimed to find out the significance of MSC-derived exosomes (MSC-Exos) on the viability of chondrocytes under normal and inflammatory conditions. Bone marrow MSCs (BMSCs) and chondrocytes from rabbits were cultured in vitro. BMSC-Exos were isolated by an ultracentrifugation method. Transmission electron microscopy and Western blot were used to identify exosomes. The internalization of BMSC-Exos into chondrocytes was observed by fluorescent microscope. The viability and apoptosis of chondrocytes induced by IL-1β were tested through MTT method, Hoechst33324 dying, and mitochondrial damage measurement. Phosphorylation of p38, ERK, and Akt were evaluated by Western blot. The results showed that BMSC-Exos were round-shaped. Co-culturing BMSC-Exos with chondrocytes could observe the uptake of BMSC-Exos by chondrocytes. The viability decreased, apoptosis occurred, and the mitochondrial membrane potential of chondrocytes changed a lot when IL-1β were given, but all the changes were almost abolished when BMSC-Exos was added. Furthermore, the phosphorylation of p38 and ERK were inhibited, and phosphorylation of Akt was promoted by BMSC-Exos compared with IL-1β group. The present study demonstrated that BMSC-Exos inhibited mitochondrial-induced apoptosis in response to IL-1β, and p38, ERK, and Akt pathways were involved. BMSC-Exo might represent a novel cell-free therapeutic approach for the treatment of OA.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Dan-Ping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Da-Wei Xiao
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Da-Chuan Tian
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yong-Wei Su
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Shao-Feng Jin
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| |
Collapse
|
142
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
143
|
Extracellular Vesicles: A New Perspective in Tumor Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2687954. [PMID: 29850495 PMCID: PMC5937590 DOI: 10.1155/2018/2687954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
In recent years, the study of extracellular vesicles has been booming across various industries. Extracellular vesicles are considered one of the most important physiological endogenous carriers for the specific delivery of molecular information (nucleonic acid, cytokines, enzymes, etc.) between cells. It has been discovered that they perform a critical role in promoting tumor cell growth, proliferation, tumor cell invasion, and metastatic ability and regulating the tumor microenvironment to promote tumor cell communication and metastasis. In this review, we will discuss (1) the mechanism of extracellular vesicles generation, (2) their role in tumorigenesis and cancer progression (cell growth and proliferation, tumor microenvironment, epithelial-mesenchymal transition (EMT), invasion, and metastasis), (3) the role of extracellular vesicles in immune therapy, (4) extracellular vesicles targeting in tumor therapy, and (5) the role of extracellular vesicles as biomarkers. It is our hope that better knowledge and understanding of the extracellular vesicles will offer a wider range of effective therapeutic targets for experimental tumor research.
Collapse
|
144
|
Mendes BB, Gómez-Florit M, Babo PS, Domingues RM, Reis RL, Gomes ME. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv Drug Deliv Rev 2018; 129:376-393. [PMID: 29288732 DOI: 10.1016/j.addr.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Blood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms. Herein, we highlight recent trends on the use biomaterials to protect, sequester and deliver these pools of biomolecules in tissue engineering and regenerative medicine approaches. Particular emphasis is given to strategies that enable to control their spatiotemporal delivery and improve the selectivity of presentation profiles of the biomolecules derived from blood derivatives rich in platelets. Finally, we discussed possible directions for biomaterials design to potentiate the aimed regenerative effects of blood derivatives and achieve efficient therapies.
Collapse
|
145
|
Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation. FASEB J 2018; 32:4070-4084. [PMID: 29565737 DOI: 10.1096/fj.201701536r] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surface of endothelial cells is covered with cell adhesion molecules, including E-selectin, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM- 1) , that mediate the adhesion and extravasation of leukocytes and play pivotal roles in inflammatory response. microRNAs (miRNAs) regulate the expression of these important cell adhesion molecules through two distinct major mechanisms, namely via modulating the proinflammatory NF-κB pathway, which controls their transcription, and via directly targeting them. The present review highlights the role of various miRNAs in controlling the expression of E-selectin, ICAM-1, and VCAM-1: a type of regulation that can be harnessed for therapeutic prevention of inflammation-associated diseases such as atherosclerosis and sepsis. The roles of secreted miRNAs as paracrine regulators, and cell adhesion molecule-based miRNA delivery are also addressed.-Zhong, L., Simard, M. J., Huot, J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation.
Collapse
Affiliation(s)
- Liang Zhong
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| | - Jacques Huot
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| |
Collapse
|
146
|
Zhang JW, Liu WW, McCaffrey TA, He XQ, Liang WY, Chen XH, Feng XR, Fu SW, Liu ML. Predictors of high on-aspirin platelet reactivity in elderly patients with coronary artery disease. Clin Interv Aging 2017; 12:1271-1279. [PMID: 28848334 PMCID: PMC5557114 DOI: 10.2147/cia.s138592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives Previous studies have illustrated the link between high on-aspirin platelet reactivity (HAPR) with increasing thrombotic risks. The aim of our study was to investigate relative risk factors of HAPR in elderly patients with coronary artery disease. Methods Elderly, hospitalized coronary artery disease patients on regular aspirin treatment were enrolled from January 2014 to September 2016. Medical records of each patient were collected, including demographic information, cardiovascular risk factors, concomitant drugs and routine biological parameters. Arachidonic acid (AA, 0.5 mg/mL) and adenosine diphosphate (ADP, 5 µmol/L) induced platelet aggregation were measured via light transmission assay (LTA) to evaluate antiplatelet responses, referred as LTA–AA and LTA–ADP. Results A total of 275 elderly patients were included, with mean age of 77.2±8.1 years, and males accounted for 81.8%. HAPR was defined as LTA–AA in the upper quartile of the enrolled population. HAPR patients tended to have lower renal function (P=0.052). Higher serum uric acid (SUA) level, as well as lower platelet count, hemoglobin and hematocrit were observed in HAPR patients, with a higher proportion of diuretics use (P<0.05). Multivariate analysis revealed that SUA (OR: 1.004, 95% CI: 1.000–1.007, P=0.048), platelet count (OR: 0.994, 95% CI: 0.989–1.000, P=0.045), hematocrit (OR: 0.921, 95% CI: 0.864–0.981, P=0.011) and concomitant P2Y12 receptor inhibitors use (OR: 1.965, 95% CI: 1.075–3.592, P=0.028) were correlated with HAPR. Spearman’s correlation analysis demonstrated an inverse association of LTA–AA with hematocrit (r=−0.234, P<0.001), hemoglobin (r=−0.209, P<0.001) and estimated glomerular filtration rate (r=−0.132, P=0.031). Conclusion SUA, platelet count, hematocrit and P2Y12 receptor inhibitors use were independently correlated with HAPR. These parameters might provide novel therapeutic targets for optimizing antiplatelet therapy.
Collapse
Affiliation(s)
- J W Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - W W Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Timothy A McCaffrey
- Department of Medicine, George Washington University Medical Center, Washington, DC, USA
| | - X Q He
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - W Y Liang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - X H Chen
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - X R Feng
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Sidney W Fu
- Department of Medicine, George Washington University Medical Center, Washington, DC, USA
| | - M L Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|