101
|
Koss DJ, Dubini M, Buchanan H, Hull C, Platt B. Distinctive temporal profiles of detergent-soluble and -insoluble tau and Aβ species in human Alzheimer's disease. Brain Res 2018; 1699:121-134. [PMID: 30102892 DOI: 10.1016/j.brainres.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) pathology relevant proteins tau and beta-amyloid (Aβ) exist as an array of post-translationally modified and conformationally altered species with varying abundance, solubility and toxicity. Insoluble neurofibrillary tau tangles and Aβ plaques are end-stage AD hallmarks, yet may carry less disease significance compared to soluble species. At present, it is unclear how soluble and insoluble tau and Aβ relate to each other as well as to disease progression. Here, detergent soluble and insoluble fractions generated from post-mortem human temporal lobe samples (Brodmann area 21) were probed for tau and Aβ markers in immuno-dot assays. Measures were quantified according to diagnosis (AD cf. Non-AD), neuropathological severity, and correlated with disease progression (Braak stages). All markers were elevated within AD cases cf. non-AD controls (p < 0.05) independent of solubility. However, when considered according to neuropathological severity, phospho-tau (detected via CP13 and AT8 antibodies) was elevated early within the soluble fraction (p < 0.05 intermediate cf. low severity) and emerged only later within the insoluble fraction (p < 0.05 high cf. low severity). In contrast, PHF1 phospho-tau, TOC1 reactive tau oligomers and amyloid markers rose within the two fractions simultaneously. Independent of solubility, cognitive correlations were observed for tau makers and for fibrillary amyloid (OC), however only soluble total Aβ was significantly correlated with intellectual impairment. Following the exclusion of end-stage cases, only soluble total Aβ remained correlated with cognition. The data indicate differential rates of protein aggregation during AD progression and confirm the disease relevance of early emerging soluble Aβ species.
Collapse
Affiliation(s)
- David J Koss
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Marina Dubini
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather Buchanan
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Claire Hull
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
102
|
Liao Q, Owen MC, Bali S, Barz B, Strodel B. Aβ under stress: the effects of acidosis, Cu 2+-binding, and oxidation on amyloid β-peptide dimers. Chem Commun (Camb) 2018; 54:7766-7769. [PMID: 29947363 DOI: 10.1039/c8cc02263a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In light of the high affinity of Cu2+ for Alzheimer's Aβ1-42 and its ability to subsequently catalyze the formation of radicals, we examine the effects of Cu2+ binding, Aβ oxidation, and an acidic environment on the conformational dynamics of the smallest Aβ1-42 oligomer, the Aβ1-42 dimer. Transition networks calculated from Hamiltonian replica exchange molecular dynamics (H-REMD) simulations reveal that the decreased pH considerably increased the β-sheet content, whereas Cu2+ binding increased the exposed hydrophobic surface area, both of which can contribute to an increased oligomerization propensity and toxicity.
