101
|
Murray BS. Microgels at fluid-fluid interfaces for food and drinks. Adv Colloid Interface Sci 2019; 271:101990. [PMID: 31330395 DOI: 10.1016/j.cis.2019.101990] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Various aspects of microgel adsorption at fluid-fluid interfaces of relevance to emulsion and foam stabilization have been reviewed. The emphasis is on the wider non-food literature, with a view to highlighting how this understanding can be applied to food-based systems. The various different types of microgel, their methods of formation and their fundamental behavioral traits at interfaces are covered. The latter includes aspects of microgel deformation and packing at interfaces, their deformability, size, swelling and de-swelling and how this affects their surface activity and stabilizing properties. Experimental and theoretical methods for measuring and modelling their behaviour are surveyed, including interactions between microgels themselves at interfaces but also other surface active species. It is concluded that challenges still remain in translating all the possibilities synthetic microgels offer to microgels based on food-grade materials only, but Nature's rich tool box of biopolymers and biosurfactants suggests that this field will still open up important new avenues of food microstructure development and control.
Collapse
|
102
|
Wang M, Doi T, Hu X, McClements DJ. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
103
|
Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09194-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
104
|
Lu Y, Mao L, Cui M, Yuan F, Gao Y. Effect of the Solid Fat Content on Properties of Emulsion Gels and Stability of β-Carotene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6466-6475. [PMID: 31117494 DOI: 10.1021/acs.jafc.9b01156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Whey-protein-isolate-based emulsion gels were prepared through a cold-set gelation process, and the effect of the solid fat (coconut oil) content in the oil phase on gel properties and β-carotene stability was investigated. An increase in solid fat content (0, 20, 50, 80, and 100% of the oil phase) resulted in a smaller droplet size, higher viscosity, and improved creaming stability of the emulsions. When glucono-δ-lactone was added to initiate gelation, a higher solid fat content contributed to an earlier onset of gelation and a higher storage modulus of the gels. Textural analysis indicated that the increase in the solid fat content allowed for an increase in fracture stress and Young's modulus of the emulsion gels. Microscopic observation revealed that emulsions containing a higher solid fat content formed gels with a denser and more uniform particulate network structure. The stability of β-carotene against thermal treatment (55 °C for 12 days) and ultraviolet light exposure (8 h) was determined. The results suggested that the solidification of the oil phase can improve the stability of β-carotene, and gels with higher hardness were capable of retaining more β-carotene after the treatments. These findings indicated that emulsion gels with a solidified oil phase could be potential delivery systems for lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Yao Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Mengnan Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| |
Collapse
|
105
|
Xu W, Huang L, Jin W, Ge P, Shah BR, Zhu D, Jing J. Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int J Biol Macromol 2019; 134:210-215. [PMID: 31071402 DOI: 10.1016/j.ijbiomac.2019.04.200] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
To provide the bilateral advantages of emulsions and hydrogels, a facile approach was used to fabricate nanoemulsions filled hydrogel beads through combining the method of self-emulsification and sodium alginate (SA) ionic gelation. The encapsulation and release behavior of curcumin (Cur) were further investigated. The results indicated that Cur packaged nanoemulsions were with the size of 24.26 ± 0.22 nm. The nanoemulsions filled SA hydrogel beads were spherical shell with the diameter of 0.46 ± 0.02 mm. For Cur, the EE and LC of emulsion filled SA hydrogel beads were 99.15 ± 0.85% and 7.25 ± 3.16 mg/g respectively. The release behavior could be regulated by external pH condition. The release behavior at pH 9.0 displayed a higher release rate than that at pH 7.0. Cur released behavior well followed the Hixcon-Crowell model which indicated that Cur was released in a diffusion-controlled model. Comparatively investigation of microstructure using field emission scanning electron microscope (FE-SEM) further investigates the corrosion behavior of SA gel beads during Cur release. The worth-while endeavor provided a practical combined technique of emulsions and ionic gelation to fabricate hybrid hydrogel beads that have potential in delivery system for hydrophobic composition.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China.
