101
|
Apolloni S, Fabbrizio P, Amadio S, Volonté C. Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. J Neuroinflammation 2016; 13:191. [PMID: 27549088 PMCID: PMC4994328 DOI: 10.1186/s12974-016-0658-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a disease with a strong neuroinflammatory component sustained by activated microglia contributing to motoneuron death. However, how to successfully balance neuroprotective versus neurotoxic actions by the use of antinflammatory agents is still under scrutiny. We have recently shown that the antihistamine clemastine, an FDA-approved drug, can influence the M1/M2 switch occurring in SOD1-G93A ALS microglia. METHODS Here, we have chronically treated female SOD1-G93A mice with clemastine, evaluated disease progression and performed mice lumbar spinal cord analysis at symptomatic and end stage of the disease. Moreover, we have studied the mechanism of action of clemastine in primary adult spinal SOD1-G93A microglia cultures and in NSC-G93A motor neuron-like cells. RESULTS We found that a short treatment with clemastine (50 mg/kg) from asymptomatic (postnatal day 40) to symptomatic phase (postnatal day 120) significantly delayed disease onset and extended the survival of SOD1-G93A mice by about 10 %. Under these conditions, clemastine induced protection of motor neurons, modulation of inflammatory parameters, reduction of SOD1 protein levels and SQSTM1/p62 autophagic marker, when analysed immediately at the end of the treatment (postnatal day 120). A long treatment with clemastine (from asymptomatic until the end stage) instead failed to ameliorate ALS disease progression. At the end stage of the disease, we found that clemastine short treatment decreased microgliosis and SOD1 protein and increased LC3-II autophagic marker, while the long treatment produced opposite effects. Finally, in spinal microglia cultures from symptomatic SOD1-G93A mice clemastine activated inflammatory parameters, stimulated autophagic flux via the mTOR signalling pathway and decreased SOD1 levels. Modulation of autophagy was also demonstrated in NSC34 SOD1-G93A motor neuron-like cells. CONCLUSIONS By gaining insights into the ameliorating actions of an antihistaminergic compound in ALS disease, our findings might represent an exploitable therapeutic approach for familial forms of ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy
| | | | - Susanna Amadio
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Santa Lucia Foundation, IRCCS, Rome, Italy. .,Institute of Cell Biology and Neurobiology, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy.
| |
Collapse
|
102
|
Patai R, Nógrádi B, Engelhardt JI, Siklós L. Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage? Biochem Biophys Res Commun 2016; 483:1031-1039. [PMID: 27545602 DOI: 10.1016/j.bbrc.2016.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Roland Patai
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Bernát Nógrádi
- Foundation for the Future of Biomedical Sciences in Szeged, Pálfy u. 52/d, 6725 Szeged, Hungary
| | - József I Engelhardt
- Department of Neurology, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary.
| |
Collapse
|
103
|
Romer SH, Seedle K, Turner SM, Li J, Baccei ML, Crone SA. Accessory respiratory muscles enhance ventilation in ALS model mice and are activated by excitatory V2a neurons. Exp Neurol 2016; 287:192-204. [PMID: 27456268 DOI: 10.1016/j.expneurol.2016.05.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Inspiratory accessory respiratory muscles (ARMs) enhance ventilation when demands are high, such as during exercise and/or pathological conditions. Despite progressive degeneration of phrenic motor neurons innervating the diaphragm, amyotrophic lateral sclerosis (ALS) patients and rodent models are able to maintain ventilation at early stages of disease. In order to assess the contribution of ARMs to respiratory compensation in ALS, we examined the activity of ARMs and ventilation throughout disease progression in SOD1G93A ALS model mice at rest using a combination of electromyography and unrestrained whole body plethysmography. Increased ARM activity, accompanied by increased ventilation, is observed beginning at the onset of symptoms. However, ARM recruitment fails to occur at rest at late stages of disease, even though the same ARMs are used for other behaviors. Using a chemogenetic approach, we demonstrate that a glutamatergic class of neurons in the brainstem and spinal cord, the V2a class, is sufficient to drive increased ARM activity at rest in healthy mice. Additionally, we reveal pathology in the medial reticular formation of the brainstem of SOD1G93A mice using immunohistochemistry and confocal imaging. Both spinal and brainstem V2a neurons degenerate in ALS model mice, accompanied by regional activation of astrocytes and microglia. These results establish inspiratory ARM recruitment as one of the compensatory mechanisms that maintains breathing at early stages of disease and indicate that V2a neuron degeneration may contribute to ARM failure at late stages of disease.
Collapse
Affiliation(s)
- Shannon H Romer
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Kari Seedle
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Sarah M Turner
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Jie Li
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267
| | - Mark L Baccei
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267
| | - Steven A Crone
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229.
| |
Collapse
|
104
|
Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy. J Alzheimers Dis 2016; 48:563-80. [PMID: 26402105 DOI: 10.3233/jad-150395] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Manas Kumar Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences (KIMS), Hyderabad, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ian A Tamargo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
105
|
Nolano M, Provitera V, Manganelli F, Iodice R, Caporaso G, Stancanelli A, Marinou K, Lanzillo B, Santoro L, Mora G. Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol Appl Neurobiol 2016; 43:119-132. [DOI: 10.1111/nan.12332] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- M. Nolano
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Telese Terme; Telese Terme (BN) Italy
| | - V. Provitera
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Telese Terme; Telese Terme (BN) Italy
| | - F. Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; University Federico II of Naples; Naples Italy
| | - R. Iodice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; University Federico II of Naples; Naples Italy
| | - G. Caporaso
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Telese Terme; Telese Terme (BN) Italy
| | - A. Stancanelli
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Telese Terme; Telese Terme (BN) Italy
| | - K. Marinou
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Milan; Milan Italy
| | - B. Lanzillo
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Telese Terme; Telese Terme (BN) Italy
| | - L. Santoro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; University Federico II of Naples; Naples Italy
| | - G. Mora
- Neurology Department ‘Salvatore Maugeri’ Foundation; IRCCS, Institute of Milan; Milan Italy
| |
Collapse
|
106
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
107
|
Lam L, Chin L, Halder RC, Sagong B, Famenini S, Sayre J, Montoya D, Rubbi L, Pellegrini M, Fiala M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. FASEB J 2016; 30:3461-3473. [PMID: 27368295 DOI: 10.1096/fj.201600259rr] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.