Collapse
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
103
|
Matsubara T, Yasumori H, Ito K, Shimoaka T, Hasegawa T, Sato T. Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns. J Biol Chem 2018; 293:14146-14154. [PMID: 30018137 DOI: 10.1074/jbc.ra118.002787] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Some protein and peptide aggregates, such as those of amyloid-β protein (Aβ), are neurotoxic and have been implicated in several neurodegenerative diseases. Aβ accumulates at nanoclusters enriched in neuronal lipids called gangliosides in the presynaptic neuronal membrane, and the resulting oligomeric and/or fibrous forms accelerate the development of Alzheimer's disease. Although the presence of Aβ deposits at such nanoclusters is known, the mechanism of their assembly and the relationship between Aβ secondary structure and topography are still unclear. Here, we first confirmed by atomic force microscopy that Aβ40 fibrils can be obtained by incubating seed-free Aβ40 monomers with a membrane composed of sphingomyelin, cholesterol, and the ganglioside GM1. Using Fourier transform infrared (FTIR) reflection-absorption spectroscopy, we then found that these lipid-associated fibrils contained parallel β-sheets, whereas self-assembled Aβ40 molecules formed antiparallel β-sheets. We also found that the fibrils obtained at GM1-rich nanoclusters were generated from turn Aβ40 Our findings indicate that Aβ generally self-assembles into antiparallel β-structures but can also form protofibrils with parallel β-sheets by interacting with ganglioside-bound Aβ. We concluded that by promoting the formation of parallel β-sheets, highly ganglioside-enriched nanoclusters help accelerate the elongation of Aβ fibrils. These results advance our understanding of ganglioside-induced Aβ fibril formation in neuronal membranes and may help inform the development of additional therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Hanaki Yasumori
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Koichiro Ito
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Takafumi Shimoaka
- the Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- the Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshinori Sato
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| |
Collapse
|
104
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
105
|
Khoury LR, Kost J, Enden G. Effects of Surface Coating on Nanoparticle-Protein Adsorption Selectivity. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Responsibility of lipid compositions for the amyloid ß assembly induced by ganglioside nanoclusters in mouse synaptosomal membranes. Polym J 2018. [DOI: 10.1038/s41428-018-0041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
107
|
Lee MC, Yu WC, Shih YH, Chen CY, Guo ZH, Huang SJ, Chan JCC, Chen YR. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer's disease. Sci Rep 2018; 8:4772. [PMID: 29555950 PMCID: PMC5859292 DOI: 10.1038/s41598-018-23122-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the elderly. Zinc (Zn) ion interacts with the pathogenic hallmark, amyloid-β (Aβ), and is enriched in senile plaques in brain of AD patients. To understand Zn-chelated Aβ (ZnAβ) species, here we systematically characterized ZnAβ aggregates by incubating equimolar Aβ with Zn. We found ZnAβ40 and ZnAβ42 both form spherical oligomers with a diameter of ~12–14 nm composed of reduced β-sheet content. Oligomer assembly examined by analytical ultracentrifugation, hydrophobic exposure by BisANS spectra, and immunoreactivity of ZnAβ and Aβ derived diffusible ligands (ADDLs) are distinct. The site-specific 13C labeled solid-state NMR spectra showed that ZnAβ40 adopts β-sheet structure as in Aβ40 fibrils. Interestingly, removal of Zn by EDTA rapidly shifted the equilibrium back to fibrillization pathway with a faster kinetics. Moreover, ZnAβ oligomers have stronger toxicity than ADDLs by cell viability and cytotoxicity assays. The ex vivo study showed that ZnAβ oligomers potently inhibited hippocampal LTP in the wild-type C57BL/6JNarl mice. Finally, we demonstrated that ZnAβ oligomers stimulate hippocampal microglia activation in an acute Aβ-injected model. Overall, our study demonstrates that ZnAβ rapidly form toxic and distinct off-pathway oligomers. The finding provides a potential target for AD therapeutic development.
Collapse
Affiliation(s)
- Ming-Che Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Cheng Yu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhong-Hong Guo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yun-Ru Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.. .,Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
108
|
Rahimi F. Aptamers Selected for Recognizing Amyloid β-Protein-A Case for Cautious Optimism. Int J Mol Sci 2018; 19:ijms19030668. [PMID: 29495486 PMCID: PMC5877529 DOI: 10.3390/ijms19030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid β-protein (Aβ) has been limited so far. Aβ is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aβ, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aβ assemblies likely due to the metastable nature of Aβ or inherent affinity of RNA oligonucleotides to β-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aβ–aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers’ specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aβ or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aβ assemblies and highlights controversies, difficulties, and limitations of such studies.
Collapse
Affiliation(s)
- Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
109
|
Olsson TT, Klementieva O, Gouras GK. Prion-like seeding and nucleation of intracellular amyloid-β. Neurobiol Dis 2018; 113:1-10. [PMID: 29414379 DOI: 10.1016/j.nbd.2018.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/22/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-β (Aβ) into plaques in AD transgenic mice. Aβ seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aβ seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an in vitro system with prion-like Aβ has not been reported. Here we treat human APP expressing N2a cells with AD transgenic mouse brain extracts to induce inclusions of Aβ in a subset of cells. We isolate cells with induced Aβ inclusions and using immunocytochemistry, western blot and infrared spectroscopy show that these cells produce oligomeric Aβ over multiple replicative generations. Further, we demonstrate that cell lysates of clones with induced oligomeric Aβ can induce aggregation in previously untreated N2a APP cells. These data strengthen the case that Aβ acts as a prion-like protein, demonstrate that Aβ seeds can be intracellular oligomers and for the first time provide a cellular model of nucleated seeding of Aβ.
