101
|
Cendret V, Legigan T, Mingot A, Thibaudeau S, Adachi I, Forcella M, Parenti P, Bertrand J, Becq F, Norez C, Désiré J, Kato A, Blériot Y. Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent α-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Org Biomol Chem 2015; 13:10734-44. [DOI: 10.1039/c5ob01526j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic DNJs bearing a thiolated, fluorinated or unsaturated N-substituent exhibit trehalase inhibition or F508del-CFTR correction.
Collapse
|
102
|
Vitner EB, Vardi A, Cox TM, Futerman AH. Emerging therapeutic targets for Gaucher disease. Expert Opin Ther Targets 2014; 19:321-34. [PMID: 25416676 DOI: 10.1517/14728222.2014.981530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gaucher disease (GD) is an inherited metabolic disorder caused by mutations in the glucocerebrosidase (GBA1) gene. Although infusions of recombinant GBA ameliorate the systemic effects of GD, this therapy has no effect on the neurological manifestations. Patients with the neuronopathic forms of GD (nGD) are often severely disabled and die prematurely. The search for innovative drugs is thus urgent for the neuronopathic forms. AREAS COVERED Here we briefly summarize the available treatments for GD. We then review recent studies of the molecular pathogenesis of GD, which suggest new avenues for therapeutic development. EXPERT OPINION Existing treatments for GD are designed to target the primary consequence of the inborn defects of sphingolipid metabolism, that is, lysosomal accumulation of glucosylceramide (GlcCer). Here we suggest that targeting other pathways, such as those that are activated as a consequence of GlcCer accumulation, may also have salutary clinical effects irrespective of whether excess substrate persists. These pathways include those implicated in neuroinflammation, and specifically, receptor-interacting protein kinase-3 (RIP3) and related components of this pathway, which appear to play a vital role in the pathogenesis of nGD. Once available, inhibitors to components of the RIP kinase pathway will hopefully offer new therapeutic opportunities in GD.
Collapse
Affiliation(s)
- Einat B Vitner
- Weizmann Institute of Science, Department of Biological Chemistry , Rehovot 76100 , Israel +972 8 9342353 ; +972 8 9344112 ;
| | | | | | | |
Collapse
|
103
|
Amiri M, Naim HY. Long term differential consequences of miglustat therapy on intestinal disaccharidases. J Inherit Metab Dis 2014; 37:929-37. [PMID: 24863482 DOI: 10.1007/s10545-014-9725-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 01/30/2023]
Abstract
Miglustat is an oral medication for treatment of lysosomal storage diseases such as Gaucher disease type I and Niemann Pick disease type C. In many cases application of Miglustat is associated with symptoms similar to those observed in intestinal carbohydrate malabsorption. Previously, we have demonstrated that intestinal disaccharidases are inhibited immediately by Miglustat in the intestinal lumen. Nevertheless, the multiple functions of Miglustat hypothesize long term effects of Miglustat on intracellular mechanisms, including glycosylation, maturation and trafficking of the intestinal disaccharidases. Our data show that a major long term effect of Miglustat is its interference with N-glycosylation of the proteins in the ER leading to a delay in the trafficking of sucrase-isomaltase. Also association with lipid rafts and plausibly apical targeting of this protein is partly affected in the presence of Miglustat. More drastic is the effect of Miglustat on lactase-phlorizin hydrolase which is partially blocked intracellularly. The de novo synthesized SI and LPH in the presence of Miglustat show reduced functional efficiencies according to altered posttranslational processing of these proteins. However, at physiological concentrations of Miglustat (≤50 μM) a major part of the activity of these disaccharidases is found to be still preserved, which puts the charge of the observed carbohydrate maldigestion mostly on the direct inhibition of disaccharidases in the intestinal lumen by Miglustat as the immediate side effect.