Collapse
Affiliation(s)
- Larry Lam
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Lydia Chin
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Ramesh C Halder
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Bien Sagong
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Sam Famenini
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - James Sayre
- Department of Biostatistics, UCLA School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Milan Fiala
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA; Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| |
Collapse
|
108
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|
109
|
Geevasinga N, Menon P, Ng K, Van Den Bos M, Byth K, Kiernan MC, Vucic S. Riluzole exerts transient modulating effects on cortical and axonal hyperexcitability in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:580-588. [DOI: 10.1080/21678421.2016.1188961] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, St. Leonards, University of Sydney, Sydney,
| | | | - Karen Byth
- Westmead Hospital, Research and Education Network, Sydney, Australia NHMRC Clinical Trials Centre, University of Sydney, Sydney, and
| | | | - Steve Vucic
- Western Clinical School, University of Sydney, Sydney,
| |
Collapse
|
110
|
Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A. Recent advances in amyotrophic lateral sclerosis. J Neurol 2016; 263:1241-54. [PMID: 27025851 PMCID: PMC4893385 DOI: 10.1007/s00415-016-8091-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 10/28/2022]
Abstract
ALS is a relentlessly progressive and fatal disease, with no curative therapies available to date. Symptomatic and palliative care, provided in a multidisciplinary context, still remains the cornerstone of ALS management. However, our understanding of the molecular mechanisms underlying the disease has advanced greatly over the past years, giving new hope for the development of novel diagnostic and therapeutic approaches. Here, we have reviewed the most recent studies that have contributed to improving both clinical management and our understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy.
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca Granda Hospital, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy
| |
Collapse
|
111
|
Labra J, Menon P, Byth K, Morrison S, Vucic S. Rate of disease progression: a prognostic biomarker in ALS. J Neurol Neurosurg Psychiatry 2016; 87:628-32. [PMID: 26152368 DOI: 10.1136/jnnp-2015-310998] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/22/2015] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To assess the utility of rate of disease progression (ΔFS) as a prognostic biomarker in amyotrophic laterals sclerosis (ALS). METHODS A total of 203 patients with ALS were prospectively recruited over a 10-year period. At initial visit, the following variables were collected: demographic details, symptom duration, site of onset, phenotype, riluzole use and Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. The ΔFS score at initial visit was calculated by dividing the ALSFRS-R total score by symptom duration (months). The primary end point was survival. Kaplan-Meier survival curves were used to illustrate the distribution of survival from a specified point, while multiple Cox proportional hazards modelling with backward stepwise variable selection was used to identify the independent predictors of survival at initial visit. RESULTS The ΔFS score at initial visit was a significant predictor of survival in ALS (p<0.001), and remained significant when adjusted for age and site of onset (p<0.001). 3 prognostic subgroups emerged, with a ΔFS score of <0.47 associated with a median survival of 2.4 years, which was significantly greater when compared with an initial ΔFS score of between 0.47 and 1.11 (1.6 years, p<0.05) and a score >1.11 (0.7 years, p<0.001). Importantly, multiple Cox proportional hazards modelling identified ΔFS as a highly significant independent predictor of survival in ALS (p<0.001) along with site of disease onset (p<0.01). CONCLUSIONS Rate of disease progression appears to be a simple and sensitive clinical prognostic biomarker in ALS that could be potentially utilised in clinical practice and future therapeutic trials.
Collapse
Affiliation(s)
| | - Parvathi Menon
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Karen Byth
- Westmead Hospital, Research and Education Network, Sydney, Australia NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | | | - Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
112
|
Schanz O, Bageac D, Braun L, Traynor BJ, Lehky TJ, Floeter MK. Cortical hyperexcitability in patients with C9ORF72 mutations: Relationship to phenotype. Muscle Nerve 2016; 54:264-9. [PMID: 26799151 DOI: 10.1002/mus.25047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Patients with mutations in C9orf72 can have amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or ALS-FTD. The goals were to establish whether cortical hyperexcitability occurs in C9orf72 patients with different clinical presentations. METHODS Cortical thresholds and silent periods were measured in thenar muscles in 19 participants with C9orf72 expansions and 21 healthy controls using transcranial magnetic stimulation (TMS). El Escorial and Rascovsky criteria were used to diagnose ALS and FTD. Fourteen participants with C9orf72 expansions were re-tested 6 months later. Correlations with finger-tapping speed, timed peg test, the ALS functional rating scale, and Dementia Rating Scale were examined. RESULTS Most participants with C9orf72 expansions had normal or low cortical thresholds. Among them, ALS patients had the lowest thresholds and significantly shorter silent periods. Thresholds correlated with timed peg-test scores. TMS did not correlate with the Dementia Rating Scale. CONCLUSIONS TMS measures of cortical excitability may serve as noninvasive biomarkers of ALS disease activity. Muscle Nerve, 2016 Muscle Nerve 54: 264-269, 2016.
Collapse
Affiliation(s)
- Olivia Schanz
- Motor Neuron Disorders Unit, National Institutes of Health, Bethesda, Maryland, USA
| | - Devin Bageac
- Motor Neuron Disorders Unit, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Braun
- Motor Neuron Disorders Unit, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan J Traynor
- Neurogenetics of Neuromuscular Disease Section, National Institute of Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya J Lehky
- EMG section, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
113
|
Simon NG. Lower motor neurons - Counting cogs in the ALS machine. Clin Neurophysiol 2016; 127:2668-9. [PMID: 27102133 DOI: 10.1016/j.clinph.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Neil G Simon
- St Vincent's Clinical School, University of New South Wales, Australia.
| |
Collapse
|
114
|
Benedetti L, Ghilardi A, Rottoli E, De Maglie M, Prosperi L, Perego C, Baruscotti M, Bucchi A, Del Giacco L, Francolini M. INaP selective inhibition reverts precocious inter- and motorneurons hyperexcitability in the Sod1-G93R zebrafish ALS model. Sci Rep 2016; 6:24515. [PMID: 27079797 PMCID: PMC4832213 DOI: 10.1038/srep24515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
The pathogenic role of SOD1 mutations in amyotrophic lateral sclerosis (ALS) was investigated using a zebrafish disease model stably expressing the ALS-linked G93R mutation. In addition to the main pathological features of ALS shown by adult fish, we found remarkably precocious alterations in the development of motor nerve circuitry and embryo behavior, and suggest that these alterations are prompted by interneuron and motor neuron hyperexcitability triggered by anomalies in the persistent pacemaker sodium current INaP. The riluzole-induced modulation of INaP reduced spinal neuron excitability, reverted the behavioral phenotypes and improved the deficits in motor nerve circuitry development, thus shedding new light on the use of riluzole in the management of ALS. Our findings provide a valid phenotype-based tool for unbiased in vivo drug screening that can be used to develop new therapies.
Collapse
Affiliation(s)
- Lorena Benedetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| | - Anna Ghilardi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Elsa Rottoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| | - Marcella De Maglie
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - Laura Prosperi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20133 Milano, Italy
| | - Mirko Baruscotti
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Annalisa Bucchi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Luca Del Giacco
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| |
Collapse
|
115
|
Han Y, Ripley B, Serada S, Naka T, Fujimoto M. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation. PLoS One 2016; 11:e0153399. [PMID: 27070121 PMCID: PMC4829212 DOI: 10.1371/journal.pone.0153399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Background & Aim Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Methods Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Results Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. Conclusion These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.