Collapse
Affiliation(s)
- Tomas T Olsson
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Oxana Klementieva
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
110
|
Oil Palm Phenolics Inhibit the In Vitro Aggregation of β-Amyloid Peptide into Oligomeric Complexes. Int J Alzheimers Dis 2018; 2018:7608038. [PMID: 29666700 PMCID: PMC5831689 DOI: 10.1155/2018/7608038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid-β peptide (Aβ) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of Aβ42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that Aβ42 aggregation is inhibited in vitro by oil palm phenolics (OPP), an aqueous extract from the oil palm tree (Elaeis guineensis). The data shows that OPP inhibits stacking of β-pleated sheets, which is essential for oligomerization. We demonstrate the inhibition of Aβ42 aggregation by (1) mass spectrometry; (2) Congo Red dye binding; (3) 2D-IR spectroscopy; (4) dynamic light scattering; (5) transmission electron microscopy; and (6) transgenic yeast rescue assay. In the yeast rescue assay, OPP significantly reduces the cytotoxicity of aggregating neuropeptides in yeast genetically engineered to overexpress these peptides. The data shows that OPP inhibits (1) the aggregation of Aβ into oligomers; (2) stacking of β-pleated sheets; and (3) fibrillar growth and coalescence. These inhibitory effects prevent the formation of neurotoxic oligomers and hold potential as a means to reduce neuroinflammation and neuronal death and thereby may play some role in the prevention or treatment of Alzheimer's disease.
Collapse
|
111
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
112
|
Sharoar MG, Yan R. Effects of altered RTN3 expression on BACE1 activity and Alzheimer's neuritic plaques. Rev Neurosci 2018; 28:145-154. [PMID: 27883331 DOI: 10.1515/revneuro-2016-0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
Reticulon 3 (RTN3), which is a member of the reticulon family of proteins, has a biochemical function of shaping tubular endoplasmic reticulum. RTN3 has also been found to interact with β-site amyloid precursor protein cleaving enzyme 1 (BACE1), which initiates the generation of β-amyloid peptides (Aβ) from amyloid precursor protein. Aβ is the major proteinaceous component in neuritic plaques, which constitute one of the major pathological features in brains of Alzheimer's disease (AD) patients. Mice deficient in or overexpressing RTN3 have altered amyloid deposition through effects on BACE1 expression and activity. In this review, we will summarize the current findings concerning the role of RTN3 in AD pathogenesis and demonstrate that RTN3 protein levels act as age-dependent modulators of BACE1 activity and Aβ deposition during the pathogenic progression of AD.
Collapse
|
113
|
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:321-361. [DOI: 10.1016/bs.ircmb.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
114
|
Hu Y, Kienlen-Campard P, Tang TC, Perrin F, Opsomer R, Decock M, Pan X, Octave JN, Constantinescu SN, Smith SO. β-Sheet Structure within the Extracellular Domain of C99 Regulates Amyloidogenic Processing. Sci Rep 2017; 7:17159. [PMID: 29215043 PMCID: PMC5719365 DOI: 10.1038/s41598-017-17144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022] Open
Abstract
Familial mutations in C99 can increase the total level of the soluble Aβ peptides produced by proteolysis, as well as the Aβ42/Aβ40 ratio, both of which are linked to the progression of Alzheimer’s disease. We show that the extracellular sequence of C99 forms β-sheet structure upon interaction with membrane bilayers. Mutations that disrupt this structure result in a significant increase in Aβ production and, in specific cases, result in an increase in the amount of Aβ42 relative to Aβ40. Fourier transform infrared and solid-state NMR spectroscopic studies reveal a central β-hairpin within the extracellular sequence comprising Y10-E11-V12 and L17-V18-F19 connected by a loop involving H13-H14-Q15. These results suggest how familial mutations in the extracellular sequence influence C99 processing and provide a structural basis for the development of small molecule modulators that would reduce Aβ production.
