101
|
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr Polym 2015; 134:418-28. [DOI: 10.1016/j.carbpol.2015.08.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
|
102
|
Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015; 33:5920-6. [PMID: 26407920 PMCID: PMC4639457 DOI: 10.1016/j.vaccine.2015.09.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallized into a stable microcrystalline particulate from (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallizes as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cCMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while being safe and well tolerated. Advax™ adjuvant represents a novel human adjuvant that enhances both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre and Flinders University, Adelaide 5042, Australia.
| | - Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2061, Australia
| |
Collapse
|
103
|
Abstract
Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer's disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology and Diabetes, Flinders University, Adelaide, SA, 5042, Australia.
- Vaxine Pty Ltd, Adelaide, SA, Australia.
| |
Collapse
|
104
|
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym 2015; 130:405-19. [DOI: 10.1016/j.carbpol.2015.05.026] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
|
105
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
106
|
Moon SH, Shin EC, Noh YW, Lim YT. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine. Vaccine 2015; 33:4762-9. [PMID: 26271830 DOI: 10.1016/j.vaccine.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022]
Abstract
Here, monophosphoryl lipid A (MPLA) and aluminum salt (Alum) were introduced into a hyaluronic acid (HA)-based combination vaccine adjuvant for hepatitis B vaccine (HBV). Although Alum is a well-known hepatitis B vaccine adjuvant that induces an enhanced humoral immune response, it cannot induce the cellular immune responses. On the other hand, MPLA has been generally reported to promote IFN-γ production via antigen-specific CD4(+) T cells, but it is not water soluble as a result of its long hydrophobic alkyl chains. To this end, water insoluble MPLA could be solubilized in an aqueous solution with the help of HA, which contains many carboxyl and hydroxyl groups that can be used to attach to the hydroxyl head groups of MPLA via hydrogen bonds. Three groups of mice were treated with either hepatitis B surface antigen (HBsAg) alone, HBsAg_Alum complex, or HBsAg_Alum_MPLA/HA complex. The group immunized with the HBsAg_Alum_MPLA/HA complex exhibited a high increase in cellular immune response as well as in humoral immune response relative to the other two groups. The antibody, cytokine and T cell levels were most elevated in the group of mice immunized with HBsAg_Alum_MPLA/HA complex, even at a 1μg/mice dose, and the magnitude was still maintained even after 8 weeks. Specifically, the antibody value was 120 times larger in mice vaccinated with HBsAg_Alum_MPLA/HA complex than in mice vaccinated with HBsAg_Alum complex designed similar to commercially available hepatitis B vaccine, Engerix B. The cytokine and T cell proliferation levels were 2 times and 6 times larger in mice adjuvanted with HBsAg_Alum_MPLA/HA complex than in those vaccinated with HBsAg_Alum. The results therefore indicate that incorporating MPLA and Alum with HA can be a potent strategy to increase both the magnitude and the persistence of HBsAg-specific immune responses to protect hosts against hepatitis B virus infection.
Collapse
Affiliation(s)
- Se-hee Moon
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Young-Woock Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yong Taik Lim
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
107
|
Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 2015; 33:4892-900. [PMID: 26232344 PMCID: PMC4562881 DOI: 10.1016/j.vaccine.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023]
Abstract
A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection. Advax adjuvant enhanced both B-cell and T-cell memory in neonates. Influenza protection in Advax-immunized neonates was dependent on memory B-cells. Advax adjuvant confirmed to be safe and well tolerated in neonates.
Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants, e.g. during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Chun Hao Ong
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia; Department of Endocrinology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
108
|
Li L, Honda-Okubo Y, Li C, Sajkov D, Petrovsky N. Delta Inulin Adjuvant Enhances Plasmablast Generation, Expression of Activation-Induced Cytidine Deaminase and B-Cell Affinity Maturation in Human Subjects Receiving Seasonal Influenza Vaccine. PLoS One 2015; 10:e0132003. [PMID: 26177480 PMCID: PMC4503308 DOI: 10.1371/journal.pone.0132003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/08/2015] [Indexed: 12/29/2022] Open
Abstract
There is a major need for new adjuvants to improve the efficacy of seasonal and pandemic influenza vaccines. Advax is a novel polysaccharide adjuvant based on delta inulin that has been shown to enhance the immunogenicity of influenza vaccine in animal models and human clinical trials. To better understand the mechanism for this enhancement, we sought to assess its effect on the plasmablast response in human subjects. This pilot study utilised cryopreserved 7 day post-vaccination (7dpv) peripheral blood mononuclear cell samples obtained from a subset of 25 adult subjects from the FLU006-12 trial who had been immunized intramuscularly with a standard dose of 2012 trivalent inactivated influenza vaccine (TIV) alone (n=9 subjects) or combined with 5mg (n=8) or 10mg (n=8) of Advax adjuvant. Subjects receiving Advax adjuvant had increased 7dpv plasmablasts, which in turn exhibited a 2-3 fold higher rate of non-silent mutations in the B-cell receptor CDR3 region associated with higher expression of activation-induced cytidine deaminase (AID), the major enzyme controlling BCR affinity maturation. Together, these data suggest that Advax adjuvant enhances influenza immunity in immunized subjects via multiple mechanisms including increased plasmablast generation, AID expression and CDR3 mutagenesis resulting in enhanced BCR affinity maturation and increased production of high avidity antibody. How Advax adjuvant achieves these beneficial effects on plasmablasts remains the subject of ongoing investigation.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | | | - Connie Li
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
- Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, Australia
- * E-mail:
| |
Collapse
|
109
|
Soema PC, Kompier R, Amorij JP, Kersten GFA. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm 2015; 94:251-63. [PMID: 26047796 DOI: 10.1016/j.ejpb.2015.05.023] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Vaccination is the most effective method to prevent influenza infection. However, current influenza vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed. We give an overview of the current status and novel developments in the landscape of influenza vaccines from an interdisciplinary point of view. The feasibility of novel vaccine concepts not only depends on immunological or clinical outcomes, but also depends on biotechnological aspects, such as formulation and production methods, which are frequently overlooked. Furthermore, the next generation of influenza vaccines is addressed, which hopefully will bring cross-reactive influenza vaccines. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Ronald Kompier
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; FluConsult, Noordwijk, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
110
|
Calderon-Gonzalez R, Tobes R, Pareja E, Frande-Cabanes E, Petrovsky N, Alvarez-Dominguez C. Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines. J Immunol Methods 2015; 424:111-9. [PMID: 26031451 PMCID: PMC7127673 DOI: 10.1016/j.jim.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Dendritic cells loaded with antigenic peptides, because of their safety and robust immune stimulation, would be ideal for induction of immunity to protect against listeriosis. However, there is no currently accepted method to predict which peptides derived from the Listeria proteome might confer protection. While elution of peptides from MHC molecules after Listeria infection yields high-affinity immune-dominant epitopes, these individual epitopes did not reliably confer Listeria protection. Instead we applied bioinformatic predictions of MHC class I and II epitopes to generate antigenic peptides that were then formulated with Advax™, a novel polysaccharide particulate adjuvant able to enhance cross-presentation prior to being screened for their ability to induce protective T-cell responses. A combination of at least four intermediate strength MHC-I binding epitopes and one weak MHC-II binding epitope when expressed in a single peptide sequence and formulated with Advax adjuvant induced a potent T-cell response and high TNF-α and IL-12 production by dendritic cells resulting in robust listeriosis protection in susceptible mice. This T-cell vaccine approach might be useful for the design of vaccines to protect against listeriosis or other intracellular infections.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Raquel Tobes
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Eduardo Pareja
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Elisabet Frande-Cabanes
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide, Australia; Vaxine Pty Ltd, Flinders Medical Center, Adelaide, Australia
| | - Carmen Alvarez-Dominguez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
111
|
Rodriguez-Del Rio E, Marradi M, Calderon-Gonzalez R, Frande-Cabanes E, Penadés S, Petrovsky N, Alvarez-Dominguez C. A gold glyco-nanoparticle carrying a Listeriolysin O peptide and formulated with Advax™ delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine 2015; 33:1465-73. [PMID: 25659269 DOI: 10.1016/j.vaccine.2015.01.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/12/2015] [Accepted: 01/25/2015] [Indexed: 01/17/2023]
Abstract
In the search for an effective vaccine against the human pathogen, Listeria monocytogenes (Listeria), gold glyconanoparticles (GNP) loaded with a listeriolysin O peptide LLO91-99 (GNP-LLO) were used to immunise mice, initially using a dendritic cell (DC) vaccine approach, but subsequently using a standard parenteral immunisation approach. To enhance vaccine immunogenicity a novel polysaccharide adjuvant based on delta inulin (Advax™) was also co-formulated with the GNP vaccine. Confirming previous results, DC loaded in vitro with GNP-LLO provided better protection against listeriosis than DC loaded in vitro using free LLO peptide. The immunogenicity of GNP-LLO loaded DC vaccines was further increased by addition of Advax™ adjuvant. However, as DC vaccines are expensive and impracticable for prophylactic use, we next asked whether the same GNP-LLO antigen could be used to directly target DC in vivo. Immunisation of mice with GNP-LLO plus Advax™ adjuvant induced LLO-specific T-cell immunity and protection against Listeria challenge. Protection correlated with an increased frequency of splenic CD4(+) and CD8(+) T cells, NK cells and CD8α(+) DC, and Th1 cytokine production (IL-12, IFN-γ, TNF-α, and MCP-1), post-challenge. Enhanced T-cell epitope recruitment post-challenge was seen in the groups that received Advax™ adjuvant. Immunisation with GNP-LLO91-99 plus Advax™ adjuvant provided equally robust Listeria protection as the best DC vaccine strategy but without the complexity and cost, making this a highly promising strategy for development of a prophylactic vaccine against listeriosis.
