101
|
Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: Their immunity and protective efficacy in mice. Mol Immunol 2013; 54:109-14. [DOI: 10.1016/j.molimm.2012.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 11/19/2022]
|
102
|
Gantt S, Yao L, Kollmann TR, Casper C, Zhang J, Self SG. Implications of Age-Dependent Immune Responses to Enterovirus 71 Infection for Disease Pathogenesis and Vaccine Design. J Pediatric Infect Dis Soc 2013; 2:162-70. [PMID: 26619463 DOI: 10.1093/jpids/pit017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
Epidemics of enterovirus serotype 71 (EV71) infection in Asia appear to be increasing in size and severity, and there is increasing concern for pandemic spread. Efforts are underway to develop an effective EV71 vaccine. However, the immunologic correlates of protection against EV71 infection are not fully understood, and studies suggest that severe complications may result from a combination of pathological immune responses and direct viral effects. Severe disease and death typically occur only in young children, which is likely due in part to a lack of EV71-specific adaptive immunity but possibly also due to age-dependent hyperactive innate immune responses. Infants are the primary targets of EV71 vaccination strategies. Therefore, studies are needed to understand the interplay between age, immunopathology, and severity of EV71 infection to distinguish protective from harmful immune responses and to guide the development of effective EV71 vaccines. This review summarizes our current understanding and outlines the next steps forward.
Collapse
Affiliation(s)
- Soren Gantt
- University of Washington Seattle Children's Hospital, and
| | - Lena Yao
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Corey Casper
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jing Zhang
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Steven G Self
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
103
|
Human IgG subclasses against enterovirus Type 71: neutralization versus antibody dependent enhancement of infection. PLoS One 2013; 8:e64024. [PMID: 23700449 PMCID: PMC3659118 DOI: 10.1371/journal.pone.0064024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/08/2013] [Indexed: 12/02/2022] Open
Abstract
The emerging human enterovirus 71 (EV71) represents a growing threat to public health, and no vaccine or specific antiviral is currently available. Human intravenous immunoglobulin (IVIG) is clinical used in treating severe EV71 infections. However, the discovery of antibody dependent enhancement (ADE) of EV71 infection illustrates the complex roles of antibody in controlling EV71 infection. In this study, to identify the distinct role of each IgG subclass on neutralization and enhancement of EV71 infection, different lots of pharmaceutical IVIG preparations manufactured from Chinese donors were used for IgG subclass fractionation by pH gradient elution with the protein A-conjugated affinity column. The neutralization and ADE capacities on EV71 infection of each purified IgG subclass were then assayed, respectively. The neutralizing activity of human IVIG is mainly mediated by IgG1 subclass and to less extent by IgG2 subclass. Interestingly, IgG3 fraction did not have neutralizing activity but enhanced EV71 infection in vitro. These results revealed the different roles of human IgG subclasses on EV71 infection, which is of critical importance for the rational design of immunotherapy and vaccines against severe EV71 diseases.
Collapse
|
104
|
The epitope integration site for vaccine antigens determines virus control while maintaining efficacy in an engineered cancer vaccine. Mol Ther 2013; 21:1087-95. [PMID: 23568262 DOI: 10.1038/mt.2013.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Picornaviruses have been developed as potential therapies for gene delivery and vaccination. One drawback to their use is the potential for recombination and viral persistence. Therefore, the engineering strategies used must take into account the possibility for virus escape. We have developed Theiler's murine encephalomyelitis virus (TMEV) as a potential vaccine vector for use in immunotherapy. This study shows that insertion of a vaccine epitope at a unique site within the TMEV leader protein can dramatically increase the type I interferon (IFN) response to infection and promote rapid viral clearance. This live virus vaccine maintains its ability to drive antigen-specific CD8(+) T-cell responses to a model antigen as well as to the weakly immunogenic tumor antigen Her2/neu. Furthermore, the epitope integration site does not affect the efficacy of this vaccine as cancer immunotherapy for treating models of melanoma and breast cancer as demonstrated by delayed tumor outgrowth and increased survival in animals implanted with these tumors. These findings show that an attenuated virus retaining limited ability to replicate nonetheless can effectively mobilize CD8(+) cellular immunity and will be important for the design of picornavirus vectors used as immunotherapy in clinical settings.