Collapse
Affiliation(s)
- Yi Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Tzu-Chun Tang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Florian Perrin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium.,Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Rémi Opsomer
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Marie Decock
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Xiaoshu Pan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jean-Noel Octave
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, Brussels, 1200, Belgium.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
115
|
Jones CL, Marsden EA, Nevin AC, Kariuki BM, Bhadbhade MM, Martin AD, Easun TL. Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171064. [PMID: 29308246 PMCID: PMC5750013 DOI: 10.1098/rsos.171064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
A series of new group 2 coordination polymers, MgL ={MgL(H2O)(DMF)0.75}∞, CaL = {CaL(DMF)2}∞, SrL = {SrL(H2O)0.5}∞ and BaL = {BaL(H2O)0.5}∞, were synthesized using a flexible benzimidazolone diacetic acid linker (H2L) in which the two carboxylic acid binding sites are connected to a planar core via {-CH2-} spacers that can freely rotate in solution. In a 'curiosity-led' diversion from group 2 metals, the first row transition metal salts Mn2+, Cu2+ and Zn2+ were also reacted with L to yield crystals of MnL = {MnL(DMF)(H2O)3.33}∞, Cu3L2 = {Cu3L2(DMF)2(CHO2)2}∞ and ZnL = {ZnL(DMF)}∞. Crystal structures were obtained for all seven materials. All structures form as two-dimensional sheets and contain six-coordinate centres, with the exception of ZnL, which displays tetrahedrally coordinated metal centres, and Cu3L2 , which contains square planar coordinated metal centres and Cu paddle-wheels. In each structure, the linker adopts one of two distinct conformations, with the carboxylate groups either cis or trans with respect to the planar core. All materials were also characterized by powder X-ray diffraction and thermogravimetric analysis.
Collapse
Affiliation(s)
- Corey L. Jones
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Elizabeth A. Marsden
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Adam C. Nevin
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Mohan M. Bhadbhade
- School of Chemistry, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam D. Martin
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Timothy L. Easun
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
116
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
117
|
Hernandez MX, Namiranian P, Nguyen E, Fonseca MI, Tenner AJ. C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 2017; 9:1759091416687871. [PMID: 28078911 PMCID: PMC5298486 DOI: 10.1177/1759091416687871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C5aR1, the proinflammatory receptor for C5a, is expressed in the central nervous system on microglia, endothelial cells, and neurons. Previous work demonstrated that the C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in two Alzheimer's Disease (AD) mouse models. However, the cellular mechanisms of this protection have not been definitively demonstrated. Here, primary cultured mouse neurons treated with exogenous C5a show reproducible loss of MAP-2 staining in a dose-dependent manner within 24 hr of treatment, indicative of injury to neurons. This injury is prevented by the C5aR1 antagonist PMX53, a close analog of PMX205. Furthermore, primary neurons derived from C5aR1 null mice exhibited no MAP-2 loss after exposure to the highest concentration of C5a tested. Primary mouse neurons treated with both 100 nM C5a and 5 µM fibrillar amyloid beta (fAβ), to model what occurs in the AD brain, showed increased MAP-2 loss relative to either C5a or fAβ alone. Blocking C5aR1 with PMX53 (100 nM) blocked the loss of MAP2 in these primary neurons to the level seen with fAβ alone. Similar experiments with primary neurons derived from C5aR1 null mice showed a loss of MAP-2 due to fAβ treatment. However, the addition of C5a to the cultures did not enhance the loss of MAP-2 and the addition of PMX53 to the cultures did not change the MAP-2 loss in response to fAβ. Thus, at least part of the beneficial effects of C5aR1 antagonist in AD mouse models may be due to protection of neurons from the toxic effects of C5a.