| | - Lu Huang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bakht Ramin Shah
- University of South Bohemian in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and protection of Waters, Na Sádkách 1780, 37005, Czech Republic
| | - Dandan Zhu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junxiang Jing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
106
|
Zhou X, Chen H, Lyu F, Lin H, Zhang Q, Ding Y. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: Effects of fat type and concentration. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
107
|
Li XM, Zhu J, Pan Y, Meng R, Zhang B, Chen HQ. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
108
|
Yuan X, Xiao J, Liu X, McClements DJ, Cao Y, Xiao H. The gastrointestinal behavior of emulsifiers used to formulate excipient emulsions impact the bioavailability of β-carotene from spinach. Food Chem 2019; 278:811-819. [DOI: 10.1016/j.foodchem.2018.11.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
|
109
|
Overcoming in vitro gastric destabilisation of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
110
|
Farjami T, Madadlou A. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
111
|
Mao L, Lu Y, Cui M, Miao S, Gao Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit Rev Food Sci Nutr 2019; 60:1651-1666. [PMID: 30892058 DOI: 10.1080/10408398.2019.1587737] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gels are viscoelastic systems built up with a liquid phase entrapped in a three-dimensional network, which can behave as carriers for bioactive food ingredients. Many attempts have been made to design gel structures in the water phase (hydrogels, emulsion gels, bigels) or oil phase (organogels, bigels) in order to improve their delivery performances. Hydrogels are originated from proteins or polysaccharides, which are suitable for the delivery of hydrophilic ingredients. Organogels are mainly built up with the self-assembling of gelator molecules in the oil phase, and they offer good carriers for lipophilic ingredients. Emulsion gels and bigels, containing both aqueous and oil domains, can provide accommodations for lipophilic and hydrophilic ingredients simultaneously. Gel structures (e.g. rheology, texture, water holding capacity, swelling ratio) can be modulated by choosing different gelators, modifying gelation techniques, and the involvement of other ingredients (e.g. oils, emulsifiers, minerals, acids), which then alter the diffusion and release of the bioactive ingredients incorporated. Various studies have proved that gel-based delivery systems are able to improve the stability and bioavailability of many bioactive food ingredients. This review provides a state-to-art overview of different gel-based delivery systems, highlighting the significance of structure-functionality relationship, to provide advanced knowledge for the design of novel functional foods.
Collapse
Affiliation(s)
- Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengnan Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Song Miao
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
112
|
Pravinata LC, Murray BS. Encapsulation of water-insoluble polyphenols and β-carotene in Ca-alginate microgel particles produced by the Leeds Jet Homogenizer. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
113
|
Oral processing in elderly: understanding eating capability to drive future food texture modifications. Proc Nutr Soc 2018; 78:329-339. [DOI: 10.1017/s0029665118002768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ageing population suffer from increased risk of malnutrition which is a major determinant of accelerated loss of autonomy, adverse health outcomes and substantial health-care costs. Malnutrition is largely attributed to reduced nutrient intake which may be associated with several endogenous factors, such as decline of muscle mass, oral functions and coordination that can make the eating process difficult. From an exogenous viewpoint, nutritionally dense foods with limited innovations in food texture have been traditionally offered to elderly population that negatively affected pleasure of eating and ultimately, nutrient intake. Recent research has recognised that older adults within the same age group are not homogenous in terms of their preferences, nutritional needs, capabilities and impediments in skill-sets. Hence, a new term eating capability (EC) has been coined to describe various quantifiable endogenous factors in the well-coordinated eating process that may permit characterisation of the capabilities of elderly individuals in food handling and oral processing. This review covers current knowledge on EC focusing on parameters, such as hand and oro-facial muscle forces. Although limited in literature, EC score measured using a comprehensive toolkit has shown promise to predict eating difficulty perception and oral processing behaviour. Further systematic studies are required to explore relationships between individual/multiple constituents of EC and oral comfort. Such knowledge base is needed to underpin the creation of next generation personalised texture-modified foods for elderly population using sophisticated technologies, such as 3D printing to enhance eating pleasure, increase nutrient intake that will ultimately contribute to tackling malnutrition.