Collapse
|
105
|
van den Ham HJ, de Waal L, Zaaraoui-Boutahar F, Bijl M, van Ijcken WFJ, Osterhaus ADME, de Boer RJ, Andeweg AC. Early divergence of Th1 and Th2 transcriptomes involves a small core response and sets of transiently expressed genes. Eur J Immunol 2013; 43:1074-84. [PMID: 23436590 DOI: 10.1002/eji.201242979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/03/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
Th cells can adopt a number of different phenotypes. We performed microarray-assisted mRNA profiling on antigen-stimulated, TCR transgenic murine splenocytes that were cultured in the presence of cytokines. Transcriptome snapshots of Th cells differentiating into Th1 and Th2 phenotypes were obtained at various time points. Principal component analysis shows that time since activation and Th skewing are the largest sources of variance (i.e. the largest contributing factors) in our profiling experiments. Divergence between the Th1 and Th2 phenotypes is established early and does not increase in terms of number of differential genes from day 1 to day 4 after stimulation. Notwithstanding the lack of further divergence between the Th1 and Th2 lineages, we show that gene expression is best described by a 'turnover' rather than a 'core response' model, although we find evidence for both. We identify clusters of skewed genes associated with early persistent ('core response') and late ('turnover') Th1 and Th2 gene expression. In addition to the classical Th genes, members of the Batf transcription factor family are differentially expressed in particular helper phenotypes, suggesting an important role for this family in Th-cell phenotype differentiation.
Collapse
Affiliation(s)
- Henk-Jan van den Ham
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands; Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Díaz I, Ganges L, Galindo-Cardiel I, Tarradas J, Álvarez B, Lorca-Oró C, Pujols J, Gimeno M, Darwich L, Domingo M, Domínguez J, Mateu E. Immunization with DNA Vaccines Containing Porcine Reproductive and Respiratory Syndrome Virus Open Reading Frames 5, 6, and 7 May Be Related to the Exacerbation of Clinical Disease after an Experimental Challenge. Viral Immunol 2013; 26:93-101. [DOI: 10.1089/vim.2012.0041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ivan Díaz
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Iván Galindo-Cardiel
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Tarradas
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Belén Álvarez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Cristina Lorca-Oró
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Pujols
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Mariona Gimeno
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Domínguez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
107
|
Iankov ID, Penheiter AR, Griesmann GE, Carlson SK, Federspiel MJ, Galanis E. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res 2012; 172:15-23. [PMID: 23266401 DOI: 10.1016/j.virusres.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/05/2012] [Accepted: 12/03/2012] [Indexed: 01/23/2023]
Abstract
Neutralizing antibodies directed against measles virus (MV) surface glycoproteins prevent viral attachment and entry through the natural receptors. H protein specific IgG can enhance MV infectivity in macrophages via Fcγ receptor (FcγR)-dependent mechanism. H-specific IgM, anti-F antibodies and complement cascade activation are protective against antibody-mediated enhancement of MV infection. However, protective role of anti-H IgG against antibody-enhanced infection is not well understood. Here we designed a set of experiments to test the protective effect of H-specific IgG against FcγR-mediated infection in microglial cells. Microglial cells are also potential target of the antibody-mediated enhancement and spread of MV infection in the central nervous system. A partially neutralizing IgG monoclonal antibody (MAb) CL55, specific for MV H protein, at 10 μg/ml enhanced MV infection in mouse microglial cells by 13-14-fold. Infection-enhancing antibody concentrations induced large multinucleated syncytia formation 48-72 h post-inoculation. We generated anti-H IgG MAb 20H6 with a strong neutralization capacity >1:80,000 at 1mg/ml concentration in MV plaque-reduction neutralization assay. In contrast to the partially protective MAb CL55, enhancement of MV infectivity by MAb 20H6 required dilutions below the 1:120 serum titer considered protective against measles infection in humans. At a concentration of 10 μg/ml MAb 20H6 exhibited a dominant protective effect and prevented MAb CL55-mediated enhancement of MV infection and virus-mediated fusion. These results indicate that neutralization capacity of the H-specific IgG determines the balance between antibody enhancement and protection against MV infection in microglial cells.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 2012; 11:695-719. [PMID: 22873127 DOI: 10.1586/erv.12.38] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this review is to make researchers aware of the benefits of an efficient quality control system for prediction of a developed vaccine's efficacy. Two major goals should be addressed when inactivating a virus for vaccine purposes: first, the infectious virus should be inactivated completely in order to be safe, and second, the viral epitopes important for the induction of protective immunity should be conserved after inactivation in order to have an antigen of high quality. Therefore, some problems associated with the virus inactivation process, such as virus aggregate formation, protein crosslinking, protein denaturation and degradation should be addressed before testing an inactivated vaccine in vivo.