Collapse
Affiliation(s)
- Michael X Hernandez
- 1 Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, USA
| | - Pouya Namiranian
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Eric Nguyen
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Maria I Fonseca
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Andrea J Tenner
- 1 Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, USA.,2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA.,3 Department of Neurobiology and Behavior, University of California, Irvine, USA
| |
Collapse
|
118
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
119
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
120
|
Willén K, Edgar JR, Hasegawa T, Tanaka N, Futter CE, Gouras GK. Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Mol Neurodegener 2017; 12:61. [PMID: 28835279 PMCID: PMC5569475 DOI: 10.1186/s13024-017-0203-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD)-linked β-amyloid (Aβ) accumulates in multivesicular bodies (MVBs) with the onset of AD pathogenesis. Alterations in endosomes are among the earliest changes associated with AD but the mechanism(s) that cause endosome enlargement and the effects of MVB dysfunction on Aβ accumulation and tau pathology are incompletely understood. METHODS MVB size and Aβ fibrils in primary neurons were visualized by electron microscopy and confocal fluorescent microscopy. MVB-dysfunction, modelled by expression of dominant negative VPS4A (dnVPS4A), was analysed by biochemical methods and exosome isolation. RESULTS Here we show that AD transgenic neurons have enlarged MVBs compared to wild type neurons. Uptake of exogenous Aβ also leads to enlarged MVBs in wild type neurons and generates fibril-like structures in endocytic vesicles. With time fibrillar oligomers/fibrils can extend out of the endocytic vesicles and are eventually detectable extracellularly. Further, endosomal sorting complexes required for transport (ESCRT) components were found associated with amyloid plaques in AD transgenic mice. The phenotypes previously reported in AD transgenic neurons, with net increased intracellular levels and reduced secretion of Aβ, were mimicked by blocking recycling of ESCRT-III by dnVPS4A. DnVPS4A further resembled AD pathology by increasing tau phosphorylation at serine 396 and increasing markers of autophagy. CONCLUSIONS We demonstrate that Aβ leads to MVB enlargement and that amyloid fibres can form within the endocytic pathway of neurons. These results are consistent with the scenario of the endosome-lysosome system representing the site of initiation of Aβ aggregation. In turn, a dominant negative form of the CHMP2B-interacting protein VPS4A, which alters MVBs, leads to accumulation and aggregation of Aβ as well as tau phosphorylation, mimicking the cellular changes in AD.
Collapse
Affiliation(s)
- Katarina Willén
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, 981-1293, Japan
| | | | - Gunnar K Gouras
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
121
|
Ahmad I, Mozhi A, Yang L, Han Q, Liang X, Li C, Yang R, Wang C. Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation. Colloids Surf B Biointerfaces 2017; 159:540-545. [PMID: 28846964 DOI: 10.1016/j.colsurfb.2017.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
Inhibiting amyloid β (Aβ) aggregation has drawn much attention because it is one of the main reasons for the cause of Alzheimer's disease (AD). Here we have synthesized a nanocomposite of graphene oxide-iron oxide (GOIO) and demonstrated its ability of modulating Aβ aggregation. The inhibition effects of the GOIO nanocomposite on Aβ aggregates was studied by Thioflavin T fluorescence assay, circular dichroism and transmission electron microscopy, respectively. Furthermore, the cell viability study revealed that the GOIO nanocomposite can reduce the toxicity of Aβ fibrils to neuroblastoma cells. Our results demonstrated that the combination of GO and IO as a nanocomposite material has a potential use for the design new therapeutic agents for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Israr Ahmad
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Anbu Mozhi
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Qiusen Han
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xingjie Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Chan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Chen Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
122
|
Yin K, Jin J, Zhu X, Yu L, Wang S, Qian L, Han L, Xu Y. CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurol Res 2017; 39:885-894. [PMID: 28743230 DOI: 10.1080/01616412.2017.1348689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kailin Yin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Sulei Wang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lai Qian
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lijuan Han
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
123
|
Abstract
γ-secretase, a membrane-embedded aspartate protease, catalyzes peptide bond hydrolysis of a large variety of type I integral membrane proteins exemplified by amyloid precursor protein (APP). Cleavage of APP leads to formation of β-amyloid plaque, which is a hallmark of Alzheimer's disease (AD). Over 200 AD-associated mutations are mapped to presenilin 1 (PS1), the catalytic component of γ-secretase. In the past three years, several cryo-electron microscopy (cryo-EM) structures of human γ-secretase have been determined at near atomic resolutions. Here we summarize the methods involved and discuss structural features of γ-secretase and the associated functional insights.