Collapse
Affiliation(s)
- Estela Rodriguez-Del Rio
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Marco Marradi
- CIC biomaGUNE, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain; CIBER-BBN, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain
| | - Ricardo Calderon-Gonzalez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Elisabet Frande-Cabanes
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Soledad Penadés
- CIC biomaGUNE, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain; CIBER-BBN, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, SA, Australia; Vaxine Pty Ltd, Flinders Medical Centre, Adelaide 5042, SA, Australia
| | - Carmen Alvarez-Dominguez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
112
|
Affiliation(s)
- Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
113
|
Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 2014; 89:2995-3007. [PMID: 25520500 DOI: 10.1128/jvi.02980-14] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines.
Collapse
|
114
|
Gordon D, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled Phase 1 study. Vaccine 2014; 32:6469-77. [PMID: 25267153 PMCID: PMC4253909 DOI: 10.1016/j.vaccine.2014.09.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022]
Abstract
There is a need for additional safe and effective human vaccine adjuvants. Advax™ is a novel adjuvant produced from semi-crystalline particles of delta inulin. In animal studies Advax enhanced humoral and cellular immunity to hepatitis B surface antigen (HBsAg) without inducing local or systemic reactogenicity. This first-in-man Phase 1 clinical trial tested the safety and tolerability of three intramuscular doses of HBsAg formulated with Advax in a group of healthy adult subjects. Advax was well tolerated with injection site pain scores not significantly different to subjects receiving HBsAg alone and no adverse events were reported in subjects that received Advax. Seroprotection and HBsAb geometric mean titers (GMT) after three immunizations were higher in the Advax 5mg (seroprotection 5/6, 83.3%, GMT 40.7, 95% CI 11.9-139.1) and 10mg (seroprotection 4/5, 80%, GMT 51.6, 95% CI 10.0-266.2) groups versus HBsAg alone (seroprotection 1/5, 20%, GMT 4.1, 95% CI 1.3-12.8). Similarly the proportion of subjects with positive CD4 T-cell responses to HBsAg was higher in the Advax 5mg (4/6, 67%) and Advax 10mg (4/5, 80%) groups versus HBsAg alone (1/5, 20%). These results confirm the safety, tolerability and immunogenicity of Advax adjuvant observed in preclinical studies. Advax may represent a suitable replacement for alum adjuvants in prophylactic human vaccines subject to confirmation of current results in larger studies. Australia and New Zealand Clinical Trial Registry: ACTRN12607000598482.
Collapse
Affiliation(s)
- David Gordon
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| | - Peter Kelley
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| | | | - Peter Cooper
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; Cancer Research Laboratory, Australian National University Medical School at The Canberra Hospital, Garran, ACT 2605, Australia; John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
115
|
Cooper PD, Rajapaksha KH, Barclay TG, Ginic-Markovic M, Gerson AR, Petrovsky N. Inulin crystal initiation via a glucose-fructose cross-link of adjacent polymer chains: atomic force microscopy and static molecular modelling. Carbohydr Polym 2014; 117:964-972. [PMID: 25498723 DOI: 10.1016/j.carbpol.2014.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Semi-crystalline microparticles of inulin (MPI) have clinical utility as potent human vaccine adjuvants but their relevant surface structure and crystal assembly remain undefined. We show inulin crystal surfaces to resemble multi-layered, discoid radial spherulites resulting from very rapid formation of complex tertiary structures, implying directed crystal initiation. Physical and in silico molecular modelling of unit cells confirm steric feasibility of initiation by hydrogen-bonded cross-linking of terminal glucose to a fructose of another chain, mimicking bonding in sucrose crystals. A strong, chelate-like dual H-bond is proposed to compel the known antiparallel alignment of inulin chains. Such cross-linking would require one extra fructose per chain in the native inulin crystal, as observed. Completion of five H-bonded internal ring-domains would 'lock in' each new 6-fructose structural unit of each antiparallel helix pair to create a new isoform. All known properties of inulin isoforms follow readily from these concepts.