Collapse
Affiliation(s)
- Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | | |
Collapse
|
104
|
Ghisaidoobe AT, van den Berg RJBHN, Butt SS, Strijland A, Donker-Koopman WE, Scheij S, van den Nieuwendijk AMCH, Koomen GJ, van Loevezijn A, Leemhuis M, Wennekes T, van der Stelt M, van der Marel GA, van Boeckel CAA, Aerts JMFG, Overkleeft HS. Identification and Development of Biphenyl Substituted Iminosugars as Improved Dual Glucosylceramide Synthase/Neutral Glucosylceramidase Inhibitors. J Med Chem 2014; 57:9096-104. [DOI: 10.1021/jm501181z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Amar T. Ghisaidoobe
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | | | - Saleem S. Butt
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wilma E. Donker-Koopman
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | - Gerrit-Jan Koomen
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Arnold van Loevezijn
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Mark Leemhuis
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Constant A. A. van Boeckel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
- Pivot Park Screening
Centre, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
105
|
Platt FM. Sphingolipid lysosomal storage disorders. Nature 2014; 510:68-75. [PMID: 24899306 DOI: 10.1038/nature13476] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
106
|
Improved neuroprotection using miglustat, curcumin and ibuprofen as a triple combination therapy in Niemann–Pick disease type C1 mice. Neurobiol Dis 2014; 67:9-17. [DOI: 10.1016/j.nbd.2014.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 02/07/2023] Open
|
107
|
Zhang X, Shi L, Li X, Sheng Q, Yao L, Shen D, Lü ZR, Zhou HM, Park YD, Lee J, Zhang Q. Effect of Ca2+ on the activity and structure of α-glucosidase: Inhibition kinetics and molecular dynamics simulations. J Biosci Bioeng 2014; 117:696-705. [DOI: 10.1016/j.jbiosc.2013.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 12/24/2022]
|
108
|
Thomas AS, Mehta A, Hughes DA. Gaucher disease: haematological presentations and complications. Br J Haematol 2014; 165:427-40. [PMID: 24588457 DOI: 10.1111/bjh.12804] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disease, caused by deficiency of the enzyme glucocerebrosidase, required for the degradation of glycosphingolipids. Clinical manifestations include hepatosplenomegaly, thrombocytopenia, bone disease and a bleeding diathesis, frequently resulting in presentation to haematologists. Historically managed by splenectomy, transfusions and orthopaedic surgery, the development of specific therapy in the form of intravenous enzyme replacement therapy in the 1990s has resulted in dramatic improvements in haematological and visceral disease. Recognition of complications, including multiple myeloma and Parkinson disease, has challenged the traditional macrophage-centric view of the pathophysiology of this disorder. The pathways by which enzyme deficiency results in the clinical manifestations of this disorder are poorly understood; altered inflammatory cytokine profiles, bioactive sphingolipid derivatives and alterations in the bone marrow microenvironment have been implicated. Further elucidating these pathways will serve to advance our understanding not only of GD, but of associated disorders.
Collapse
Affiliation(s)
- Alison S Thomas
- Lysosomal Storage Disorders Unit, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
109
|
Shayman JA, Larsen SD. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases. J Lipid Res 2014; 55:1215-25. [PMID: 24534703 DOI: 10.1194/jlr.r047167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine and Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
110
|
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014; 124:712-24. [PMID: 24463447 DOI: 10.1172/jci69571] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.
Collapse
|
111
|
Chirke SS, Rajender A, Rao BV. A divergent approach for the synthesis of some polyhydroxy pyrrolidines and piperidines from ribosylamine. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
112
|
Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. ADVANCES IN NEUROBIOLOGY 2014; 9:47-70. [PMID: 25151374 DOI: 10.1007/978-1-4939-1154-7_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA,
| |
Collapse
|
113
|
Abstract
Eliglustat tartrate is a highly specific inhibitor of glucosylceramide synthase, developed for the treatment glucosylceramide-based glycosphingolipidoses. Eliglustat is in late clinical development for Gaucher disease type 1. Phase II and III clinical trials have demonstrated clinical efficacy for eliglustat as a stand-alone agent for newly diagnosed patients that are naïve to prior therapy and for patients who have been previously treated with enzyme replacement therapy. Importantly, the reported toxicity of eliglustat has been limited. Eliglustat will be submitted for the US FDA and EMA review in late 2013. Several structurally unrelated glucosylceramide synthase inhibitors have been identified and are in various stages of development, some of which cross the blood-brain barrier. Targeting glucosylceramide synthesis is also a promising approach for the treatment of type 2 diabetes mellitus, autosomal dominant polycystic kidney disease and certain cancers.
Collapse
Affiliation(s)
- James A Shayman
- a Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
114
|
Cruz IN, Barry CS, Kramer HB, Chuang CC, Lloyd S, van der Spoel AC, Platt FM, Yang M, Davis BG. Glycomimetic affinity-enrichment proteomics identifies partners for a clinically-utilized iminosugar. Chem Sci 2013; 4:3442-3446. [PMID: 31031905 PMCID: PMC6485602 DOI: 10.1039/c3sc50826a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Widescale evaluation of interacting partners for carbohydrates is an underexploited area. Probing of the 'glyco-interactome' has particular relevance given the lack of direct genetic control of glycoconjugate biosynthesis. Here we design, create and utilize a natural product-derived glycomimetic iminosugar probe in a Glycomimetic Affinity-enrichment Proteomics (glyco-AeP) strategy to elucidate key interactions directly from mammalian tissue. The binding partners discovered here and the associated genomic analysis implicate a subset of chaperone and junctional proteins as important in male fertility. Such repurposing of existing therapeutics thus creates direct routes to probing in vivo function. The success of this strategy suggests a general approach to discovering 'carbohydrate-active' partners in biology.