Collapse
Affiliation(s)
- Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
124
|
Kim HY, Kwon JA, Kang T, Choi I. Rapid and high-throughput colorimetric screening for anti-aggregation reagents of protein conformational diseases by using gold nanoplasmonic particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1575-1585. [DOI: 10.1016/j.nano.2017.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
|
125
|
Suprun EV, Radko SP, Andreev EA, Khmeleva SA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Electrochemical detection of Zn(II)- and Cu(II)-induced amyloid-β aggregation: Quantitative aspects and application to amyloid-β isoforms. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
126
|
Shi H, Lee JY. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1-42). ACS Chem Neurosci 2017; 8:669-675. [PMID: 28292182 DOI: 10.1021/acschemneuro.6b00375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tautomeric state of histidine is one of the factors that influence the structural and aggregation properties of amyloid β (Aβ)-peptide in neutral state. It is worth it to uncover the monomeric properties of Aβ(1-42) peptide in comparison with Aβ(1-40) peptide. Our replica-exchange molecular dynamics simulations results show that the sheet content of each tautomeric isomer in Aβ(1-42) monomer is slightly higher than that in Aβ(1-40) monomer except His6(δ)-His13(δ)-His14(δ) (δδδ) isomer, implying higher aggregation tendency in Aβ(1-42), which is in agreement with previous experimental and theoretical studies. Further analysis indicates that (εεε), (εδε), (εδδ), and (δδε) isomers prefer sheet conformation although they are in nondominating states. Particularly, it is confirmed that antiparallel β-sheets of (εδδ) were formed at K16-E22 (22.0-43.9%), N27-A30 except G29 (21.9-40.2%), and M35-I41 except G37 (24.1-43.4%). Furthermore, (εδδ) may be the easiest one to overcome structural transformation due to nonobstructing interactions between K16 and/or L17 and histidine residues. The current study will help to understand the tautomeric effect of Aβ(1-42) peptide to overcome Alzheimer's disease.
Collapse
Affiliation(s)
- Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
127
|
Melanosomal formation of PMEL core amyloid is driven by aromatic residues. Sci Rep 2017; 7:44064. [PMID: 28272432 PMCID: PMC5341037 DOI: 10.1038/srep44064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/01/2017] [Indexed: 12/05/2022] Open
Abstract
PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer’s and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrPSc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms.
Collapse
|
128
|
Soltani N, Gholami MR. Increase in the β-Sheet Character of an Amyloidogenic Peptide upon Adsorption onto Gold and Silver Surfaces. Chemphyschem 2017; 18:526-536. [DOI: 10.1002/cphc.201601000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Nima Soltani
- Department of Chemistry; Sharif University of Technology; Tehran 11365-11155 Iran), Fax: (+98) 216 600 5718
| | - Mohammad Reza Gholami
- Department of Chemistry; Sharif University of Technology; Tehran 11365-11155 Iran), Fax: (+98) 216 600 5718
| |
Collapse
|
129
|
Somers C, Goossens J, Engelborghs S, Bjerke M. Selecting Aβ isoforms for an Alzheimer's disease cerebrospinal fluid biomarker panel. Biomark Med 2017; 11:169-178. [PMID: 28111962 DOI: 10.2217/bmm-2016-0276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the core cerebrospinal fluid Alzheimer's disease (AD) biomarkers amyloid-β (Aβ1-42) and tau show a high diagnostic accuracy, there are still limitations due to overlap in the biomarker levels with other neurodegenerative and dementia disorders. During Aβ1-42 production and clearance in the brain, several other Aβ peptides and amyloid precursor protein fragments are formed that could potentially serve as biomarkers for this ongoing disease process. Therefore, this review will present the current status of the findings for amyloid precursor protein and Aβ peptide isoforms in AD and clinically related disorders. In conclusion, adding new Aβ isoforms to the AD biomarker panel may improve early differential diagnostic accuracy and increase the cerebrospinal fluid biomarker concordance with AD neuropathological findings in the brain.