Collapse
Affiliation(s)
- Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA, Australia 5042; Cancer Research Laboratory, Australian National University Medical School at The Canberra Hospital, Garran, ACT, Australia 2605; John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 2601.
| | | | - Thomas G Barclay
- Mawson Institute, University of South Australia, Mawson Lakes, SA, Australia 5095
| | | | - Andrea R Gerson
- Mawson Institute, University of South Australia, Mawson Lakes, SA, Australia 5095
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA, Australia 5042; Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA, Australia, 5042.
| |
Collapse
|
116
|
Murugappan S, Frijlink HW, Petrovsky N, Hinrichs WLJ. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant. Eur J Pharm Sci 2014; 66:118-22. [PMID: 25459531 DOI: 10.1016/j.ejps.2014.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/04/2014] [Accepted: 10/10/2014] [Indexed: 01/05/2023]
Abstract
Vaccination is the primary intervention to contain influenza virus spread during seasonal and pandemic outbreaks. Pulmonary vaccination is gaining increasing attention for its ability to induce both local mucosal and systemic immune responses without the need for invasive injections. However, pulmonary administration of whole inactivated influenza virus (WIV) vaccine induces a Th2 dominant systemic immune response while a more balanced Th1/Th2 vaccine response may be preferred and only induces modest nasal immunity. This study evaluated immunity elicited by pulmonary versus intramuscular (i.m.) delivery of WIV, and tested whether the immune response could be improved by co-administration of delta (δ)-inulin, a novel carbohydrate-based particulate adjuvant. After pulmonary administration both unadjuvanted and δ-inulin adjuvanted WIV induced a potent systemic immune response, inducing higher serum anti-influenza IgG titers and nasal IgA titers than i.m. administration. Moreover, the addition of δ-inulin induced a more balanced Th1/Th2 response and induced higher nasal IgA titers versus pulmonary WIV alone. Pulmonary WIV alone or with δ-inulin induced hemagglutination inhibition (HI) titers>40, titers which are considered protective against influenza virus. In conclusion, in this study we have shown that δ-inulin adjuvanted WIV induces a better immune response after pulmonary administration than vaccine alone.
Collapse
Affiliation(s)
- Senthil Murugappan
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
117
|
Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014; 190:563-79. [DOI: 10.1016/j.jconrel.2014.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
|
118
|
Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN. Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 2014; 124:69-79. [PMID: 25193153 DOI: 10.1016/j.colsurfb.2014.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
Undesirable host response is responsible for the surface induced thrombus generation, activation of the complement system and the inflammatory reactions by the blood-contacting biomaterials. The surface interaction of biomaterials with different blood components is thought to be the critical factor that dictates the host response to biomaterials. Surface engineering can be utilized as a method to enhance the biocompatibility and tailor the biological response to biomaterials. This review provides a brief account of various polymer brush based approaches used for biomaterials surface modification, both passive and bioactive, to make the material surfaces biocompatible and antibacterial. Initially we discuss the utilization of polymer brushes with different structure and chemistry as a novel strategy to design the surface non-fouling that passively prevent the subsequent biological responses. Further we explore the utility of different bioactive agents including peptides, carbohydrates and proteins which can be conjugated the polymer brush to make the surface actively interact with the body and modulate the host response. A number of such avenues have also been explored in this review.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Mei
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6 T 1Z3, Canada.