Collapse
Affiliation(s)
- Isa N. Cruz
- Department of Pharmaceutical & Biological Chemistry, UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Conor S. Barry
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Holger B. Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - C. Celeste Chuang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Sarah Lloyd
- MRC Prion Unit, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Min Yang
- Department of Pharmaceutical & Biological Chemistry, UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
115
|
Swinney DC. The contribution of mechanistic understanding to phenotypic screening for first-in-class medicines. ACTA ACUST UNITED AC 2013; 18:1186-92. [PMID: 23983234 DOI: 10.1177/1087057113501199] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The level of mechanistic understanding required for drug discovery is a central feature of most strategies. However, an understanding of mechanism is not required for regulatory approval. This paradox is particularly relevant to the role of phenotypic assays in drug discovery. A recent analysis revealed that phenotypic drug discovery strategies were more successful for first-in-class medicines, whereas target-based molecular strategies were more successful for followers (Nat. Rev. Drug Discov. 2011, 10, 507-519). The rationale for the success of phenotypic screening was the unbiased identification of the molecular mechanism of action. In this follow-up analysis, the format and mechanistic information used to establish the phenotypic assays that led to the first-in-class small-molecule new molecular entities approved by the U.S. Food and Drug Administration between 1999 and 2008 were analyzed and compared with those approved in 2012. Not surprisingly, some level of mechanistic understanding was used to select the assay formats and chemicals screened. It is concluded that mechanism takes on different connotations depending on context and perspective and that a target need not always be the exclusive definition of mechanism.
Collapse
Affiliation(s)
- David C Swinney
- 1Institute for Rare and Neglected Diseases Drug Discovery, Mountain View, CA, USA
| |
Collapse
|
116
|
Meijer OLM, van Vlies N, Wijburg FA. Treatment of mucopolysaccharidosis type III (Sanfilippo syndrome). Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.830069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Olga LM Meijer
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| | - Naomi van Vlies
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Lab Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| |
Collapse
|
117
|
Niino S, Nakamura Y, Hirabayashi Y, Nagano-Ito M, Ichikawa S. A small molecule inhibitor of Bcl-2, HA14-1, also inhibits ceramide glucosyltransferase. Biochem Biophys Res Commun 2013; 433:170-4. [DOI: 10.1016/j.bbrc.2013.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/08/2013] [Indexed: 11/29/2022]
|
118
|
Preparation of sugar-derived 1,2-diamines via indium-catalyzed aza-Henry-type reaction: application to the synthesis of 6-amino-1,6-dideoxynojirimycin. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
|
120
|
Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci U S A 2013; 110:5404-9. [PMID: 23493549 DOI: 10.1073/pnas.1222263110] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.
Collapse
|
121
|
Nordström V, Willershäuser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, Rothermel U, Kaden S, Roth FC, Waldeck C, Gretz N, de Angelis MH, Draguhn A, Klingenspor M, Gröne HJ, Jennemann R. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol 2013; 11:e1001506. [PMID: 23554574 PMCID: PMC3595213 DOI: 10.1371/journal.pbio.1001506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023] Open
Abstract
Body weight and energy homeostasis are regulated by leptin receptor interactions with gangliosides, a class of plasma membrane lipids, in forebrain neurons of mice. Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis. Obesity is a growing health threat that affects nearly half a billion people worldwide, and its incidence rates in lower income countries are rising dramatically. As obesity is a major risk factor for type II diabetes and cardiovascular disease, significant effort has been put into the exploration of causes, prevention, and potential treatment. Recent research has demonstrated that a region of the brain called the hypothalamus is a major integrator of metabolic and nutrient signals, adapting food intake and energy expenditure to current metabolic needs. Leptin or insulin receptors located in the plasma cell membrane of neurons sense energy signals from the body. They transmit this information inside the cell, which then regulates neuronal function. In this study, we show that leptin receptors interact with gangliosides, a class of plasma membrane lipids. This interaction is a prerequisite for proper receptor activation. Consequently, ganglioside loss in hypothalamic neurons inhibits leptin receptor signal transduction in response to energy metabolites. Furthermore, mice lacking gangliosides in distinct forebrain areas, amongst them the hypothalamus, develop progressive obesity and hypothermia. Our results suggest a previously unknown regulatory mechanism of plasma membrane lipids for hypothalamic control of body weight.
Collapse
Affiliation(s)
- Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Kitatani T, Takahashi S, Ikenoya S. [Pharmacological and clinical profiles of miglustat (Brazaves(®)) for the treatment of Niemann-Pick type C disease]. Nihon Yakurigaku Zasshi 2013; 141:160-167. [PMID: 23470482 DOI: 10.1254/fpj.141.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
123
|
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. ACTA ACUST UNITED AC 2013. [PMID: 23185029 PMCID: PMC3514785 DOI: 10.1083/jcb.201208152] [Citation(s) in RCA: 502] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | |
Collapse
|
124
|
Arthur JR, Wilson MW, Larsen SD, Rockwell HE, Shayman JA, Seyfried TN. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice. Neurochem Res 2013; 38:866-75. [PMID: 23417430 DOI: 10.1007/s11064-013-0992-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 01/02/2023]
Abstract
Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or "3h"), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb-/-) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.