Collapse
Affiliation(s)
- Iris Delrue
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
109
|
Fan YC, Chen JM, Chiu HC, Chen YY, Lin JW, Shih CC, Chen CM, Chang CC, Chang GJJ, Chiou SS. Partially neutralizing potency against emerging genotype I virus among children received formalin-inactivated Japanese encephalitis virus vaccine. PLoS Negl Trop Dis 2012; 6:e1834. [PMID: 23029592 PMCID: PMC3459827 DOI: 10.1371/journal.pntd.0001834] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022] Open
Abstract
Background Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia. Currently, all registered live and inactivated JEV vaccines are derived from genotype III viruses. In Taiwan, the compulsory JEV vaccination policy recommends that children receives four doses of formalin-inactivated Nakayama (GIII) JEV vaccine. Methodology/Principal Findings To evaluate the influence of genotype replacement on the post-vaccination viral neutralizing ability by GIII and GI viruses, the small panel of vaccinated-children serum specimens was assembled, and the reciprocal 50% plaque-reduction neutralizing antibody titers (PRNT50) were measured against Nakayama vaccine strain, CJN GIII human brain isolate and TC2009-1 GI mosquito isolate. The seropositivity rate (PRNT50≥1∶10) and geometric mean titers (GMT) against the TC2009-1 virus were the lowest among the three viruses. The protective threshold against the CJN and TC2009-1 viruses could only be achieved when the GMT against Nakayama virus was ≥1∶20 or ≥1∶80, respectively. Using undiluted vaccinees' sera, the enhancement of JEV infection in K562 cells was observed in some low or non-neutralizing serum specimens. Conclusions/Significance Our preliminary study has shown that neutralizing antibodies, elicited by the mouse brain-derived and formalin-inactivated JEV Nakayama vaccine among a limited number of vaccinees, have reduced neutralizing capacity against circulating GI virus, but more detailed studies are needed to address the potential impact on the future vaccine policy. Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia; however, all available JEV vaccines are derived from genotype III viruses, and no study has been conducted on the cross-neutralization and protection elicited by GIII JEV vaccines against GI viruses using vaccinated children’s serum specimens collected from the general population. Genotype I virus was first detected in Taiwan in 2008, and became the dominant circulating JEV, and was island-wide within a year. In the present study, the small panel of GIII virus vaccinated-children serum specimens were not only showed lower strain-specific neutralization against GI virus as compared to the GIII vaccine and human isolates but also observed the enhancement of GI virus infection in K562 cells in some low or non-neutralizing serum specimens. These preliminary results indicated the reduced neutralization potency due to genotype replacement should be closely monitored in the JE epidemic/endemic regions in the future.
Collapse
MESH Headings
- Adolescent
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Asia
- Child
- Child, Preschool
- Encephalitis Virus, Japanese/classification
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Genotype
- Humans
- Infant
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/immunology
- Mice
- Neutralization Tests
- Taiwan
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Yi-Chin Fan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jen-Wei Lin
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chen-Chang Shih
- Department of Neurology, Mennonite Christian Hospital, Hualien, Taiwan
| | - Chih-Ming Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Infectious Disease, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Center for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
110
|
Drechsler Y, Alcaraz A, Bossong FJ, Collisson EW, Diniz PPVP. Feline coronavirus in multicat environments. Vet Clin North Am Small Anim Pract 2012; 41:1133-69. [PMID: 22041208 PMCID: PMC7111326 DOI: 10.1016/j.cvsm.2011.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA
| | | | | | | | | |
Collapse
|
111
|