| |
Collapse
|
119
|
Honda-Okubo Y, Kolpe A, Li L, Petrovsky N. A single immunization with inactivated H1N1 influenza vaccine formulated with delta inulin adjuvant (Advax™) overcomes pregnancy-associated immune suppression and enhances passive neonatal protection. Vaccine 2014; 32:4651-9. [PMID: 24958701 DOI: 10.1016/j.vaccine.2014.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/21/2014] [Accepted: 06/11/2014] [Indexed: 01/14/2023]
Abstract
Pregnant women and neonates represent high-risk groups for influenza infection, and in general have suppressed responses to standard influenza vaccines due to pregnancy-associated immune suppression and immune system immaturity, respectively. We therefore wished to test whether addition of Advax™, a polysaccharide adjuvant based on delta inulin, to an inactivated influenza vaccine (A/H1N1/PR8) administered during pregnancy would safely enhance vaccine immunogenicity and thereby provide improved protection of pregnant mothers and their newborns. Pregnant mice received a single intramuscular injection of β-propiolactone-inactivated H1N1 antigen alone or with Advax adjuvant. Pregnant dams receiving Advax-adjuvanted vaccine exhibited significantly increased serum and breast milk anti-influenza IgG titers. This translated into higher serum anti-influenza IgG titers in the pups of these dams. Complete protection was seen in pups of dams that received Advax-adjuvanted vaccine whereas no survival was seen in pups of control mothers or mothers immunized with unadjuvanted influenza vaccine. Cross-fostering studies confirmed that enhanced protection of pups of dams that received Advax-adjuvanted vaccine was mediated by enhanced transfer of maternal IgG to the pups via breast-feeding. The delta inulin adjuvant was not associated with any reproductive or developmental adverse effects. This study shows that Advax adjuvant was safe when administered with influenza vaccine during pregnancy and provided protection of pups via enhanced breast milk transfer of anti-influenza antibodies, not seen with administration of unadjuvanted vaccine.
Collapse
Affiliation(s)
| | | | - Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, SA, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, SA, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
120
|
Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:580-6. [PMID: 24554695 DOI: 10.1128/cvi.00019-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.
Collapse
|
121
|
Cooper PD, Barclay TG, Ginic-Markovic M, Petrovsky N. Gamma ray sterilization of delta inulin adjuvant particles (Advax™) makes minor, partly reversible structural changes without affecting adjuvant activity. Vaccine 2014; 32:552-7. [PMID: 24342245 PMCID: PMC4047428 DOI: 10.1016/j.vaccine.2013.11.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
We earlier identified a developmental series of seven isoforms/polymorphs of microparticulate inulin by comparing non-covalent bonding strengths. Their pharmaceutical utility lies in the modulation of cellular immunity, exploited as vaccine adjuvants (Advax™) especially for delta inulin (DI). As such particles cannot be sterilized by filtration we explore the effect of (60)Co gamma radiation (GR) on inulin isoforms, particularly DI. Its adjuvant activity and overt physical properties were unaffected by normal GR sterilizing doses (up to 25kGy). Heating irradiated isoform suspensions near their critical dissolution temperature revealed increased solubility deduced to reflect a single lethal event in one component of a multi-component structure. Local oxidative effects of GR on DI were not found. The observed DI loss was almost halved by re-annealing at the critical temperature: surviving inulin chains apparently reassemble into smaller amounts of the original type of structure. Colorimetric tetrazolium assay revealed increases in reducing activity after GR of raw inulin powder, which yielded DI with normal physical properties but only 25% normal recovery yet 4× normal reducing ability, implying final retention of some GR-changed inulin chains. These findings suggest minimal inulin chain cleavage and confirm that GR may be a viable strategy for terminal sterilization of microparticulate inulin adjuvants.
Collapse
Affiliation(s)
- P D Cooper
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Cancer Research Laboratory, Australian National University Medical School, The Canberra Hospital, Canberra 2605, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia.
| | - T G Barclay
- The Mawson Institute, University of South Australia, Adelaide 5095, Australia
| | - M Ginic-Markovic
- The Mawson Institute, University of South Australia, Adelaide 5095, Australia
| | - N Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
122
|
|
123
|
Cooper PD, Barclay TG, Ginic-Markovic M, Gerson AR, Petrovsky N. Inulin isoforms differ by repeated additions of one crystal unit cell. Carbohydr Polym 2013; 103:392-7. [PMID: 24528745 DOI: 10.1016/j.carbpol.2013.12.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
Abstract
Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the 'energetic unit' equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an 'energetic unit' equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain.
Collapse
Affiliation(s)
- Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia; Cancer Research Laboratory, Australian National University Medical School at The Canberra Hospital, Garran, ACT 2605, Australia; John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia.
| | - Thomas G Barclay
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Milena Ginic-Markovic
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Andrea R Gerson
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
124
|
Cooper PD, Barclay TG, Ginic-Markovic M, Petrovsky N. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions. Glycobiology 2013; 23:1164-74. [PMID: 23853206 PMCID: PMC3766280 DOI: 10.1093/glycob/cwt053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022] Open
Abstract
In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using (1)H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.