Collapse
Affiliation(s)
- Julian R Arthur
- Boston College Biology Department, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
While the evidence for an involvement of sphingolipids (SLs) in a variety of diseases is rapidly increasing, the development of sphingolipid-related drugs is still in its infancy. In fact, the recently FDA-approved fingolimod or FTY-720 (see chapter by J. Pfeilschifter for more information) is the first drug on the market to interfere with sphingolipid signaling. The reasons for this lagging are manifold and within this chapter we try to name some of them. Ceramide is in the center of sphingolipid metabolism. We describe the most important and most recent inhibitors for enzymes controlling cellular ceramide levels.
Collapse
Affiliation(s)
- Krishna P Bhabak
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str 2, Berlin 12489, Germany
| | | |
Collapse
|
126
|
B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides. Blood 2012; 120:3978-85. [DOI: 10.1182/blood-2012-05-431783] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L–stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
Collapse
|
127
|
Tiscornia G, Vivas EL, Matalonga L, Berniakovich I, Barragán Monasterio M, Eguizábal C, Gort L, González F, Ortiz Mellet C, García Fernández JM, Ribes A, Veiga A, Izpisua Belmonte JC. Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Hum Mol Genet 2012; 22:633-45. [PMID: 23118351 DOI: 10.1093/hmg/dds471] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gaucher's disease (GD) is caused by mutations in the GBA1 gene, which encodes acid-β-glucosidase, an enzyme involved in the degradation of complex sphingolipids. While the non-neuronopathic aspects of the disease can be treated with enzyme replacement therapy (ERT), the early-onset neuronopathic form currently lacks therapeutic options and is lethal. We have developed an induced pluripotent stem cell (iPSc) model of neuronopathic GD. Dermal fibroblasts of a patient with a P.[LEU444PRO];[GLY202ARG] genotype were transfected with a loxP-flanked polycistronic reprogramming cassette consisting of Oct4, Sox2, Klf4 and c-Myc and iPSc lines derived. A non-integrative lentiviral vector expressing Cre recombinase was used to eliminate the reprogramming cassette from the reprogrammed cells. Our GD iPSc express pluripotent markers, differentiate into the three germ layers, form teratomas, have a normal karyotype and show the same mutations and low acid-β-glucosidase activity as the original fibroblasts they were derived from. We have differentiated them efficiently into neurons and also into macrophages without observing deleterious effects of the mutations on the differentiation process. Using our system as a platform to test chemical compounds capable of increasing acid-β-glucosidase activity, we confirm that two nojirimycin analogues can rescue protein levels and enzyme activity in the cells affected by the disease.
Collapse
Affiliation(s)
- Gustavo Tiscornia
- Center of Regenerative Medicine in Barcelona, Biochemistry and Molecular Genetics Department and IDIBAPS, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Role of glycosphingolipids in the function of human serotonin1A
receptors. J Neurochem 2012; 123:716-24. [DOI: 10.1111/jnc.12008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022]
|
129
|
Wennekes T, Bonger KM, Vogel K, van den Berg RJBHN, Strijland A, Donker-Koopman WE, Aerts JMFG, van der Marel GA, Overkleeft HS. The Development of an Aza-C-Glycoside Library Based on a Tandem Staudinger/Aza-Wittig/Ugi Three-Component Reaction. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200923] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
130
|
Development of inhibitors as research tools for carbohydrate-processing enzymes. Biochem Soc Trans 2012; 40:913-28. [DOI: 10.1042/bst20120201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates, which are present in all domains of life, play important roles in a host of cellular processes. These ubiquitous biomolecules form highly diverse and often complex glycan structures without the aid of a template. The carbohydrate structures are regulated solely by the location and specificity of the enzymes responsible for their synthesis and degradation. These enzymes, glycosyltransferases and glycoside hydrolases, need to be functionally well characterized in order to investigate the structure and function of glycans. The use of enzyme inhibitors, which target a particular enzyme, can significantly aid this understanding, and may also provide insights into therapeutic applications. The present article describes some of the approaches used to design and develop enzyme inhibitors as tools for investigating carbohydrate-processing enzymes.
Collapse
|
131
|
Rigat BA, Tropak MB, Buttner J, Crushell E, Benedict D, Callahan JW, Martin DR, Mahuran DJ. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Mol Genet Metab 2012; 107:203-12. [PMID: 22784478 PMCID: PMC4010500 DOI: 10.1016/j.ymgme.2012.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 12/26/2022]
Abstract
Deficiencies of lysosomal β-D-galactosidase can result in GM1 gangliosidosis, a severe neurodegenerative disease characterized by massive neuronal storage of GM1 ganglioside in the brain. Currently there are no available therapies that can even slow the progression of this disease. Enzyme enhancement therapy utilizes small molecules that can often cross the blood brain barrier, but are also often competitive inhibitors of their target enzyme. It is a promising new approach for treating diseases, often caused by missense mutations, associated with dramatically reduced levels of functionally folded enzyme. Despite a number of positive reports based on assays performed with patient cells, skepticism persists that an inhibitor-based treatment can increase mutant enzyme activity in vivo. To date no appropriate animal model, i.e., one that recapitulates a responsive human genotype and clinical phenotype, has been reported that could be used to validate enzyme enhancement therapy. In this report, we identify a novel enzyme enhancement-agent, N-nonyl-deoxygalactonojirimycin, that enhances the mutant β-galactosidase activity in the lysosomes of a number of patient cell lines containing a variety of missense mutations. We then demonstrate that treatment of cells from a previously described, naturally occurring feline model (that biochemically, clinically and molecularly closely mimics GM1 gangliosidosis in humans) with this molecule, results in a robust enhancement of their mutant lysosomal β-galactosidase activity. These data indicate that the feline model could be used to validate this therapeutic approach and determine the relationship between the disease stage at which this therapy is initiated and the maximum clinical benefits obtainable.