McCullers JA, Huber VC. Correlates of vaccine protection from influenza and its complications. Hum Vaccin Immunother 2012; 8:34-44. [PMID: 22252001 DOI: 10.4161/hv.8.1.18214] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite use of influenza vaccines for more than 65 y, influenza and its complications are a major cause of morbidity and mortality worldwide. Most deaths during influenza virus infections are due to underlying co-morbidities or secondary bacterial pneumonia. The measures of immune response currently used for licensure of influenza vaccines are relevant mainly for protection from viral infection in healthy adults. Development of new or improved influenza vaccines will require a definition of novel, and specific correlates of protection. These correlates should associate immune responses with outcomes that are relevant to specific risk groups, such as asthma exacerbation, hospitalization or disruptions to care or daily activities. Assessment of vaccine effectiveness for both viral and bacterial vaccines should include measures of impact on secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
112
|
Konishi E, Miyagawa Y. Balance of infection-enhancing and neutralizing antibodies induced by a dengue tetravalent DNA vaccine in a mouse model. Microbes Infect 2011; 13:1091-8. [DOI: 10.1016/j.micinf.2011.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/22/2011] [Accepted: 06/10/2011] [Indexed: 11/26/2022]
|
113
|
Quijano-Hernandez I, Dumonteil E. Advances and challenges towards a vaccine against Chagas disease. HUMAN VACCINES 2011; 7:1184-91. [PMID: 22048121 DOI: 10.4161/hv.7.11.17016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is major public health problem, affecting nearly 10 million people, characterized by cardiac alterations leading to congestive heart failure and death of 20-40% of the patients infected with Trypanosoma cruzi, the protozoan parasite responsible for the disease. A vaccine would be key to improve disease control and we review here the recent advances and challenges of a T. cruzi vaccine. There is a growing consensus that a protective immune response requires the activation of a Th1 immune profile, with the stimulation of CD8 (+) T cells. Several vacines types, including recombinant proteins, DNA and viral vectors, as well as heterologous prime-boost combinations, have been found immunogenic and protective in mouse models, providing proof-of-concept data on the feasibility of a preventive or therapeutic vaccine to control a T. cruzi infection. However, several challenges such as better end-points, safety issues and trial design need to be addressed for further vaccine development to proceed.
Collapse
Affiliation(s)
- Israel Quijano-Hernandez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Merida, Mexico
| | | |
Collapse
|
114
|
Lam SK, Burke D, Capeding MR, Chong CK, Coudeville L, Farrar J, Gubler D, Hadinegoro SR, Hanna J, Lang J, Lee HL, Leo YS, Luong CQ, Mahoney R, Mcbride J, Mendez-Galvan J, Ng LC, Nimmannitya S, Ooi EE, Shepard D, Smit J, Teyssou R, Thomas L, Torresi J, Vasconcelos P, Wirawan DN, Yoksan S. Preparing for introduction of a dengue vaccine: Recommendations from the 1st Dengue v2V Asia-Pacific Meeting. Vaccine 2011; 29:9417-22. [DOI: 10.1016/j.vaccine.2011.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/29/2022]
|
115
|
Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daëron M, Bruzzone R, Peiris JSM. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 2011; 85:10582-97. [PMID: 21775467 PMCID: PMC3187504 DOI: 10.1128/jvi.00671-11] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.
Collapse
Affiliation(s)
- Martial Jaume
- HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Holzer GW, Coulibaly S, Aichinger G, Savidis-Dacho H, Mayrhofer J, Brunner S, Schmid K, Kistner O, Aaskov JG, Falkner FG, Ehrlich H, Barrett PN, Kreil TR. Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine 2011; 29:4132-41. [PMID: 21477673 DOI: 10.1016/j.vaccine.2011.03.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease.
Collapse
Affiliation(s)
- Georg W Holzer
- Baxter Bioscience, Biomedical Research Center, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: Effects of antibodies and complement. Virology 2011; 412:441-7. [DOI: 10.1016/j.virol.2011.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
118
|
Excler JL, Parks CL, Ackland J, Rees H, Gust ID, Koff WC. Replicating viral vectors as HIV vaccines: summary report from the IAVI-sponsored satellite symposium at the AIDS vaccine 2009 conference. Biologicals 2011; 38:511-21. [PMID: 20537552 DOI: 10.1016/j.biologicals.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/29/2010] [Indexed: 01/30/2023] Open
Abstract
In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Replicating Viral Vectors for use in AIDS Vaccines' at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the EMEA recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries.