Collapse
Affiliation(s)
- Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Cancer Research Laboratory, Australian National University Medical School, The Canberra Hospital, Garran, ACT 2605, Australia
- The John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - Thomas G Barclay
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Milena Ginic-Markovic
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
125
|
Konishi E. Memory B cells: a proposed new immunological correlate for protective efficacy of Japanese encephalitis vaccine. Expert Rev Vaccines 2013; 12:871-3. [PMID: 23944374 DOI: 10.1586/14760584.2013.814828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Japanese encephalitis (JE) virus requires dissemination within the host via the circulation for disease development. Thus, a serum-neutralizing antibody is an effective factor to protect against disease. Current licensed JE vaccines induce neutralizing antibodies and titers of 1:10 or higher are the recommended immunological correlate of protection. In this paper, the authors demonstrated, using a highly susceptible knockout mouse model, that memory B cells are required for disease protection and that detectable neutralizing antibodies at the time of challenge are dispensable. The authors proposes that the extent of memory B cells would be an alternative and better immunological correlate for evaluating the efficacy of JE vaccine candidates in clinical trials.
Collapse
Affiliation(s)
- Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Mahidol University, 420/6 Ratchawithi Road, Ratchahewi, Bangkok 10440, Thailand.
| |
Collapse
|
126
|
An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol 2013; 87:10324-33. [PMID: 23864620 DOI: 10.1128/jvi.00480-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and β2-microglobulin-deficient (β2m(-/-)) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, β2m(-/-) mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8(+) T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory B-cell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic.
Collapse
|
127
|
Engel AL, Sun GC, Gad E, Rastetter LR, Strobe K, Yang Y, Dang Y, Disis ML, Lu H. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant. Immunobiology 2013; 218:1468-76. [PMID: 23735481 DOI: 10.1016/j.imbio.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022]
Abstract
Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate Toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the current study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant.
Collapse
|
128
|
JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J Virol 2013; 87:4395-402. [PMID: 23388724 DOI: 10.1128/jvi.03144-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
JE-ADVAX is a new, delta inulin-adjuvanted, Japanese encephalitis (JE) candidate vaccine with a strong safety profile and potent immunogenicity that confers efficient immune protection not only against JE virus but also against related neurotropic flaviviruses such as West Nile virus. In this study, we investigated the immunological mechanism of protection by JE-ADVAX vaccine using knockout mice deficient in B cells or CD8(+) T cells and poor persistence of neutralizing antibody or by adoptive transfer of immune splenocyte subpopulations. We show that memory B cells induced by JE-ADVAX provide long-lived protection against JE even in the absence of detectable pre-exposure serum neutralizing antibodies and without the requirement of CD8(+) T cells. Upon virus encounter, these vaccine-induced memory B cells were rapidly triggered to produce neutralizing antibodies that then protected immunized mice from morbidity and mortality. The findings suggest that the extent of the B-cell memory compartment might be a better immunological correlate for clinical efficacy of JE vaccines than the currently recommended measure of serum neutralizing antibody. This may explain the paradox where JE protection is observed in some subjects even in the absence of detectable serum neutralizing antibody. Our investigation also established the suitability of a novel flavivirus challenge model (β(2)-microglobulin-knockout mice) for studies of the role of B-cell memory responses in vaccine protection.
Collapse
|
129
|
Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 2013; 31:1999-2007. [PMID: 23306367 DOI: 10.1016/j.vaccine.2012.12.077] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/24/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022]
Abstract
Although current HBV vaccines have an outstanding record of safety and efficacy, reduced immunogenicity is a problem in those of older age, or having renal impairment or diabetes mellitus. In this study, we tested the ability of Advax™ adjuvant, a novel polysaccharide adjuvant based on delta inulin, to enhance the immunogenicity of hepatitis B surface antigen (HBs) in mice and guinea pigs by comparison to the traditional alum adjuvant. Advax™ provided antigen-sparing, significantly enhanced both anti-HBs antibody titers, and anti-HBs CD4 and CD8 T-cells, with increases in Th1, Th2 and Th17 cytokine responses. Unlike alum, the adjuvant effect of Advax™ was seen even when injected 24h before the HBs antigen. Advax™ adjuvant similarly enhanced humoral and cellular immune responses in guinea pigs to a third generation preS-HBs antigen. Advax™ adjuvant when combined with HBs antigen could provide enhanced protection over current generation HBV vaccines for immunization of low responder populations.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia
| | | | | | | |
Collapse
|