Collapse
Affiliation(s)
- Brigitte A. Rigat
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Michael B. Tropak
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Justin Buttner
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Ellen Crushell
- Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Daphne Benedict
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - John W. Callahan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Canada M5S 1A8
| | - Douglas R. Martin
- Scott-Ritchey Research Center and Dept. Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Don J. Mahuran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada M5S 1A8
- Corresponding author at: Genetics & Genome Biology Department, The Hospital for Sick Children, Room 9146 A, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Fax: +1 416 813 8700. (D.J. Mahuran)
| |
Collapse
|
132
|
Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat Chem Biol 2012; 8:683-94. [PMID: 22810773 DOI: 10.1038/nchembio.1029] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycoconjugates are ubiquitous biomolecules found in all kingdoms of life. These diverse structures are metabolically responsive and occur in a cell line- and protein-specific manner, conferring tissue type-specific properties. Glycans have essential roles in diverse processes, including, for example, intercellular signaling, inflammation, protein quality control, glucohomeostasis and cellular adhesion as well as cell differentiation and proliferation. Many mysteries remain in the field, however, and uncovering the physiological roles of various glycans remains a key pursuit. Realizing this aim necessitates the ability to subtly and selectively manipulate the series of different glycoconjugates both in cells and in vivo. Selective small-molecule inhibitors of glycan processing enzymes hold great potential for such manipulation as well as for determining the function of 'orphan' carbohydrate-processing enzymes. In this review, we discuss recent advances and existing inhibitors, the prospects for small-molecule inhibitors and the challenges associated with generating high-quality chemical probes for these families of enzymes. The coordinated efforts of chemists, biochemists and biologists will be crucial for creating and characterizing inhibitors that are useful tools both for advancing a basic understanding of glycobiology in mammals as well as for validating new potential therapeutic targets within this burgeoning field.
Collapse
|
133
|
Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab 2012; 106:330-44. [PMID: 22572546 DOI: 10.1016/j.ymgme.2012.03.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/18/2022]
Abstract
Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease caused by mutations in either the NPC1 (in 95% of cases) or the NPC2 gene (in around 5% of cases), which lead to impaired intracellular lipid trafficking and accumulation of cholesterol and glycosphingolipids in the brain and other tissues. Characteristic neurological manifestations of NP-C include saccadic eye movement (SEM) abnormalities or vertical supranuclear gaze palsy (VSGP), cerebellar signs (ataxia, dystonia/dysmetria, dysarthria and dysphagia) and gelastic cataplexy. Epileptic seizures are also common in affected patients. Typically, neurological disease onset occurs during childhood, although an increasing number of cases are being detected and diagnosed during adulthood based on late-onset neurological signs and psychiatric manifestations. Categorization of patients according to age at onset of neurological manifestations (i.e. early-infantile, late-infantile, juvenile and adolescent/adult-onset) can be useful for the evaluation of disease course and treatment responses. The first international guidelines for the clinical management of NP-C in children and adults were published in 2009. Since that time a significant amount of data regarding the epidemiology, detection/diagnosis, and treatment of NP-C has been published. Here, we report points of consensus among experts in the diagnosis and treatment of NP-C based on a follow-up meeting in Paris, France in September 2011. This article serves as an update to the original guidelines providing, among other things, further information on detection/diagnostic methods, potential new methods of monitoring disease progression, and therapy. Treatment goals and the application of disease-specific therapy with miglustat are also re-evaluated.
Collapse
|
134
|
Bendikov-Bar I, Horowitz M. Gaucher disease paradigm: from ERAD to comorbidity. Hum Mutat 2012; 33:1398-407. [PMID: 22623374 DOI: 10.1002/humu.22124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 01/28/2023]
Abstract
Mutations in the GBA gene, encoding the lysosomal acid beta-glucocerebrosidase (GCase), lead to deficient activity of the enzyme in the lysosomes, to glucosylceramide accumulation and to development of Gaucher disease (GD). More than 280 mutations in the GBA gene have been directly associated with GD. Mutant GCase variants present variable levels of endoplasmic reticulum (ER) retention, due to their inability to correctly fold, and undergo ER-associated degradation (ERAD) in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity. In the present review, we discuss ERAD of mutant GCase variants and its possible consequences in GD patients and in carriers of GD mutations.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
135
|
Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J Neuropathol Exp Neurol 2012; 71:434-48. [PMID: 22487861 DOI: 10.1097/nen.0b013e31825414a6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid-trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/mL, and 104.1 ± 16.6 μg hours/mL, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats.