Collapse
|
114
|
Controlling lipid digestion profiles using mixtures of different types of microgel: Alginate beads and carrageenan beads. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
115
|
Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
116
|
Lin Q, Liang R, Zhong F, Ye A, Singh H. Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
117
|
Winuprasith T, Khomein P, Mitbumrung W, Suphantharika M, Nitithamyong A, McClements DJ. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.047] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
118
|
Liu W, Li Y, Chen M, Xu F, Zhong F. Stabilizing Oil-in-Water Emulsion with Amorphous and Granular Octenyl Succinic Anhydride Modified Starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9301-9308. [PMID: 30110541 DOI: 10.1021/acs.jafc.8b02733] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of pre-gelatinization on the capacity of amorphous and granular octenyl succinic anhydride (OSA) starches as an emulsifier were compared. The full loss of the granular structure after gelatinization were confirmed by X-ray scattering measurements. The particle size of the emulsions prepared by granular starches with the degree of substitution of 0.021 and 0.045 was 717.8 and 391.5 nm, respectively, whereas it was only 307.2 and 283.9 nm of the amorphous OSA starch emulsions, respectively. Furthermore, after 30 days of storage, the particle size of granular OSA starch emulsions increased to 910.1 and 520.9 nm, respectively. However, this value only increased to 376.6 and 335.2 nm in emulsions stabilized with the amorphous OSA starch, respectively. These were attributed to an increased interfacial thickness, rate of interfacial adsorption, and compact packing on the surface, resulting from the flexible assembly behavior of amorphous starch chains compared to granular OSA. In addition, emulsions stabilized via amorphous OSA starches displayed a higher elastic moduli, indicating a greater number of interactions between starch chains and adjacent droplets.
Collapse
|
119
|
Li D, Li L, Xiao N, Li M, Xie X. Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
120
|
Torres O, Andablo-Reyes E, Murray BS, Sarkar A. Emulsion Microgel Particles as High-Performance Bio-Lubricants. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26893-26905. [PMID: 30036468 PMCID: PMC6096451 DOI: 10.1021/acsami.8b07883] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Starch-based emulsion microgel particles with different starch (15 and 20 wt %) and oil contents (0-15 wt %) were synthesized, and their lubrication performance under physiological conditions was investigated. Emulsion microgels were subjected to skin mimicking or oral cavity mimicking conditions, i.e., smooth hydrophobic polydimethylsiloxane ball-on-disc tribological tests, in the absence or presence of salivary enzyme (α-amylase). In the absence of enzyme, emulsion microgel particles (30-60 vol % particle content) conserved the lubricating properties of emulsion droplets, providing considerably lower friction coefficients (μ ≤ 0.1) in the mixed lubrication regime compared to plain microgel particles (0 wt % oil). Upon addition of enzyme, the lubrication performance of emulsion microgel particles became strongly dependent on the particles' oil content. Microgel particles encapsulating 5-10 wt % oil showed a double plateau mixed lubrication regime having a lowest friction coefficient μ ∼ 0.03 and highest μ ∼ 0.1, the latter higher than with plain microgel particles. An oil content of 15 wt % was necessary for the microgel particles to lubricate similarly to the emulsion droplets, where both systems showed a normal mixed lubrication regime with μ ≤ 0.03. The observed trends in tribology, theoretical considerations, and the combined results of rheology, light scattering, and confocal fluorescence microscopy suggested that the mechanism behind the low friction coefficients was a synergistic enzyme- and shear-triggered release of the emulsion droplets, improving lubrication. The present work thus demonstrates experimentally and theoretically a novel biolubricant additive with stimuli-responsive properties capable of providing efficient boundary lubrication between soft polymeric surfaces. At the same time, the additive should provide an effective delivery vehicle for oil soluble ingredients in aqueous media. These findings demonstrate that emulsion microgel particles can be developed into multifunctional biolubricant additives for future use in numerous soft matter applications where both lubrication and controlled release of bioactives are essential.