Collapse
Affiliation(s)
- J L Excler
- International AIDS Vaccine Initiative, 110 William Street, 27th Floor, New York, NY 10038-3901, USA
| | | | | | | | | | | |
Collapse
|
119
|
Little SF, Webster WM, Fisher DE. Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo. ACTA ACUST UNITED AC 2011; 62:11-22. [PMID: 21231965 DOI: 10.1111/j.1574-695x.2011.00782.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective antigen (PA) from Bacillus anthracis binds to cellular receptors, combines with lethal factor (LF) forming lethal toxin (LeTx), and facilitates the translocation of LF into the cytosol. LeTx is cytotoxic for J774A.1 cells, a murine macrophage cell line, and causes death of Fisher 344 rats when injected intravenously. PA is also the major protective component in anthrax vaccines. Antibody-dependent enhancement has been reported for several viral diseases, a bacterial infection, and for B. anthracis LeTx in vitro cytotoxicity. Further screening of our 73 PA monoclonal antibodies (mAbs) identified a total of 17 PA mAbs that enhanced in vitro cytotoxicity at suboptimal concentrations of LeTx. A competitive binding enzyme-linked immunosorbent assay showed that these 17 PA mAbs identified eight different antigenic regions on PA. Eight of the 17 PA mAbs that enhanced LeTx in vitro cytoxicity were examined for their activity in vivo. Of the eight mAbs that were injected intravenously with a sublethal concentration of LeTx into male Fisher 344 rats, four mAbs enhanced the lethality of LeTx and resulted in the death of animals, whereas control animals did not succumb to intoxication. This is the first demonstration that PA mAbs can enhance LeTx intoxication in vivo.
Collapse
Affiliation(s)
- Stephen F Little
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| | | | | |
Collapse
|
120
|
Jarasch-Althof N, Wiesener N, Schmidtke M, Wutzler P, Henke A. Antibody-dependent enhancement of coxsackievirus B3 infection of primary CD19+ B lymphocytes. Viral Immunol 2011; 23:369-76. [PMID: 20712481 DOI: 10.1089/vim.2010.0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is associated with several different acute and chronic forms of human disease, including myocarditis, aseptic meningitis, and pancreatitis. Moreover, CVB3 also infects immune cells like CD19+ B lymphocytes, but the viral uptake mechanism into these cells is not well understood. Therefore, primary murine and human CD19+ B cells were isolated by magnetic-activated cell separation technology and analyzed for virus receptor expression, antibody-dependent enhancement of viral infection, and different cellular surface proteins, that might be involved in mechanisms of viral uptake. Western blot analysis of these cells revealed no significant expression of the coxsackievirus-adenovirus receptor CAR. But incubation of CVB3 with serum dilutions, which exhibited binding but not neutralizing characteristics, increased viral uptake and replication significantly in a dose-dependent manner. Viral entry was reduced when Fc portions of immunoglobulins were blocked by protein A treatment. Moreover, the classical complement system rather than Fc-gamma-receptor-mediated mechanisms could be involved in viral uptake. Taken together, these data suggest an antibody-dependent enhancement of CVB3 infection of primary murine and human CD19+ B cells.
Collapse
Affiliation(s)
- Nadine Jarasch-Althof
- Department of Virology and Antiviral Therapy, University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
121
|
Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J Virol 2010; 85:1671-83. [PMID: 21123382 DOI: 10.1128/jvi.00220-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is implicated in severe, usually secondary, dengue virus (DV) infections. Preexisting heterotypic antibodies, via their Fc-gamma receptor (FcγR) interactions, may increase disease severity through enhanced target cell infection. Greater numbers of infected target cells may contribute to higher viremia and excess cytokine levels often observed in severe disease. Monocytes, macrophages, and immature and mature dendritic cells (DC) are considered major cellular targets of DV. Apheresis of multiple donors allowed isolation of autologous primary myeloid target cell types for head-to-head comparison of infection rates, viral output, and cytokine production under direct infection (without antibody) or ADE conditions (with antibody). All studied cell types except immature DC supported ADE. All cells undergoing ADE secreted proinflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) at enhancement titers, but distinct cell-type-specific patterns were observed for other relevant proteins (alpha/beta interferon [IFN-α/β] and IL-10). Macrophages produced type I interferons (IFN-α/β) that were modulated by ADE. Mature DC mainly secreted IFN-β. Interestingly, only monocytes secreted IL-10, and only upon antibody-enhanced infection. While ADE infection rates were remarkably consistent in monocytes (10 to 15%) across donors, IL-10 protein levels varied according to previously described regulatory single nucleotide polymorphisms (SNPs) in the IL-10 promoter region. The homozygous GCC haplotype was associated with high-level IL-10 secretion, while the ACC and ATA haplotypes produced intermediate and low levels of IL-10, respectively. Our data suggest that ADE effects are cell type specific, are influenced by host genetics, and, depending on relative infection rates, may further contribute to the complexity of DV pathogenesis.