Collapse
Affiliation(s)
- Yongmei Han
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka 565–0871 Japan
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Barry Ripley
- Laboratory of Immune Regulation, IFReC Research Building, Osaka University 3–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- * E-mail:
| |
Collapse
|
116
|
Naujock M, Stanslowsky N, Bufler S, Naumann M, Reinhardt P, Sterneckert J, Kefalakes E, Kassebaum C, Bursch F, Lojewski X, Storch A, Frickenhaus M, Boeckers TM, Putz S, Demestre M, Liebau S, Klingenstein M, Ludolph AC, Dengler R, Kim KS, Hermann A, Wegner F, Petri S. 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells. Stem Cells 2016; 34:1563-75. [PMID: 26946488 DOI: 10.1002/stem.2354] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na(+) /K(+) ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. Stem Cells 2016;34:1563-1575.
Collapse
Affiliation(s)
- Maximilian Naujock
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | | | - Sebastian Bufler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Marcel Naumann
- Division for Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Peter Reinhardt
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Jared Sterneckert
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| | | | - Carola Kassebaum
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Franziska Bursch
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Xenia Lojewski
- Division for Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Alexander Storch
- Division for Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany.,DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | - Stefan Putz
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Maria Demestre
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Klingenstein
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Andreas Hermann
- Division for Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
117
|
Balendra R, Patani R. Quo vadis motor neuron disease? World J Methodol 2016; 6:56-64. [PMID: 27019797 PMCID: PMC4804252 DOI: 10.5662/wjm.v6.i1.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Motor neuron disease (MND), also known as amyotrophic lateral sclerosis, is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The aetio-pathogenesis of MND remains unresolved and no effective treatments exist. The only Food and Drug Administration approved disease modifying therapy is riluzole, a glutamate antagonist, which prolongs survival by up to 3 mo. Current management is largely symptomatic/supportive. There is therefore a desperate and unmet clinical need for discovery of disease mechanisms to guide novel therapeutic strategy. In this review, we start by introducing the organizational anatomy of the motor system, before providing a clinical overview of its dysfunction specifically in MND. We then summarize insights gained from pathological, genetic and animal models and conclude by speculating on optimal strategies to drive the step change in discovery, which is so desperately needed in this arena.
Collapse
|
118
|
Motor Unit Number Index (MUNIX): A novel biomarker for ALS? Clin Neurophysiol 2016; 127:1938-9. [PMID: 26971474 DOI: 10.1016/j.clinph.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 11/21/2022]
|
119
|
Geevasinga N, Menon P, Nicholson GA, Ng K, Howells J, Kril JJ, Yiannikas C, Kiernan MC, Vucic S. Cortical Function in Asymptomatic Carriers and Patients With C9orf72 Amyotrophic Lateral Sclerosis. JAMA Neurol 2016; 72:1268-74. [PMID: 26348842 DOI: 10.1001/jamaneurol.2015.1872] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE The identification of the chromosome 9 open reading frame 72 (c9orf72) gene hexanucleotide repeat expansion represents a major advance in the understanding of amyotrophic lateral sclerosis (ALS) pathogenesis. The pathophysiological mechanism by which the c9orf72 gene expansion leads to neurodegeneration is not yet elucidated. Cortical hyperexcitability is potentially an important pathophysiological process in sporadic ALS and familial ALS (FALS). OBJECTIVE To investigate whether cortical hyperexcitability forms the pathophysiological basis of c9orf72 FALS using the threshold-tracking transcranial magnetic stimulation technique. DESIGN, SETTING, AND PARTICIPANTS Prospective case-control single-center study that took place at hospitals and outpatient clinics from January 1, 2013, to January 1, 2015. Clinical and functional assessments along with transcranial magnetic stimulation studies were taken on 15 patients with c9orf72 FALS and 11 asymptomatic expansion carriers of c9orf72 who were longitudinally followed up for 3 years. Results were compared with 73 patients with sporadic ALS and 74 healthy control participants. MAIN OUTCOMES AND MEASURES Cortical excitability variables, including short-interval intracortical inhibition, were measured in patients with c9orf72 FALS and results were compared with asymptomatic c9orf72 carriers, patients with sporadic ALS, and healthy control participants. RESULTS Mean (SD) short-interval intracortical inhibition was significantly reduced in patients with c9orf72 FALS (1.2% [1.8%]) and sporadic ALS (1.6% [1.2%]) compared with asymptomatic c9orf72 expansion carriers (10.2% [1.8%]; F = 16.1; P < .001) and healthy control participants (11.8% [1.0%]; F = 16.1; P < .001). The reduction of short-interval intracortical inhibition was accompanied by an increase in intracortical facilitation (P < .01) and motor-evoked potential amplitude (P < .05) as well as a reduction in the resting motor threshold (P < .05) and cortical silent period duration (P < .001). CONCLUSIONS AND RELEVANCE This study establishes cortical hyperexcitability as an intrinsic feature of symptomatic c9orf72 expansion-related ALS but not asymptomatic expansion carriers.
Collapse
Affiliation(s)
- Nimeshan Geevasinga
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - James Howells
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Jillian J Kril
- Disciplines of Medicine and Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Con Yiannikas
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
120
|
Shibuya K, Misawa S, Kimura H, Noto Y, Sekiguchi Y, Iwai Y, Shimizu T, Mizuno T, Nakagawa M, Kuwabara S. Increased motor axonal persistent sodium currents predict rapid functional declines in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/ncn3.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kazumoto Shibuya
- Department of Neurology Graduate School of Medicine Chiba University ChibaJapan
| | - Sonoko Misawa
- Department of Neurology Graduate School of Medicine Chiba University ChibaJapan
| | - Hideki Kimura
- Department of Neurology Tokyo Metropolitan Neurological Hospital Tokyo Japan
| | - Yu‐ichi Noto
- Department of Neurology Graduate School of Medical ScienceKyoto Japan
| | - Yukari Sekiguchi
- Department of Neurology Graduate School of Medicine Chiba University ChibaJapan
| | - Yuta Iwai
- Department of Neurology Graduate School of Medicine Chiba University ChibaJapan
| | - Toshio Shimizu
- Department of Neurology Tokyo Metropolitan Neurological Hospital Tokyo Japan
| | - Toshiki Mizuno
- Department of Neurology Graduate School of Medical ScienceKyoto Japan
| | - Masanori Nakagawa
- North Medical Center Kyoto Prefectural University of Medicine Kyoto Japan
| | - Satoshi Kuwabara
- Department of Neurology Graduate School of Medicine Chiba University ChibaJapan
| |
Collapse
|
121
|
Menon P, Geevasinga N, Yiannikas C, Kiernan MC, Vucic S. Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:389-96. [PMID: 26888565 DOI: 10.3109/21678421.2016.1145232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cortical hyperexcitability has been identified as an intrinsic feature of amyotrophic lateral sclerosis (ALS). Consequently, the aim of the present study was to determine whether cortical hyperexcitability formed the pathophysiological basis for the flail leg syndrome (FL), an atypical ALS variant. Cortical excitability studies were undertaken on 18 FL patients, using the threshold tracking transcranial magnetic stimulation (TMS) technique, and results were compared to healthy controls, upper and lower limb-onset ALS as well as bulbar-onset and the flail arm variant ALS. Results showed that cortical hyperexcitability was a feature of FL and was heralded by a significant reduction of short-interval intracortical inhibition (FL 7.2 ± 1.8%; controls 13.2 ± 0.8%, p <0.01) and cortical silent period (CSP) duration (FL 181.7 ± 10.8ms; controls 209.8 ± 3.4ms; p <0.05) along with an increase in motor evoked potential amplitude (FL 29.2 ± 5.1%; controls 18.9 ± 1.2%, p <0.05). The degree of cortical hyperexcitability was comparable between FL and other ALS phenotypes, defined by site of disease onset. In addition, the CSP duration correlated with biomarkers of peripheral neurodegeneration in FL. In conclusion, cortical hyperexcitability is a feature of the flail leg syndrome, being comparable to other ALS phenotypes. Importantly, cortical hyperexcitability correlates with neurodegeneration, and as such may contribute to the underlying pathophysiology in FL.