Collapse
|
121
|
McClements DJ. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 2018; 9:22-41. [PMID: 29119979 DOI: 10.1039/c7fo01515a] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many researchers are currently developing emulsion-based delivery systems to increase the bioavailability of lipophilic bioactive agents, such as oil-soluble vitamins, nutraceuticals, and lipids. Oil-in-water emulsions can be specifically designed to improve the bioavailability of these bioactives by altering their composition and structural organization. This article reviews recent progress in understanding the impact of emulsion properties on the bioaccessibility of lipophilic bioactive agents, including oil phase composition, aqueous phase composition, droplet size, emulsifier type, lipid physical state, and droplet aggregation state. This knowledge can be used to design emulsions that can enhance the bioavailability and efficacy of encapsulated hydrophobic bioactives.
Collapse
|
122
|
Ma D, Tu ZC, Wang H, Zhang Z, McClements DJ. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3930-3938. [PMID: 29595967 DOI: 10.1021/acs.jafc.8b00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d43 = 211 nm). These oil droplets were then loaded into either carrageenan-in-alginate (O/MC/MA) or alginate-in-carrageenan (O/MA/MC) microgels. A vibrating nozzle encapsulation unit was used to form the smaller inner microgels ( d43 = 170-324 μm), while a hand-held syringe was used to form the larger outer microgels ( d43 = 2200-3400 μm). Calcium alginate microgels (O/MA) were more stable to simulated gastrointestinal tract (GIT) conditions than potassium carrageenan microgels (O/MC), which was attributed to the stronger cross-links formed by divalent calcium ions than the monovalent potassium ions. As a result, the microgel-in-microgel systems had different gastrointestinal fates depending upon the nature of the external microgel phase; i.e., the O/MC/MA system was more resistant to rupture than the O/MA/MC system. The rate of lipid digestion under simulated small intestine conditions decreased in the following order: free oil droplets > O/MC > O/MA > O/MA/MC > O/MC/MA. This effect was attributed to differences in the integrity and dimensions of the microgels in the small intestine, because a hydrogel network surrounding the oil droplets inhibits lipid hydrolysis by lipase. The structured microgels developed in this study may have interesting applications for the protection or controlled release of bioactive agents.
Collapse
Affiliation(s)
- Da Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| |
Collapse
|
123
|
Lin Q, Liang R, Zhong F, Ye A, Singh H. Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
124
|
Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
125
|
Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
126
|
Leon AM, Medina WT, Park DJ, Aguilera JM. Properties of microparticles from a whey protein isolate/alginate emulsion gel. FOOD SCI TECHNOL INT 2018; 24:414-423. [PMID: 29486594 DOI: 10.1177/1082013218762210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Designing soft, palatable and nutritious texture-modified foods for the elderly is a challenge for food technologists. The aim of this work was to produce and characterize emulsion-gelled microparticles (EGM) made from whey protein isolate (WPI) and sodium alginate (NaAlg) that may be used to modify the rheology of liquid foods and as carriers of lipids and lipophilic nutrients and bioactives. Olive oil microdroplets became embedded in the WPI/NaAlg gel matrix in the form of an emulsion produced by ultrasound (US) or high-speed blending (HSB). Oil microdroplets were obtained by US and HSB, with an average equivalent diameter varying between 2.0-3.2 µm and 4.5-6.7 µm, respectively. Oil incorporation increased compression stress of bulk emulsion gels at small deformations compared to the no-oil microgel, but this effect was reversed at high strains. EGM were prepared by shear-induced size reduction. Rheological tests at 20 ℃ and 40 ℃ showed that US-EGM and HSB-EGM exhibited a predominant elastic behavior, with G' > G″ throughout the frequency range. However, when HSB-EGM were heated at 60 ℃ their rheological behavior changed to a more fluid-like condition, but not that of US-EGM. Consequently, EGM have the properties needed to improve food texture for people with masticatory/swallowing dysfunctions or needing special nutrition.
