101
|
Exploring the response patterns of strong-flavor baijiu brewing microecosystem to fortified Daqu under different pit ages. Food Res Int 2022; 155:111062. [DOI: 10.1016/j.foodres.2022.111062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/16/2023]
|
102
|
Initial fungal diversity impacts flavor compounds formation in the spontaneous fermentation of Chinese liquor. Food Res Int 2022; 155:110995. [DOI: 10.1016/j.foodres.2022.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
|
103
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
104
|
Zheng Y, Zhao C, Li X, Xia M, Wang X, Zhang Q, Yan Y, Lang F, Song J, Wang M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
105
|
Shi H, Li J, Zhang Y, Ding K, Zhao G, Hadiatullah H, Duan X. Effect of wheat germination on nutritional properties and the flavor of soy sauce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
106
|
Kang J, Sun Y, Huang X, Ye L, Chen Y, Chen X, Zheng X, Han BZ. Unraveling the microbial compositions, metabolic functions, and antibacterial properties of Huangshui, a byproduct of Baijiu fermentation. Food Res Int 2022; 157:111320. [DOI: 10.1016/j.foodres.2022.111320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/19/2023]
|
107
|
Wei R, Wang L, Ding Y, Zhang L, Gao F, Chen N, Song Y, Li H, Wang H. Natural and sustainable wine: a review. Crit Rev Food Sci Nutr 2022; 63:8249-8260. [PMID: 35333679 DOI: 10.1080/10408398.2022.2055528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the awakening of consumers' awareness of sustainable development issues and demand for terroir wines, natural wines provide opportunities for the future development of the wine industry. Microbiomes are integral to viticulture and winemaking, where various microorganisms can exert positive and negative effects on grape health and wine quality. Communities of microorganisms associated with the vineyard play an important role in soil productivity as well as disease resistance developed by the vine. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. In this review, we first examined that mimicking natural ecological cultivation to improve microbial diversity can enhance vineyard ecological services and reduce external inputs; then we examined that grape berries naturally possess all the elements of winemaking, including the nutrients for microbial growth, driving forces for the microbiota succession, and the enzymatic system for biochemical reactions; finally, we examined food safety, stability, specific interventions, and sustainability of natural wine industry-scale practices.
Collapse
Affiliation(s)
- Ruteng Wei
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yinting Ding
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Liang Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Feifei Gao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ning Chen
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yinghui Song
- Penglai Vine and Wine Industry Development Service Center, Yantai, Shandong, PR China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, PR China
- China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia, PR China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, PR China
- China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia, PR China
| |
Collapse
|
108
|
Wang L. Research trends in Jiang-flavor baijiu fermentation: From fermentation microecology to environmental ecology. J Food Sci 2022; 87:1362-1374. [PMID: 35275413 DOI: 10.1111/1750-3841.16092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Chinese baijiu is one of the six major distilled spirits worldwide and is widely enjoyed because of its unique flavor. Among typical baijiu, Jiang-flavor baijiu is gaining popularity. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. In recent years, advances in high-throughput sequencing and multi-omics technologies have yielded meaningful information regarding fermentation microbiome. Therefore, this paper reviews recent developments in the investigation of the diversity, stability, and metabolism of the Jiang-flavor baijiu microbial community. Furthermore, the importance of protecting the ecology of the production environment is proposed based on the putative contribution of environmental factors to the fermentation microbiome and baijiu characteristics. Finally, this paper discusses current research challenges that need to be addressed, including the limitations of sequencing technologies and difficulties unveiling the mechanisms of microbial interaction between the fermentation microbiome and the environmental ecology. The findings of this review will promote further understanding of the Jiang-flavor baijiu fermentation process and provide valuable information for the research and development of traditional baijiu and other naturally fermented foods. PRACTICAL APPLICATION: Baijiu, a transparent strong alcoholic drink, is the world's largest consumed and the most valuable spirit in the market. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. Therefore, if we can summarizes the current advances and research challenges of microbial fermentation in baijiu, it will deepen the reader's understanding of the complex fermentation process and fermentation mechanism in baijiu. Furthermore, based on the putative contribution of environmental factors to the fermentation process, the importance of protecting the ecology of the production environment is proposed in future research trends, which will provide valuable information for the research and development of other traditional naturally fermented foods. This will not only achieve breakthroughs in academic value, but also bring higher practical value to fermented foods.