Collapse
Affiliation(s)
- Parvathi Menon
- a Sydney Medical School, University of Sydney , Sydney , Australia .,b Westmead Hospital , Sydney , Australia
| | - Nimeshan Geevasinga
- a Sydney Medical School, University of Sydney , Sydney , Australia .,b Westmead Hospital , Sydney , Australia
| | - Con Yiannikas
- a Sydney Medical School, University of Sydney , Sydney , Australia .,c Royal North Shore Hospital , Sydney , Australia , and
| | - Matthew C Kiernan
- a Sydney Medical School, University of Sydney , Sydney , Australia .,d Brain and Mind Centre , Royal Prince Alfred Hospital , Sydney , Australia
| | - Steve Vucic
- a Sydney Medical School, University of Sydney , Sydney , Australia .,b Westmead Hospital , Sydney , Australia
| |
Collapse
|
122
|
Fakhoury M. Immune-mediated processes in neurodegeneration: where do we stand? J Neurol 2016; 263:1683-701. [DOI: 10.1007/s00415-016-8052-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022]
|
123
|
The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine. Stem Cells Int 2016; 2016:9279516. [PMID: 26966440 PMCID: PMC4761393 DOI: 10.1155/2016/9279516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum.
Collapse
|
124
|
Sangari S, Iglesias C, El Mendili MM, Benali H, Pradat PF, Marchand-Pauvert V. Impairment of sensory-motor integration at spinal level in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127:1968-77. [PMID: 26971478 DOI: 10.1016/j.clinph.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Subclinical sensory defect can be detected early in ALS. Its impact on spinal excitability was assessed by testing the effects produced by intrinsic hand muscle afferents in triceps brachii motoneurons of patients with distal motor weakness. METHODS TMS was applied over the motor cortex to produce MEP in contralateral triceps during tonic contraction. The intensity varied to compare the full MEP recruitment curve in ALS patients and controls. Then, median and ulnar nerve stimulations at wrist level were combined to TMS to compare the resulting changes in MEP size in both groups. RESULTS MEP recruitment curves were similar in both groups but MEP threshold was significantly higher in ALS. At sub-threshold intensity for MEP, TMS depressed more EMG activity in ALS than in controls. Nerve stimuli increased MEP size in both groups with similar temporal characteristics but the level of facilitation was stronger in ALS. CONCLUSION Cortical hypo-excitability in ALS was accompanied with stronger intra-cortical inhibition in triceps area. While the corticospinal and peripheral inputs were likely depressed, spinal motoneuron response to combined inputs was particularly enhanced in ALS. SIGNIFICANCE Spinal network properties likely compensate for depression of afferent inputs leading to motoneuron hyper-excitability, which may contribute to excito-toxicity.
Collapse
Affiliation(s)
- Sina Sangari
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Caroline Iglesias
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Mohamed-Mounir El Mendili
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Habib Benali
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Pierre-François Pradat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France; Département des maladies du système nerveux, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Véronique Marchand-Pauvert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France.
| |
Collapse
|
125
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
126
|
Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 2016; 15:332-42. [PMID: 26822748 DOI: 10.1016/s1474-4422(15)00380-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
Metabolic changes incorporating fluctuations in weight, insulin resistance, and cholesterol concentrations have been identified in several neurodegenerative disorders. Whether these changes result from the neurodegenerative process affecting brain regions necessary for metabolic regulation or whether they drive the degenerative process is unknown. Emerging evidence from epidemiological, clinical, pathological, and experimental studies emphasises a range of changes in eating behaviours and metabolism in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS, metabolic changes have been linked to disease progression and prognosis. Furthermore, changes in eating behaviour that affect metabolism have been incorporated into the diagnostic criteria for FTD, which has some clinical and pathological overlap with ALS. Whether the distinct and shared metabolic and eating changes represent a component of the proposed spectrum of the two diseases is an intriguing possibility. Moreover, future research should aim to unravel the complex connections between eating, metabolism, and neurodegeneration in ALS and FTD, and aim to understand the potential for targeting modifiable risk factors in disease development and progression.