Collapse
Affiliation(s)
- Alicia M Leon
- 1 Department of Chemical and Bioprocesses Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,2 Department of Agroindustries, Faculty of Agrarian Sciences, Universidad Nacional del Altiplano de Puno, Puno, Peru
| | - Wenceslao T Medina
- 2 Department of Agroindustries, Faculty of Agrarian Sciences, Universidad Nacional del Altiplano de Puno, Puno, Peru
| | - Dong J Park
- 3 Korean Food Research Institute, Bundang-gu, Republic of Korea
| | - José M Aguilera
- 1 Department of Chemical and Bioprocesses Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
127
|
Ravanfar R, Comunian TA, Dando R, Abbaspourrad A. Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chem 2018; 241:460-467. [DOI: 10.1016/j.foodchem.2017.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
|
128
|
Mao L, Miao S, Yuan F, Gao Y. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res Int 2018; 103:1-7. [DOI: 10.1016/j.foodres.2017.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
129
|
Zhu YQ, Chen X, McClements DJ, Zou L, Liu W. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1398660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Qing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
130
|
Sarkar A, Kanti F, Gulotta A, Murray BS, Zhang S. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14699-14708. [PMID: 29193975 DOI: 10.1021/acs.langmuir.7b03627] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, Ra < 50 nm, ball-on-disk set up). The WPM particles (Dh = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Farah Kanti
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
- AgroSup Dijon , 26 Boulevard Docteur Petitjean, 21000 Dijon, France
| | - Alessandro Gulotta
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Shuying Zhang
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
131
|
Torres O, Tena NM, Murray B, Sarkar A. Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydr Polym 2017; 178:86-94. [DOI: 10.1016/j.carbpol.2017.09.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
132
|
Chen F, Fan GQ, Zhang Z, Zhang R, Deng ZY, McClements DJ. Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate. Food Res Int 2017; 100:387-395. [DOI: 10.1016/j.foodres.2017.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
|
133
|
Zheng B, Zhang Z, Chen F, Luo X, McClements DJ. Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
134
|
|
135
|
Sarkar A, Zhang S, Murray B, Russell JA, Boxal S. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Colloids Surf B Biointerfaces 2017; 158:137-146. [DOI: 10.1016/j.colsurfb.2017.06.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
136
|
McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv Colloid Interface Sci 2017; 240:31-59. [PMID: 28034309 DOI: 10.1016/j.cis.2016.12.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given.
Collapse
|
137
|
Sarkar A, Ye A, Singh H. Oral processing of emulsion systems from a colloidal perspective. Food Funct 2017; 8:511-521. [DOI: 10.1039/c6fo01171c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses recent understanding of the oral destabilization of food emulsions from a colloidal perspective.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Processing Group
- School of Food Science and Nutrition
- University of Leeds
- UK
| | - Aiqian Ye
- Riddet Institute
- Massey University
- Palmerston North 4442
- New Zealand
| | - Harjinder Singh
- Riddet Institute
- Massey University
- Palmerston North 4442
- New Zealand
| |
Collapse
|
138
|
Laguna L, Farrell G, Bryant M, Morina A, Sarkar A. Relating rheology and tribology of commercial dairy colloids to sensory perception. Food Funct 2017; 8:563-573. [DOI: 10.1039/c6fo01010e] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims to investigate the relationship between rheological and tribological properties of commercial full fat and fat-free/low fat versions of liquid and soft solid colloidal systems (milk, yoghurt, soft cream cheese) with their sensory properties.
Collapse
Affiliation(s)
- Laura Laguna
- Food Colloids and Processing Group
- School of Food Science and Nutrition
- University of Leeds
- UK
| | - Grace Farrell
- Food Colloids and Processing Group
- School of Food Science and Nutrition
- University of Leeds
- UK
| | | | - Ardian Morina
- School of Mechanical Engineering
- University of Leeds
- UK
| | - Anwesha Sarkar
- Food Colloids and Processing Group
- School of Food Science and Nutrition
- University of Leeds
- UK
| |
Collapse
|