Collapse
|
122
|
Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection. Vaccine 2010; 29:763-71. [PMID: 21095256 DOI: 10.1016/j.vaccine.2010.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/26/2010] [Accepted: 11/06/2010] [Indexed: 11/21/2022]
Abstract
Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.
Collapse
|
123
|
Porter KA, Kelley LN, Nekorchuk MD, Jones JH, Hahn AB, de Noronha CMC, Harton JA, Duus KM. CIITA enhances HIV-1 attachment to CD4+ T cells leading to enhanced infection and cell depletion. THE JOURNAL OF IMMUNOLOGY 2010; 185:6480-8. [PMID: 21041720 DOI: 10.4049/jimmunol.1000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.
Collapse
Affiliation(s)
- Kristen A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
How innate immune mechanisms contribute to antibody-enhanced viral infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1829-35. [PMID: 20876821 DOI: 10.1128/cvi.00316-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preexisting antibodies may enhance viral infections. In dengue, nonneutralizing antibodies raised by natural infection with one of four dengue viruses (DENVs) may enhance infection with a different virus by a process we term "intrinsic antibody-dependent enhancement" (iADE). In addition, nonprotective antibodies raised by formalin-inactivated respiratory syncytial virus (RSV) and measles virus vaccines have led to enhanced disease during breakthrough infections. Infections under iADE conditions not only facilitate the process of viral entry into monocytes and macrophages but also modify innate and adaptive intracellular antiviral mechanisms, suppressing type 1 interferon (IFN) production and resulting in enhanced DENV replication. The suppression observed in vitro has been documented in patients with severe (dengue hemorrhagic fever [DHF]) but not in patient with mild (dengue fever [DF]) secondary dengue virus infections. Important veterinary viral infections also may exhibit iADE. It is thought that use of formalin deconforms viral epitopes of RSV, resulting in poor Toll-like receptor (TLR) stimulation; suboptimal maturation of dendritic cells with reduced production of activation factors CD40, CD80, and CD86; decreased germinal center formation in lymph nodes; and the production of nonprotective antibodies. These antibodies fail to neutralize RSV, allowing replication with secondary stimulation of RSV-primed Th2 cells producing more low-avidity antibody, resulting in immune complexes deposited into affected tissue. However, when formalin-inactivated RSV was administered with a TLR agonist to mice, they were protected against wild-type virus challenge. Safe and effective vaccines against RSV/measles virus and dengue virus may benefit from a better understanding of how innate immune responses can promote production of protective antibodies.
Collapse
|
125
|
Abstract
Dengue virus is the most common arboviral infection of humans in the tropical and subtropical regions of the world. This review briefly describes some of the challenges it presents. Dengue is an emerging disease; it is increasing in geographical distribution and severity, despite being significantly underreported. The World Health Organization case definition for the generally more severe manifestation of infection, dengue haemorrhagic fever (DHF), is controversial. The name DHF is something of a misnomer as the disease infrequently results in frank haemorrhage; the hallmark of DHF is actually plasma leakage. The existence of four closely related dengue virus serotypes contributes to difficulties in diagnosis and to original antigenic sin in the serological response to infection. The existence of multiple serotypes can result in more severe disease upon a second infection and complicates vaccine development. Nevertheless, a safe and effective vaccine is the greatest prospect for stemming the tide of dengue.
Collapse
Affiliation(s)
- Robert V Gibbons
- Department of Virology, Armed Forces Research Institute of Medical Research, Bangkok, Thailand.
| |
Collapse
|
126
|
Enterovirus 71 infection of monocytes with antibody-dependent enhancement. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1517-23. [PMID: 20685937 DOI: 10.1128/cvi.00108-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus (EV) is an RNA virus that has circulated with different serotypes and genotypes worldwide. Enterovirus 71 (EV71) is a major neurotropic virus that causes severe brain stem encephalitis (BE) in infants and young children. The most vulnerable age for fatal infection is 6 to 11 months. This is associated with the coincident decline in maternal antibodies. The current report describes our finding that EV71 can infect human peripheral blood monocytes. We were able to show that EV71 infection is enhanced in the monocytic cell line THP-1 by the presence of subneutralizing concentrations of anti-EV71 antibodies. We also found that antibody-dependent enhancement (ADE) is mediated in part by Fcγ receptors. These observations support the concept that ADE augments the infectivity of EV71 for human monocytes and contributes to the age-dependent pathogenesis of EV71-induced disease. The ADE phenomenon must be considered during the development of an EV71 vaccine.