Collapse
|
127
|
Lemarchant S, Pomeshchik Y, Kidin I, Kärkkäinen V, Valonen P, Lehtonen S, Goldsteins G, Malm T, Kanninen K, Koistinaho J. ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2016; 11:10. [PMID: 26809777 PMCID: PMC4727317 DOI: 10.1186/s13024-016-0078-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteoglycanases are specialized in the degradation of chondroitin sulfate proteoglycans and participate in mechanisms mediating neuroplasticity. Despite the beneficial effect of ADAMTS-4 on neurorepair after spinal cord injury, the functions of ADAMTS proteoglycanases in other CNS disease states have not been studied. Therefore, we investigated the expression, effects and associated mechanisms of ADAMTS-4 during amyotrophic lateral sclerosis (ALS) in the SOD1G93A mouse model. Results ADAMTS-4 expression and activity were reduced in the spinal cord of SOD1G93A mice at disease end-stage when compared to WT littermates. To counteract the loss of ADAMTS-4, SOD1G93A and WT mice were treated with saline or a recombinant ADAMTS-4 before symptom onset. Administration of ADAMTS-4 worsened the prognosis of SOD1G93A mice by accelerating clinical signs of neuromuscular dysfunctions. The worsened prognosis of ADAMTS-4-treated SOD1G93A mice was accompanied by increased degradation of perineuronal nets enwrapping motoneurons and increased motoneuron degeneration in the lumbar spinal cord. Motoneurons of ADAMTS-4-treated SOD1G93A mice were more vulnerable to degeneration most likely due to the loss of their extracellular matrix envelopes. The decrease of neurotrophic factor production induced by ADAMTS-4 in vitro and in vivo may also contribute to a hostile environment for motoneuron especially when devoid of a net. Conclusions This study suggests that the reduction of ADAMTS-4 activity during the progression of ALS pathology may be an adaptive change to mitigate its neurodegenerative impact in CNS tissues. Therapies compensating the compromized ADAMTS-4 activity are likely not promising approaches for treating ALS.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Yuriy Pomeshchik
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Iurii Kidin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Virve Kärkkäinen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Piia Valonen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Sarka Lehtonen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Gundars Goldsteins
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Katja Kanninen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Jari Koistinaho
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
128
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
129
|
Kuzdas-Wood D, Fellner L, Premstaller M, Borm C, Bloem B, Kirik D, Wenning GK, Stefanova N. Overexpression of α-synuclein in oligodendrocytes does not increase susceptibility to focal striatal excitotoxicity. BMC Neurosci 2015; 16:86. [PMID: 26627686 PMCID: PMC4667489 DOI: 10.1186/s12868-015-0227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disease characterized by α-synuclein (α-syn) positive oligodendroglial cytoplasmic inclusions. The latter are associated with a neuronal multisystem neurodegeneration targeting central autonomic, olivopontocerebellar and striatonigral pathways, however the underlying mechanisms of neuronal cell death are poorly understood. Previous experiments have shown that oligodendroglial α-syn pathology increases the susceptibility to mitochondrial stress and proteasomal dysfunction leading to enhanced MSA-like neurodegeneration. Here we analyzed whether oligodendroglial α-syn overexpression in a transgenic mouse model of MSA synergistically interacts with focal neuronal excitotoxic damage generated by a striatal injection of quinolinic acid (QA) to affect the degree of striatal neuronal loss. Results QA injury led to comparable striatal neuronal loss and optical density of astro- and microgliosis in the striatum of transgenic and control mice. Respectively, no differences were identified in drug-induced rotation behavior or open field behavior between the groups. Conclusions The failure of oligodendroglial α-syn pathology to exacerbate striatal neuronal loss resulting from QA excitotoxicity contrasts with enhanced striatal neurodegeneration due to oxidative or proteolytic stress, suggesting that enhanced vulnerability to excitotoxicity does not occur in oligodendroglial α-synucleinopathy like MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Melanie Premstaller
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Carlijn Borm
- Department of Neurology, Parkinson Center Nijmegen (ParC), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Bastiaan Bloem
- Department of Neurology, Parkinson Center Nijmegen (ParC), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Deniz Kirik
- Department of Experimental Medical Science, BMC D11, Brain Repair and Imaging in Neural Systems (BRAINS), Lund University, Klinikgatan 32, 22184, Lund, Sweden.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| |
Collapse
|
130
|
Flecainide in Amyotrophic Lateral Sclerosis as a Neuroprotective Strategy (FANS): A Randomized Placebo-Controlled Trial. EBioMedicine 2015; 2:1916-22. [PMID: 26844270 PMCID: PMC4703720 DOI: 10.1016/j.ebiom.2015.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/03/2022] Open
Abstract
Background Abnormalities in membrane excitability and Na+ channel function are characteristic of amyotrophic lateral sclerosis (ALS). We aimed to examine the neuroprotective potential, safety and tolerability of the Na+ channel blocker and membrane stabiliser flecainide in ALS. Methods A double-blind, placebo-controlled, randomised clinical trial of flecainide (200 mg/day) for 32-weeks with a 12-week lead-in phase was conducted in participants with probable or definite ALS recruited from multiple Australian centres (ANZCT Registry number ACTRN12608000338369). Patients were reviewed by a cardiologist to rule out cardiac contraindications. Participants were randomly assigned (1:1) to flecainide or placebo using stratified permuted blocks by a central pharmacy. The primary outcome measure was the slope of decline of the ALS Functional Rating Scale-revised (ALS FRS-r) during the treatment period. Findings Between March 11, 2008 and July 1, 2010, 67 patients were screened, 54 of whom were randomly assigned to receive flecainide (26 patients) or placebo (28 patients). Four patients in the flecainide group and three patients in the placebo group withdrew from the study. One patient in the flecainide group died during the study, attributed to disease progression. Flecainide was generally well tolerated, with no serious adverse events reported in either group. There was no significant difference in the rate of decline in the primary outcome measure ALS-FRS-r between placebo and flecainide treated patients (Flecainide 0.65 [95% CI 0.49 to 0.98]; Placebo 0.81 [0.49 to 2.12] P = 0.50). However, the rate of decline of the neurophysiological index was significantly reduced in the flecainide group (Flecainide 0.06 [0.01 to 0.11]; Placebo 0.14 [0.09 to 0.19], P = 0.02). Placebo-treated patients demonstrated greater CMAP amplitude reduction during the course of the study in the subset of patients with a reduced baseline CMAP amplitude (Flecainide: − 15 ± 12%; Placebo − 59 ± 12%; P = 0.03). Flecainide-treated patients maintained stabilized peripheral axonal excitability over the study compared to placebo. Interpretation This pilot study indicated that flecainide was safe and potentially biologically effective in ALS. There was evidence that flecainide stabilized peripheral axonal membrane function in ALS. While the study was not powered to detect evidence of benefit of flecainide on ALS-FRS-r decline, further studies may demonstrate clinical efficacy of flecainide in ALS. To determine safety and neuroprotective potential, a double-blind, placebo-controlled, randomised trial of the Na+ channel blocking agent flecainide was conducted in ALS. Flecainide was well tolerated, with no serious adverse events. Although there was some evidence that flecainide stabilised peripheral axonal membrane function, the study was not powered to provide evidence of benefit on functional decline.
Changes in nerve excitability function occur in patients with amyotrophic lateral sclerosis (ALS). We conducted a double-blind, placebo-controlled, randomised clinical trial to examine the impact of a membrane/nerve stabilizer (flecainide) in ALS patients. Although there was some evidence that flecainide stabilised peripheral axonal membrane function in ALS, the study was not powered to find evidence that flecainide benefited patient function.
Collapse
|
131
|
Benninger F, Glat MJ, Offen D, Steiner I. Glial fibrillary acidic protein as a marker of astrocytic activation in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Clin Neurosci 2015; 26:75-8. [PMID: 26602604 DOI: 10.1016/j.jocn.2015.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022]
Abstract
Glial fibrillary acidic protein (GFAP) has been shown to be increased in the cerebrospinal fluid (CSF) of patients suffering from neurological diseases involving the activation of astrocytes, but has not been studied in amyotrophic lateral sclerosis (ALS) patients to our knowledge. CSF samples of patients with definite ALS and of those with other neurological diseases were evaluated for their GFAP concentrations. CSF-GFAP concentrations of patients with ALS were significantly elevated by 53% compared to patients with other neurologic diseases. GFAP might serve as a biomarker in ALS. Our findings support the concept that astrocytes play a role in ALS pathogenesis.