Collapse
Affiliation(s)
- Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi City, China
| |
Collapse
|
109
|
Shi H, Zhou X, Yao Y, Qu A, Ding K, Zhao G, Liu SQ. Insights into the microbiota and driving forces to control the quality of vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
110
|
Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L.). Food Res Int 2022; 155:111128. [DOI: 10.1016/j.foodres.2022.111128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/20/2023]
|
111
|
Huang T, Lu ZM, Peng MY, Liu ZF, Chai LJ, Zhang XJ, Shi JS, Li Q, Xu ZH. Combined effects of fermentation starters and environmental factors on the microbial community assembly and flavor formation of Zhenjiang aromatic vinegar. Food Res Int 2022; 152:110900. [DOI: 10.1016/j.foodres.2021.110900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023]
|
112
|
Gao J, Qin J, Ye F, Ding F, Liu G, Li A, Ren C, Xu Y. Constructing simplified microbial consortia to improve the key flavour compounds during strong aroma-type Baijiu fermentation. Int J Food Microbiol 2022; 369:109594. [DOI: 10.1016/j.ijfoodmicro.2022.109594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
|
113
|
Jia W, Du A, Dong X, Fan Z, Zhang D, Wang R, Shi L. Physicochemical and molecular transformation of novel functional peptides from Baijiu. Food Chem 2021; 375:131894. [PMID: 34954580 DOI: 10.1016/j.foodchem.2021.131894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
A novel strategy for screening and identifying peptides present in Baijiu was developed based on magnetic solid-phase extraction with magnetic S-doped graphene (M-G-S) as adsorbent combined with ultrahigh-performance liquid chromatography with high resolution tandem mass spectrometry. In total, 28 peptides consisting of amino acids from 3 to 9 were preliminarily identified, and significantly higher in the number than that of direct concentration and SPE with C18 as the adsorbent. Six peptides were confirmed with their corresponding synthetic reference standards by comparing their retention time, high resolution MS/MS spectra, and NMR spectroscopic studies. Parallel reaction monitoring integrated with the internal standard method was utilized to quantify identified peptides with concentrations ranging from 1.14 to 10.25 ng mL-1, and prediction results of bioactivity comprising antioxidation or ACE inhibitors were obtained. These discoveries were conducive to understanding the versatility benefit of Baijiu and paved the way to study the interaction between peptides and volatile substances.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaojun Dong
- Huashanlunjian Brand Management Co., Ltd, Xi'an 710076, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Duimin Zhang
- Huashanlunjian Brand Management Co., Ltd, Xi'an 710076, China
| | - Ruihong Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
114
|
Wang Z, Ji X, Wang S, Wu Q, Xu Y. Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation. Int J Food Microbiol 2021; 359:109426. [PMID: 34627066 DOI: 10.1016/j.ijfoodmicro.2021.109426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Cereals are widely used as raw material for food fermentation, and they can provide a variety of sugars in the fermentation via saccharification. However, the effect of sugar profile on microbial metabolism in spontaneous food fermentation is still unclear. Here, this work studied the regulation of sugar profile on the diversity of microbiota and their metabolism in Chinese Baijiu fermentation using sorghum as raw material. Six sugars were detected during Baijiu fermentation with 6 different cultivars of sorghum. The diversity of microbiota (ANOSIM: bacteria: P = 0.001, R = 0.77; fungi: P = 0.009, R = 0.33) and metabolites (ANOSIM: P = 0.001, R = 0.50) had different profiles during Baijiu fermentation. Among these sugars, glucose, fructose, and arabinose were identified as key sugars driving both the microbial and the metabolic diversity during Chinese Baijiu fermentation, and the metabolic diversity was positively correlated with the microbial diversity (P < 0.05). Hence, response surface methodology was used to establish a predictive model for regulating the metabolic diversity with the combination of three key sugars. The metabolic diversity significantly increased to 0.42 with the optimized levels of glucose (31.82 g/L), fructose (4.81 g/L), and arabinose (0.20 g/L), compared with unoptimized low-level average metabolic diversity (0.29). This work would provide a strategy to control microbial metabolism in spontaneous food fermentation, hence to improve the quality of fermented foods.
Collapse
Affiliation(s)
- Zheng Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueao Ji
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shilei Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
115
|
Deciphering Succession and Assembly Patterns of Microbial Communities in a Two-Stage Solid-State Fermentation System. Microbiol Spectr 2021; 9:e0071821. [PMID: 34549993 PMCID: PMC8557893 DOI: 10.1128/spectrum.00718-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although the importance of microbiota in the natural environment and in industrial production has been widely recognized, little is known about the formation and succession patterns of the microbial community, particularly secondary succession after disturbance. Here, we choose the Xiaoqu liquor brewing process as an experimental model in which sorghum grains were first aerobically saccharified and then anaerobically fermented after being stirred and acidified to explore multistage community succession patterns. We analyzed microbial composition, physicochemical factors, and metabolites of brewing grains inoculated with two different starters, pure starter and traditional starter, respectively. Two groups showed similar succession patterns where the saccharification microbiota was mainly derived from starters, while environmental microorganisms, mainly Lactobacillaceae and Saccharomyces, dominated the fermentation microbiota regardless of the original saccharification community composition. Species replacement shaped the bacterial community, while species replacement and loss both contributed to fungal community succession in both groups. Grain acidification and hypoxia led to the succession of bacterial and fungal communities during fermentation, respectively. Despite inoculation with starters containing different microorganisms, similar microbial communities during the fermentation stage of the two groups exhibited similar metabolite composition. However, higher abundance of Rhizopus in the saccharification of the pure starter group led to more alcohols, while higher abundance of Monascus and Saccharomycopsis in the traditional starter group promoted acid and ester metabolism. These results revealed the microbial succession patterns of two-stage liquor brewing and its influence on flavor metabolism, which could be used to regulate the microbial community in food fermentation to further promote the modernization of the fermented food industry. IMPORTANCE Revealing formation and assembly mechanisms of microbiota can help us to understand and further regulate its roles in the ecosystems. The Xiaoqu liquor brewing system is a tractable microbial ecosystem with low complexity. This two-stage microbial ecosystem can be used as an experimental model to analyze the multistage temporal succession pattern of microbial communities. Our results demonstrated the dynamic composition and succession pattern of a microbial community in the two-stage liquor brewing system. The results also revealed the microbial origins determining community composition, the ecological processes dominating microbial community succession patterns, the determinants affecting microbial community successions, and the effect of microbial community changes on metabolite synthesis. Overall, our study not only provides an insight into multistage succession patterns of microbial communities in liquor brewing systems but also provides reference for optimizing the quality of fermented products, which will be helpful to understand the succession patterns of microbial communities in other natural ecosystems.
Collapse
|
116
|
Yu X, Zuo T. Editorial: Food Additives, Cooking and Processing: Impact on the Microbiome. Front Nutr 2021; 8:731040. [PMID: 34409064 PMCID: PMC8365020 DOI: 10.3389/fnut.2021.731040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Tao Zuo
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Fecal Microbiota Transplantation, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|