Collapse
|
136
|
Unexpected cure from cutaneous leukocytoclastic vasculitis in a patient treated with N-butyldeoxynojirimycin (miglustat) for Gaucher disease. Adv Med Sci 2012; 57:169-73. [PMID: 22515974 DOI: 10.2478/v10039-012-0021-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cutaneous leukocytoclastic vasculitis (CLV) is a necrotizing inflammation of the small vessels in the dermis. We report the case of a Swedish man with an untreated N370S/L444P Gaucher disease who developed CLV at the age of 79 years. The patient has been treated for CLV with topical and oral corticosteroids, moisturizing agents, and periodically with antibiotics for 3 years without improvement. Administration of miglustat (N-butyldeoxynojirimycin; Zavesca®) because of progress of Gaucher disease resulted in a prompt and durable cure of the CLV.
Collapse
|
137
|
Nietupski JB, Pacheco JJ, Chuang WL, Maratea K, Li L, Foley J, Ashe KM, Cooper CGF, Aerts JMFG, Copeland DP, Scheule RK, Cheng SH, Marshall J. Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann-Pick C mice. Mol Genet Metab 2012; 105:621-8. [PMID: 22366055 DOI: 10.1016/j.ymgme.2012.01.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/24/2022]
Abstract
Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction.
Collapse
|
138
|
Kraut R, Bag N, Wohland T. Fluorescence Correlation Methods for Imaging Cellular Behavior of Sphingolipid-Interacting Probes. Methods Cell Biol 2012; 108:395-427. [DOI: 10.1016/b978-0-12-386487-1.00018-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
139
|
Abstract
INTRODUCTION The search for surrogate biomarkers of osteonecrosis, a disabling complication of Gaucher disease, has intensified in the last decade. Biomarkers that predict osteonecrosis and monitor the effectiveness of therapies would improve clinical practice and enrich the molecular exploration of this disorder. AREAS COVERED Here we discuss advances in biomarker research with special reference to those biomarkers associated with Gaucher disease and investigated in the context of enzyme therapy. Much progress has been made in the diversification of treatment for the condition and several biomarker molecules, which may ultimately improve risk assessment for osteonecrosis, have been identified. EXPERT OPINION The discovery of prospective biomarkers of osteonecrosis such as CCL18/PARC, CXCL8/IL-8, CCL5/RANTES, CCL3/MIP-1α, CCL4/MIP-1β, particularly during recurrent episodes occurring despite enzyme treatment, has the potential radically to change practices in the management of Gaucher disease and should improve therapeutic monitoring and prognostic evaluation. Ultimately, exploration of this field will provide the basis for a refined mechanistic understanding of pathogenesis.
Collapse
Affiliation(s)
- Elena V Pavlova
- University of Cambridge, Addenbrroke's Hospital , Department of Medicine , Lysosomal Disorders Unit Box 135, Cambridge , UK
| | | | | |
Collapse
|
140
|
Evaluation of miglustat treatment in patients with type III mucopolysaccharidosis: a randomized, double-blind, placebo-controlled study. J Pediatr 2011; 159:838-844.e1. [PMID: 21658716 DOI: 10.1016/j.jpeds.2011.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/17/2011] [Accepted: 04/21/2011] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of oral miglustat treatment in patients with mucopolysaccharidosis type III. The primary outcome was efficacy with improvement or stabilization in at least two domains of Vineland Adaptative Behavior Scales at 6 months. The secondary outcome measured the evolution of other cognitive tests at 12 months. The safety and tolerability were assessed throughout the study. STUDY DESIGN This was a randomized, double-blind, placebo-controlled, monocenter, institutional, phase IIb to III study. In case of efficacy at 6 months, the study would go on for another 6 months on an open design with all patients receiving miglustat. In the absence of efficacy at 6 months, the trial had to be continued for 6 more months with the initial design. RESULTS After 6 months, efficacy was not superior in patients with miglustat. The independent review board confirmed continuing the study until 12 months. CONCLUSION Miglustat treatment was not associated with any improvement/stabilization in behavior problems in patients with mucopolysaccharidosis type III. Miglustat has an acceptable safety profile. However, the study has confirmed that miglustat is able to pass through the blood-brain barrier without significantly decreasing ganglioside levels.