Collapse
|
127
|
Abstract
Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.
| | | | | | | |
Collapse
|
128
|
Controlling influenza by cytotoxic T-cells: calling for help from destroyers. J Biomed Biotechnol 2010; 2010:863985. [PMID: 20508820 PMCID: PMC2875772 DOI: 10.1155/2010/863985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/03/2010] [Indexed: 12/26/2022] Open
Abstract
Influenza is a vaccine preventable disease that causes severe illness and excess mortality in humans. Licensed influenza vaccines induce humoral immunity and protect against strains that antigenically match the major antigenic components of the vaccine, but much less against antigenically diverse influenza strains. A vaccine that protects against different influenza viruses belonging to the same subtype or even against viruses belonging to more than one subtype would be a major advance in our battle against influenza. Heterosubtypic immunity could be obtained by cytotoxic T-cell (CTL) responses against conserved influenza virus epitopes. The molecular mechanisms involved in inducing protective CTL responses are discussed here. We also focus on CTL vaccine design and point to the importance of immune-related databases and immunoinformatics tools in the quest for new vaccine candidates. Some techniques for analysis of T-cell responses are also highlighted, as they allow estimation of cellular immune responses induced by vaccine preparations and can provide correlates of protection.
Collapse
|
129
|
Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine 2010; 28:2827-31. [DOI: 10.1016/j.vaccine.2010.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
|
130
|
Pistello M, Conti F, Vannucci L, Freer G. Novel approaches to vaccination against the feline immunodeficiency virus. Vet Immunol Immunopathol 2010; 134:48-53. [PMID: 19896725 DOI: 10.1016/j.vetimm.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inadequate antigen presentation and/or suboptimal immunogenicity are considered major causes in the failure of human immunodeficiency vaccine to adequately protect against wild-type virus. Several approaches have been attempted to circumvent these hurdles. Here we reviewed some recent vaccinal strategies tested against the feline immunodeficiency virus and focused on: (i) improving antigen presentation by taking advantage of the exquisite ability of dendritic cells to process and present immunogens to the immune system; (ii) boosting immune responses with vaccinal antigens presented in a truly native conformation by the natural target cells of infection. Significance of the studies, possible correlates of protection involved, and implications for developing anti-human immunodeficiency virus vaccines are discussed.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
131
|
Preclinical studies of a modified vaccinia virus Ankara-based HIV candidate vaccine: antigen presentation and antiviral effect. J Virol 2010; 84:5314-28. [PMID: 20219934 DOI: 10.1128/jvi.02329-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Poxvirus-based human immunodeficiency virus (HIV) vaccine candidates are currently under evaluation in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA) vectors have excellent safety and immunogenicity records, but their behavior in human cell cultures remains only partly characterized. We studied here various virological and immunological aspects of the interactions of MVA-HIV, a vaccine candidate developed by the French National Agency for AIDS Research (ANRS), with primary human cells. We report that MVA-HIV infects and drives Gag expression in primary macrophages, dendritic cells (DCs), and epithelial and muscle cells. MVA-HIV-infected DCs matured, efficiently presented Gag, Pol, and Nef antigens, and activated HIV-specific cytotoxic T lymphocytes (CTLs). As expected with this type of vector, infection was cytopathic and led to DC apoptosis. Coculture of MVA-HIV-infected epithelial cells or myotubes with DCs promoted efficient Gag antigen major histocompatibility complex class I (MHC-I) cross-presentation without inducing direct infection and death of DCs. Antigen-presenting cells (APCs) infected with MVA-HIV also activated HIV-specific CD4(+) T cells. Moreover, exposure of DCs to MVA-HIV or to MVA-HIV-infected myotubes induced type I interferon (IFN) production and inhibited subsequent HIV replication and transfer to lymphocytes. Altogether, these results show that MVA-HIV promotes efficient MHC-I and MHC-II presentation of HIV antigens by APCs without facilitating HIV replication. Deciphering the immune responses to MVA in culture experiments will help in the design of innovative vaccine strategies.