Collapse
Affiliation(s)
- Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Micaela J Glat
- Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
132
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6:171. [PMID: 26629397 PMCID: PMC4653353 DOI: 10.4103/2152-7806.169561] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease affecting motor neurons with an incidence of about 1/100,000. Most ALS cases are sporadic, but 5–10% of the cases are familial ALS. Both sporadic and familial ALS (FALS) are associated with degeneration of cortical and spinal motor neurons. The etiology of ALS remains unknown. However, mutations of superoxide dismutase 1 have been known as the most common cause of FALS. In this study, we provide a comprehensive review of ALS. We cover all aspects of the disease including epidemiology, comorbidities, environmental risk factor, molecular mechanism, genetic factors, symptoms, diagnostic, treatment, and even the available supplement and management of ALS. This will provide the reader with an advantage of receiving a broad range of information about the disease.
Collapse
Affiliation(s)
- Sara Zarei
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Karen Carr
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Luz Reiley
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Kelvin Diaz
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Orleiquis Guerra
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | | | - Wilfredo Pagani
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Daud Lodin
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Gloria Orozco
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Angel Chinea
- Neurologist, Caribbean Neurological Center, Caguas, USA
| |
Collapse
|
133
|
Picher-Martel V, Dutta K, Phaneuf D, Sobue G, Julien JP. Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells. Mol Brain 2015; 8:71. [PMID: 26521126 PMCID: PMC4628361 DOI: 10.1186/s13041-015-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in the gene encoding Ubiquilin-2 (UBQLN2) are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). UBQLN2 plays a central role in ubiquitin proteasome system (UPS) and UBQLN2 mutants can form cytoplasmic aggregates in vitro and in vivo. Results Here, we report that overexpression of WT or mutant UBQLN2 species enhanced nuclear factor κB (NF-κB) activation in Neuro2A cells. The inhibition of NF-κB stress-mediated activation with SB203580, a p38 MAPK inhibitor, demonstrated a role for MAPK in NF-κB activation by UBQLN2 species. Live cell imaging and microscopy showed that UBQLN2 aggregates are dynamic structures that promote cytoplasmic accumulation of TAR DNA-binding protein (TDP-43), a major component of ALS inclusion bodies. Furthermore, up-regulation of UBQLN2 species in neurons caused an ER-stress response and increased their vulnerability to death by toxic mediator TNF-α. Withaferin A, a known NF-κB inhibitor, reduced mortality of Neuro2A cells overexpressing UBQLN2 species. Conclusions These results suggest that UBQLN2 dysregulation in neurons can drive NF-κB activation and cytosolic TDP-43 aggregation, supporting the concept of pathway convergence in ALS pathogenesis. These Ubiquilin-2 pathogenic pathways might represent suitable therapeutic targets for future ALS treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0162-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Kallol Dutta
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Daniel Phaneuf
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, 466-8550, Japan
| | - Jean-Pierre Julien
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada. .,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| |
Collapse
|
134
|
Grieve SM, Menon P, Korgaonkar MS, Gomes L, Foster S, Kiernan MC, Vucic S. Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2015; 17:85-92. [DOI: 10.3109/21678421.2015.1074707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
135
|
Simon NG, Huynh W, Vucic S, Talbot K, Kiernan MC. Motor neuron disease: current management and future prospects. Intern Med J 2015; 45:1005-13. [DOI: 10.1111/imj.12874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- N. G. Simon
- Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - W. Huynh
- Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - S. Vucic
- Westmead Clinical School; C24 Westmead Hospital; The University of Sydney; Sydney New South Wales Australia
| | - K. Talbot
- Division of Clinical Neurology; University of Oxford; Oxford UK
| | - M. C. Kiernan
- Brain and Mind Research Institute; Sydney Medical School; The University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
136
|
Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiol Aging 2015; 36:3288-3299. [PMID: 26362941 DOI: 10.1016/j.neurobiolaging.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023]
Abstract
Considerable evidence from previous voxel-based morphometry studies indicates widespread but heterogeneous gray matter (GM) deficits in amyotrophic lateral sclerosis (ALS). Here, we aimed to investigate the concurrence across voxel-based morphometry studies to help clarify the spatial pattern of GM abnormalities that underlie this condition. Comprehensive meta-analyses to assess regional GM anomalies in ALS were conducted with the Anisotropic Effect Size version of Signed Differential Mapping software package. Twenty studies, which reported 22 comparisons and were composed of 454 ALS patients and 426 healthy controls, were included in the meta-analyses. Regional GM atrophy in ALS was consistently found in the frontal, temporal, and somatosensory areas. Meta-regression demonstrated that the disease duration, disease severity, and age were significantly related to GM deficits in ALS patients. The present meta-analysis provides convergent evidence that ALS is a multisystem degenerative disorder that is accompanied by a unique and widespread pattern of robust cortical GM atrophy. Future studies should investigate whether this atrophy pattern is a diagnostic and prognostic marker.
Collapse
|
137
|
Donnelly CJ, Grima JC, Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener Dis Manag 2015; 4:417-37. [PMID: 25531686 DOI: 10.2217/nmt.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Christopher J Donnelly
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
138
|
Zhang Y, Zhao KT, Fox SG, Kim J, Kirsch DR, Ferrante RJ, Morimoto RI, Silverman RB. Tertiary Amine Pyrazolones and Their Salts as Inhibitors of Mutant Superoxide Dismutase 1-Dependent Protein Aggregation for the Treatment of Amyotrophic Lateral Sclerosis. J Med Chem 2015; 58:5942-9. [PMID: 26186011 DOI: 10.1021/acs.jmedchem.5b00561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pyrazolone derivatives have previously been found to be inhibitors of Cu/Zn superoxide dismutase 1 (SOD1)-dependent protein aggregation, which extended survival of an amyotrophic lateral sclerosis (ALS) mouse model. On the basis of ADME analysis, we describe herein a new series of tertiary amine-containing pyrazolones and their structure-activity relationships. Further conversion to the conjugate salts greatly improved their solubility. Phosphate compound 17 exhibited numerous benefits both to cellular activity and to CNS-related drug-like properties in vitro and in vivo, including microsomal stability, tolerated toxicity, and blood-brain barrier permeation. These results indicate that tertiary amine pyrazolones comprise a valuable class of ALS drug candidates.