Collapse
|
141
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
142
|
Belmatoug N, Burlina A, Giraldo P, Hendriksz CJ, Kuter DJ, Mengel E, Pastores GM. Gastrointestinal disturbances and their management in miglustat-treated patients. J Inherit Metab Dis 2011; 34:991-1001. [PMID: 21779792 DOI: 10.1007/s10545-011-9368-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Miglustat (Zavesca®) is approved for the oral treatment of adult patients with mild to moderate type 1 Gaucher disease (GD1) for whom enzyme replacement therapy is unsuitable, and for the treatment of progressive neurological manifestations in adult and paediatric patients with Niemann-Pick disease type C (NP-C). Gastrointestinal disturbances such as diarrhoea, flatulence and abdominal pain/discomfort have consistently been reported as the most frequent adverse events associated with miglustat during clinical trials and in real-world clinical practice settings. These adverse events are generally mild or moderate in severity, occurring mostly during the initial weeks of therapy. The mechanism underlying these gastrointestinal disturbances is the inhibition by miglustat of intestinal disaccharidase enzymes (mainly sucrase and maltase), leading to sub-optimal hydrolysis of carbohydrates and subsequent osmotic diarrhoea and altered colonic fermentation. Transient decreases in body weight, which are often observed during initial miglustat therapy, are considered likely due to gastrointestinal carbohydrate malabsorption and associated negative caloric balance. While most cases of diarrhoea resolve spontaneously during continued miglustat therapy, diarrhoea also responds well to anti-propulsive medications such as loperamide. Dietary modifications such as reduced consumption of dietary sucrose, maltose and lactose have been shown to improve the gastrointestinal tolerability of miglustat and reduce the magnitude of any changes in body weight, particularly if initiated at or before the start of therapy. Miglustat dose escalation at treatment initiation may also reduce gastrointestinal disturbances. This article discusses these aspects in detail, and provides practical recommendations on how to optimize the gastrointestinal tolerability of miglustat.
Collapse
Affiliation(s)
- Nadia Belmatoug
- Reference Centre for Lysosomal Diseases, Beaujon Hospital, Clichy, France
| | | | | | | | | | | | | |
Collapse
|
143
|
Dechecchi MC, Nicolis E, Mazzi P, Cioffi F, Bezzerri V, Lampronti I, Huang S, Wiszniewski L, Gambari R, Scupoli MT, Berton G, Cabrini G. Modulators of Sphingolipid Metabolism Reduce Lung Inflammation. Am J Respir Cell Mol Biol 2011; 45:825-33. [DOI: 10.1165/rcmb.2010-0457oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
144
|
Diot JD, Moreno IG, Twigg G, Mellet CO, Haupt K, Butters TD, Kovensky J, Gouin SG. Amphiphilic 1-Deoxynojirimycin Derivatives through Click Strategies for Chemical Chaperoning in N370S Gaucher Cells. J Org Chem 2011; 76:7757-68. [DOI: 10.1021/jo201125x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jennifer D. Diot
- Laboratoire des Glucides UMR CNRS 6219, Institut de Chimie de Picardie, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - Isabel Garcia Moreno
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla C/Profesor García González no. 1, 41012 Sevilla, Spain
| | - Gabriele Twigg
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla C/Profesor García González no. 1, 41012 Sevilla, Spain
| | - Karsten Haupt
- Laboratoire Génie Enzymatique et Cellulaire, UMR CNRS-6022, Université de Technologie de Compiègne BP 20205, 60205 Compiègne Cedex, France
| | - Terry D. Butters
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - José Kovensky
- Laboratoire des Glucides UMR CNRS 6219, Institut de Chimie de Picardie, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - Sébastien G. Gouin
- Laboratoire des Glucides UMR CNRS 6219, Institut de Chimie de Picardie, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| |
Collapse
|
145
|
Andrés E, Martínez N, Planas A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J Biol Chem 2011; 286:35367-35379. [PMID: 21835921 DOI: 10.1074/jbc.m110.214148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. k(cat) is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower K(m), which results in similar k(cat)/K(m) values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, k(cat) linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas.
Collapse
Affiliation(s)
- Eduardo Andrés
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Núria Martínez
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain.
| |
Collapse
|
146
|
van den Berg RJBHN, Wennekes T, Ghisaidoobe A, Donker-Koopman WE, Strijland A, Boot RG, van der Marel GA, Aerts JMFG, Overkleeft HS. Assessment of partially deoxygenated deoxynojirimycin derivatives as glucosylceramide synthase inhibitors. ACS Med Chem Lett 2011; 2:519-22. [PMID: 24900342 DOI: 10.1021/ml200050s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/07/2011] [Indexed: 01/23/2023] Open
Abstract
Glucosylceramide synthase (GCS) is an approved drug target for the treatment of Gaucher disease and is considered as a valid target for combating other human pathologies, including type 2 diabetes. The clinical drug N-butyldeoxynojirimycin (Zavesca) is thought to inhibit through mimicry of its substrate, ceramide. In this work we demonstrate that, in contrast to what is proposed in this model, the C2-hydroxyl of the deoxynojirimycin core is important for GCS inhibition. Here we show that C6-OH appears of less important, which may set guidelines for the development of GCS inhibitors that have less affinity (in comparison with Zavesca) for other glycoprocessing enzymes, in particular those hydrolases that act on glucosylceramide.