Collapse
|
132
|
Lobigs M, Pavy M, Hall RA, Lobigs P, Cooper P, Komiya T, Toriniwa H, Petrovsky N. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol 2010; 91:1407-17. [PMID: 20130134 PMCID: PMC2888167 DOI: 10.1099/vir.0.019190-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine.
Collapse
Affiliation(s)
- Mario Lobigs
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Kim DS, Nam JH. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opin Biol Ther 2010; 10:179-90. [DOI: 10.1517/14712590903379502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
134
|
Stevens AJ, Gahan ME, Mahalingam S, Keller PA. The medicinal chemistry of dengue fever. J Med Chem 2010; 52:7911-26. [PMID: 19739651 DOI: 10.1021/jm900652e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew J Stevens
- Department of Chemistry, University of Wollongong, Wollongong 2522, Australia
| | | | | | | |
Collapse
|
135
|
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Harald zur Hausen
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie, Heidelberg, Germany
| |
Collapse
|
136
|
Konishi E, Tabuchi Y, Yamanaka A. A simple assay system for infection-enhancing and -neutralizing antibodies to dengue type 2 virus using layers of semi-adherent K562 cells. J Virol Methods 2009; 163:360-7. [PMID: 19883692 DOI: 10.1016/j.jviromet.2009.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/19/2009] [Accepted: 10/22/2009] [Indexed: 11/26/2022]
Abstract
A simple alternative to the dengue antibody-dependent enhancement (ADE) assay was established. The new assay method utilizes cells attached to microplate wells, thereby eliminating cumbersome procedures typical of the conventional ADE assay that utilizes suspension cells. Semi-adherent K562 cells bearing the Fc-gamma receptor (Fc gammaR) were cultured on poly-L-lysine-coated plates. The procedure consisted of (i) preparation of a virus-antibody-cell mixture in wells, (ii) cultivation at 37 degrees C for 24 h and (iii) fixation and immunostaining to count infected cells. Using monoclonal antibodies against dengue type 2 virus, the new system correlated with three conventional systems. Additionally, K562 cells were employed in a neutralization test. For this purpose, the virus-antibody mixture was incubated at 37 degrees C for 2 h prior to the addition of cells. As expected, K562 cells provided lower neutralizing antibody titers than did a conventional neutralization test using Vero cells, which do not have Fc gammaR, in monoclonals showing both neutralizing and enhancing activities. Since antibodies are present in polyclonal form in circulation, neutralization tests using K562 cells are considered to reveal a more accurate in vivo status than those using Vero cells. Human sera, positive for dengue virus antibodies, showed neutralizing and enhancing activities in a dose-dependent manner.
Collapse
Affiliation(s)
- Eiji Konishi
- Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | | | | |
Collapse
|
137
|
Michels KB, zur Hausen H. Appropriate human papillomavirus vaccination strategies. Lancet 2009; 374:1328; author reply 1328-9. [PMID: 19837249 PMCID: PMC7135813 DOI: 10.1016/s0140-6736(09)61821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Harald zur Hausen
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie, Heidelberg, Germany
| |
Collapse
|
138
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2009. [DOI: 10.1002/pds.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
139
|
Ewing GE. What is regressive autism and why does it occur? Is it the consequence of multi-systemic dysfunction affecting the elimination of heavy metals and the ability to regulate neural temperature? NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2009; 1:28-47. [PMID: 22666668 PMCID: PMC3364648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
There is a compelling argument that the occurrence of regressive autism is attributable to genetic and chromosomal abnormalities, arising from the overuse of vaccines, which subsequently affects the stability and function of the autonomic nervous system and physiological systems. That sense perception is linked to the autonomic nervous system and the function of the physiological systems enables us to examine the significance of autistic symptoms from a systemic perspective. Failure of the excretory system influences elimination of heavy metals and facilitates their accumulation and subsequent manifestation as neurotoxins: the long-term consequences of which would lead to neurodegeneration, cognitive and developmental problems. It may also influence regulation of neural hyperthermia. This article explores the issues and concludes that sensory dysfunction and systemic failure, manifested as autism, is the inevitable consequence arising from subtle DNA alteration and consequently from the overuse of vaccines.
Collapse
Affiliation(s)
- Graham E. Ewing
- Montague Healthcare, Mulberry House, 6 Vine Farm Close, Cotgrave, Nottingham NG12 3TU, United Kingdom
| |
Collapse
|
140
|
Affiliation(s)
- Jorge Flores
- Vaccine Research Program, Division of AIDS, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|