Collapse
Affiliation(s)
- Yinan Zhang
- †Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kevin Tianmeng Zhao
- †Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Susan G Fox
- ‡Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208-3500, United States
| | - Jinho Kim
- §Neurological Surgery, Neurology, and Neurobiology Departments, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,∥Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, Pennsylvania 15206, United States
| | - Donald R Kirsch
- ⊥Cambria Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Robert J Ferrante
- §Neurological Surgery, Neurology, and Neurobiology Departments, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,∥Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, Pennsylvania 15206, United States
| | - Richard I Morimoto
- ‡Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208-3500, United States
| | - Richard B Silverman
- †Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
139
|
Abdelhak A, Junker A, Brettschneider J, Kassubek J, Ludolph AC, Otto M, Tumani H. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis? Int J Mol Sci 2015; 16:17565-88. [PMID: 26263977 PMCID: PMC4581209 DOI: 10.3390/ijms160817565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Göttingen, Robert-Koch-Str 40, 37075 Göttingen, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
140
|
Bettencourt C, Houlden H. Exome sequencing uncovers hidden pathways in familial and sporadic ALS. Nat Neurosci 2015; 18:611-3. [PMID: 25919956 DOI: 10.1038/nn.4012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Conceição Bettencourt
- Department of Molecular Neuroscience and the Medical Research Council Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and University College London Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and the Medical Research Council Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and University College London Institute of Neurology, London, UK
| |
Collapse
|
141
|
Wes PD, Holtman IR, Boddeke EW, Möller T, Eggen BJ. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 2015; 64:197-213. [DOI: 10.1002/glia.22866] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Inge R. Holtman
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| | - Erik W.G.M. Boddeke
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| | | | - Bart J.L. Eggen
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| |
Collapse
|
142
|
Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res 2015; 776:84-97. [PMID: 26255941 DOI: 10.1016/j.mrfmmm.2014.11.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
143
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease characterized by progressive loss of motor neurons in the motor cortex, brainstem, and spinal cord. Although defined as a motor disorder, ALS can arise concurrently with frontotemporal lobal dementia (FTLD). ALS begins focally but disseminates to cause paralysis and death. About 10% of ALS cases are caused by gene mutations, and more than 40 ALS-associated genes have been identified. While important questions about the biology of this disease remain unanswered, investigations of ALS genes have delineated pathogenic roles for (a) perturbations in protein stability and degradation, (b) altered homeostasis of critical RNA- and DNA-binding proteins, (c) impaired cytoskeleton function, and (d) non-neuronal cells as modifiers of the ALS phenotype. The rapidity of progress in ALS genetics and the subsequent acquisition of insights into the molecular biology of these genes provide grounds for optimism that meaningful therapies for ALS are attainable.
Collapse
|
144
|
Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11:266-79. [PMID: 25896087 DOI: 10.1038/nrneurol.2015.57] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neurons, which results in weakness and atrophy of voluntary skeletal muscles. Treatments do not modify the disease trajectory effectively, and only modestly improve survival. A complex interaction between genes, environmental exposure and impaired molecular pathways contributes to pathology in patients with ALS. Epigenetic mechanisms control the hereditary and reversible regulation of gene expression without altering the basic genetic code. Aberrant epigenetic patterns-including abnormal microRNA (miRNA) biogenesis and function, DNA modifications, histone remodeling, and RNA editing-are acquired throughout life and are influenced by environmental factors. Thus, understanding the molecular processes that lead to epigenetic dysregulation in patients with ALS might facilitate the discovery of novel therapeutic targets and biomarkers that could reduce diagnostic delay. These achievements could prove crucial for successful disease modification in patients with ALS. We review the latest findings regarding the role of miRNA modifications and other epigenetic mechanisms in ALS, and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ximena Paez-Colasante
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- The A. Alfred Taubman Medical Research Institute, University of Michigan, 109 Zina Pitcher Place, 5017 A. Alfred Taubman Biomedical Science Research Building, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| |
Collapse
|
145
|
Devenney E, Vucic S, Hodges JR, Kiernan MC. Motor neuron disease-frontotemporal dementia: a clinical continuum. Expert Rev Neurother 2015; 15:509-22. [DOI: 10.1586/14737175.2015.1034108] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
146
|
Mandich P, Mantero V, Verdiani S, Gotta F, Caponnetto C, Bellone E, Ferrandes G, Origone P. Complexities of Genetic Counseling for ALS: A Case of Two Siblings with Discordant Genetic Test Results. J Genet Couns 2015; 24:553-7. [PMID: 25843563 DOI: 10.1007/s10897-015-9831-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Rapid advances in the genetics of amyotrophic lateral sclerosis (ALS) have dramatically changed the approach of clinicians and researchers to the motor neuron diseases. We report two siblings in whom the genetic study provided conflicting results, hence raising a number of issues which deserve to be considered by clinicians involved in genetic testing for ALS. The first patient died within 2 years of ALS onset, while her brother still manages to walk unaided, 7 years into onset. Genetic analyses, performed on the first patient as part of a research protocol, and as clinical genetic testing on the brother, provided different results. Results for Patient 1 were negative for all investigated genes, thus suggesting that her disease may be a phenocopy, while her brother carried an autosomal dominant TARDBP mutation (p.A382T). A multidisciplinary approach may help patients and clinicians face the emerging dilemmas in such a complex field. Sharing and updating of advances, not to mention uncertainties inherent to current knowledge, with patients and families may prove to be an effective way to support them and to make them aware of the present limits of our knowledge and of the blurred border between research and clinical practice.
Collapse
Affiliation(s)
- Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Menon P, Geevasinga N, Yiannikas C, Howells J, Kiernan MC, Vucic S. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 2015; 14:478-84. [PMID: 25843898 DOI: 10.1016/s1474-4422(15)00014-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 03/10/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diagnosis of amyotrophic lateral sclerosis (ALS) remains problematic, with substantial diagnostic delays. We assessed the sensitivity and specificity of a threshold tracking transcranial magnetic stimulation (TMS) technique, which might allow early detection of upper motor neuron dysfunction, for the diagnosis of the disorder. METHODS We did a prospective study of patients referred to three neuromuscular centres in Sydney, Australia, in accordance with the Standards for Reporting of Diagnostic Accuracy. Participants had definite, probable, or possible ALS, as defined by the Awaji criteria; or pure motor disorder with clinical features of upper and lower motor neuron dysfunction in at least one body region, progressing over a 6 month follow-up period; or muscle wasting and weakness for at least 6 months. All patients underwent threshold tracking TMS at recruitment (index test), with application of the reference standard, the Awaji criteria, to differentiate patients with ALS from those with non-ALS disorders. The investigators who did the index test were masked to the results of the reference test and all other investigations. The primary outcome measures were the sensitivity and specificity of TMS in differentiating ALS from non-ALS disorders; these measures were derived from receiver operator curve analysis. FINDINGS Between Jan 1, 2010, and March 1, 2014, we screened 333 patients; 281 met our inclusion criteria. We eventually diagnosed 209 patients with ALS and 68 with non-ALS disorders; the diagnosis of four patients was inconclusive. The threshold tracking TMS technique differentiated ALS from non-ALS disorders with a sensitivity of 73·21% (95% CI 66·66-79·08) and specificity of 80·88% (69·53-89·40) at an early stage in the disease. All patients tolerated the study well, and we did not record any adverse events from performance of the index test. INTERPRETATION The threshold tracking TMS technique reliably distinguishes ALS from non-ALS disorders and, if these findings are replicated in larger studies, could represent a useful diagnostic investigation when combined with the Awaji criteria to prove upper motor neuron dysfunction at early stages of ALS. FUNDING Motor Neuron Disease Research Institute of Australia, National Health and Medical Research Council of Australia, and Pfizer.