Collapse
Affiliation(s)
| | - Tom Wennekes
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amar Ghisaidoobe
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Anneke Strijland
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Rolf G. Boot
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Herman S. Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
147
|
Abstract
Preclinical strategies that are used to identify potential drug candidates include target-based screening, phenotypic screening, modification of natural substances and biologic-based approaches. To investigate whether some strategies have been more successful than others in the discovery of new drugs, we analysed the discovery strategies and the molecular mechanism of action (MMOA) for new molecular entities and new biologics that were approved by the US Food and Drug Administration between 1999 and 2008. Out of the 259 agents that were approved, 75 were first-in-class drugs with new MMOAs, and out of these, 50 (67%) were small molecules and 25 (33%) were biologics. The results also show that the contribution of phenotypic screening to the discovery of first-in-class small-molecule drugs exceeded that of target-based approaches - with 28 and 17 of these drugs coming from the two approaches, respectively - in an era in which the major focus was on target-based approaches. We postulate that a target-centric approach for first-in-class drugs, without consideration of an optimal MMOA, may contribute to the current high attrition rates and low productivity in pharmaceutical research and development.
Collapse
|
148
|
Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 2011; 25:3661-73. [PMID: 21705667 DOI: 10.1096/fj.10-180190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inactivation of glycogen synthase kinase (GSK)-3 has been implicated in cancer progression. Previously, we showed an abundance of inactive GSK-3 in the human chronic myeloid leukemia (CML) cell line. CML is a hematopoietic malignancy caused by an oncogenic Bcr-Abl tyrosine kinase. In Bcr-Abl signaling, the role of GSK-3 is not well defined. Here, we report that enforced expression of constitutively active GSK-3 reduced proliferation and increased Bcr-Abl inhibition-induced apoptosis by nearly 1-fold. Bcr-Abl inhibition activated GSK-3 and GSK-3-dependent apoptosis. Inactivation of GSK-3 by Bcr-Abl activity is, therefore, confirmed. To reactivate GSK-3, we used glucosylceramide synthase (GCS) inhibitor PDMP to accumulate endogenous ceramide, a tumor-suppressor sphingolipid and a potent GSK-3 activator. We found that either PDMP or silence of GCS increased Bcr-Abl inhibition-induced GSK-3 activation and apoptosis. Furthermore, PDMP sensitized the most clinical problematic drug-resistant CML T315I mutant to Bcr-Abl inhibitor GNF-2-, imatinib-, or nilotinib-induced apoptosis by >5-fold. Combining PDMP and GNF-2 eliminated transplanted-CML-T315I-mutants in vivo and dose dependently sensitized primary cells from CML T315I patients to GNF-2-induced proliferation inhibition and apoptosis. The synergistic efficacy was Bcr-Abl restricted and correlated to increased intracellular ceramide levels and acted through GSK-3-mediated apoptosis. This study suggests a feasible novel anti-CML strategy by accumulating endogenous ceramide to reactivate GSK-3 and abrogate drug resistance.
Collapse
Affiliation(s)
- Wei-Ching Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Popa I, Therville N, Carpentier S, Levade T, Cuvillier O, Portoukalian J. Production of multiple brain-like ganglioside species is dispensable for fas-induced apoptosis of lymphoid cells. PLoS One 2011; 6:e19974. [PMID: 21629700 PMCID: PMC3101221 DOI: 10.1371/journal.pone.0019974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/21/2011] [Indexed: 11/18/2022] Open
Abstract
Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells.
Collapse
Affiliation(s)
- Iuliana Popa
- Laboratoire de Recherche Dermatologique, EA4169 Université de Lyon-1, Hôpital Edouard Herriot, Lyon, France
| | - Nicole Therville
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Toulouse, France
| | - Stéphane Carpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Toulouse, France
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- * E-mail: (TL); (OC); (JP)
| | - Olivier Cuvillier
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, Toulouse, France
- * E-mail: (TL); (OC); (JP)
| | - Jacques Portoukalian
- Laboratoire de Recherche Dermatologique, EA4169 Université de Lyon-1, Hôpital Edouard Herriot, Lyon, France
- * E-mail: (TL); (OC); (JP)
| |
Collapse
|
150
|
Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 2011; 7:174-81. [PMID: 21258330 PMCID: PMC3202988 DOI: 10.1038/nchembio.520] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Glycosyltransferases are ubiquitous enzymes that catalyze the assembly of glycoconjugates throughout all kingdoms of nature. A long-standing problem is the rational design of probes that can be used to manipulate glycosyltransferase activity in cells and tissues. Here we describe the rational design and synthesis of a nucleotide sugar analog that inhibits, with high potency both in vitro and in cells, the human glycosyltransferase responsible for the reversible post-translational modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc). We show that the enzymes of the hexosamine biosynthetic pathway can transform, both in vitro and in cells, a synthetic carbohydrate precursor into the nucleotide sugar analog. Treatment of cells with the precursor lowers O-GlcNAc in a targeted manner with a single-digit micromolar EC(50). This approach to inhibition of glycosyltransferases should be applicable to other members of this superfamily of enzymes and enable their manipulation in a biological setting.
Collapse
Affiliation(s)
- Tracey M Gloster
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|