Collapse
Affiliation(s)
- Parvathi Menon
- Derek Craig Motor Neuron Disease Research Centre, Western Clinical School, University of Sydney, NSW, Australia
| | - Nimeshan Geevasinga
- Derek Craig Motor Neuron Disease Research Centre, Western Clinical School, University of Sydney, NSW, Australia
| | - Con Yiannikas
- Westmead Hospital, Westmead, Royal North Shore Hospital, University of Sydney, NSW, Australia
| | - James Howells
- Brain and Mind Research Institute, Royal Prince Alfred Hospital, University of Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Research Institute, Royal Prince Alfred Hospital, University of Sydney, NSW, Australia
| | - Steve Vucic
- Derek Craig Motor Neuron Disease Research Centre, Western Clinical School, University of Sydney, NSW, Australia; Department of Neurology, University of Sydney, NSW, Australia.
| |
Collapse
|
148
|
Getter T, Zaks I, Barhum Y, Ben-Zur T, Böselt S, Gregoire S, Viskind O, Shani T, Gottlieb H, Green O, Shubely M, Senderowitz H, Israelson A, Kwon I, Petri S, Offen D, Gruzman A. A chemical chaperone-based drug candidate is effective in a mouse model of amyotrophic lateral sclerosis (ALS). ChemMedChem 2015; 10:850-61. [PMID: 25772747 DOI: 10.1002/cmdc.201500045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons and skeletal muscle atrophy. The majority of ALS cases are acquired spontaneously, with inherited disease accounting for only 10 % of all cases. Recent studies provide compelling evidence that aggregates of misfolded proteins underlie both types of ALS. Small molecules such as artificial chaperones can prevent or even reverse the aggregation of proteins associated with various human diseases. However, their very high active concentration (micromolar range) severely limits their utility as drugs. We synthesized several ester and amide derivatives of chemical chaperones. The lead compound 14, 3-((5-((4,6-dimethylpyridin-2-yl)methoxy)-5-oxopentanoyl)oxy)-N,N-dimethylpropan-1-amine oxide shows, in the micromolar concentration range, both neuronal and astrocyte protective effects in vitro; at daily doses of 10 mg kg(-1) 14 improved the neurological functions and delayed body weight loss in ALS mice. Members of this new chemical chaperone derivative class are strong candidates for the development of new drugs for ALS patients.
Collapse
Affiliation(s)
- Tamar Getter
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 529002 (Israel)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Blizzard CA, Southam KA, Dawkins E, Lewis KE, King AE, Clark JA, Dickson TC. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis - vulnerability of lower motor neurons to proximal excitotoxicity. Dis Model Mech 2015; 8:215-24. [PMID: 25740331 PMCID: PMC4348560 DOI: 10.1242/dmm.018606] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022] Open
Abstract
There is a desperate need for targeted therapeutic interventions that slow the progression of amyotrophic lateral sclerosis (ALS). ALS is a disorder with heterogeneous onset, which then leads to common final pathways involving multiple neuronal compartments that span both the central and peripheral nervous system. It is believed that excitotoxic mechanisms might play an important role in motor neuron death in ALS. However, little is known about the mechanisms by which excitotoxicity might lead to the neuromuscular junction degeneration that characterizes ALS, or about the site at which this excitotoxic cascade is initiated. Using a novel compartmentalised model of site-specific excitotoxin exposure in lower motor neurons in vitro, we found that spinal motor neurons are vulnerable to somatodendritic, but not axonal, excitotoxin exposure. Thus, we developed a model of somatodendritic excitotoxicity in vivo using osmotic mini pumps in Thy-1-YFP mice. We demonstrated that in vivo cell body excitotoxin exposure leads to significant motor neuron death and neuromuscular junction (NMJ) retraction. Using confocal real-time live imaging of the gastrocnemius muscle, we found that NMJ remodelling preceded excitotoxin-induced NMJ degeneration. These findings suggest that excitotoxicity in the spinal cord of individuals with ALS might result in a die-forward mechanism of motor neuron death from the cell body outward, leading to initial distal plasticity, followed by subsequent pathology and degeneration.
Collapse
Affiliation(s)
- Catherine A Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Katherine A Southam
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Katherine E Lewis
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jayden A Clark
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Tracey C Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
150
|
Geevasinga N, Menon P, Sue CM, Kumar KR, Ng K, Yiannikas C, Kiernan MC, Vucic S. Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol 2015; 22:826-31, e57-8. [PMID: 25683471 DOI: 10.1111/ene.12669] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Cortical hyperexcitability has been identified as an important pathogenic mechanism in motor neuron disease (MND). The issue as to whether cortical hyperexcitability is a common process across the MND phenotypes, including amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS), remains unresolved. Separately, the clinical distinction between PLS and 'mimic disorders' such as hereditary spastic paraparesis (HSP) may be difficult, potentially delaying diagnosis. Consequently, the aim of the present study was to determine the nature and spectrum of cortical excitability changes across the MND phenotypes, and to determine whether the presence of cortical dysfunction distinguishes PLS from HSP. METHODS Cortical excitability studies were undertaken on a cohort of 14 PLS, 82 ALS and 13 HSP patients with mutations in the spastin gene. RESULTS Cortical hyperexcitability, as heralded by reduction of short interval intracortical inhibition (PLS 0.26%, -3.8% to 1.4%; ALS -0.15%, -3.6% to 7.0%; P < 0.01) and cortical silent period duration (CSPPLS 172.2 ± 5.4 ms; CSPALS 178.1 ± 5.1 ms; P < 0.001), along with an increase in intracortical facilitation was evident in ALS and PLS phenotypes, although appeared more frequently in ALS. Inexcitability of the motor cortex was more frequent in PLS (PLS 71%, ALS 24%, P < 0.0001). Cortical excitability was preserved in HSP. CONCLUSIONS Cortical dysfunction appears to be an intrinsic process across the MND phenotypes, with cortical inexcitability predominating in PLS and cortical hyperexcitability predominating in ALS. Importantly, cortical excitability was preserved in HSP, thereby suggesting that the presence of cortical dysfunction could help differentiate PLS from HSP in a clinical setting.
Collapse
Affiliation(s)
- N Geevasinga
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|