Collapse
Affiliation(s)
- Charisse Somers
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Joery Goossens
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology & Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim & Hoge Beuken, Antwerp, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
130
|
Liao Q, Owen MC, Olubiyi OO, Barz B, Strodel B. Conformational Transitions of the Amyloid-β Peptide Upon Copper(II) Binding and pH Changes. Isr J Chem 2017. [DOI: 10.1002/ijch.201600108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Michael C. Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Olujide O. Olubiyi
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences; Afe Babalola University; Nigeria
| | - Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
131
|
MORISAKU T, YUI H. Structural Discrimination between Aβ(1–40) and Aβ(1–42) Peptides in Films with Vibrational Circular Dichroism Spectroscopy. ANAL SCI 2017; 33:79-82. [DOI: 10.2116/analsci.33.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshinori MORISAKU
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| | - Hiroharu YUI
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
132
|
Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci U S A 2016; 114:E476-E485. [PMID: 27930341 DOI: 10.1073/pnas.1618657114] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the aggregation of β-amyloid peptides (Aβ) into amyloid plaques in patient brain. Cleavage of amyloid precursor protein (APP) by the intramembrane protease γ-secretase produces Aβ of varying lengths, of which longer peptides such as Aβ42 are thought to be more harmful. Increased ratios of longer Aβs over shorter ones, exemplified by the ratio of Aβ42 over Aβ40, may lead to formation of amyloid plaques and consequent development of AD. In this study, we analyzed 138 reported mutations in human presenilin-1 (PS1) by individually reconstituting the mutant PS1 proteins into anterior-pharynx-defective protein 1 (APH-1)aL-containing γ-secretases and examining their abilities to produce Aβ42 and Aβ40 in vitro. About 90% of these mutations lead to reduced production of Aβ42 and Aβ40. Notably, 10% of these mutations result in decreased Aβ42/Aβ40 ratios. There is no statistically significant correlation between the Aβ42/Aβ40 ratio produced by a γ-secretase variant containing a specific PS1 mutation and the mean age at onset of patients from whom the mutation was isolated.
Collapse
|
133
|
Abstract
Citrullination and deamidation, which are aging-related posttranslational modifications, increase the number of negative charges on amyloid β-protein (Aβ) at neutral pH. We investigated the effects of these modifications on the fibrillation properties of Aβ. The Arg5→Cit modification of Aβ1-40 did not affect the fibrillation rate, and brought β-sheet structures unlike that in the Aβ1-40 fibril. The Asn27→Asp modification of Aβ1-40 stopped the fibrillation and induced the formation of aggregates that involved an anti-parallel β-sheet. Aβ1-42 with the Arg5→Cit modification showed increased solubility in aqueous media, and its fibril formation became slower than that of Aβ1-42. The modification did not change the parallel β-sheet structure of the fibrils. Aβ1-42 with the Asn27→Asp modification partially formed fibrils that involved the parallel β-sheet structure. Using the thioflavin T (ThT) assay, an increased fraction of the soluble oligomer of each Aβ analog was transiently detected during fibrillation. An increase in the number of negative charges at basic pH affected the aggregation properties of Aβ in a manner different from that with the modifications, suggesting that change in properties of the posttanslationally modified residues rather than the number of charges in the peptide was important.
Collapse
Affiliation(s)
- Dai Osaki
- a Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Hirotsugu Hiramatsu
- a Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
134
|
Zhu C, Xu B, Sun X, Zhu Q, Sui Y. Targeting CCR3 to Reduce Amyloid-β Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2016; 54:7964-7978. [PMID: 27878757 DOI: 10.1007/s12035-016-0269-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022]
Abstract
The majority of Alzheimer's disease (AD) patients have a late onset, and chronic neuroinflammation, characterized by glial activation and secretion of pro-inflammatory cytokines and chemokines, plays a role in the pathogenesis of AD. The chemokine CCL11 has been shown to be a causative factor of cognitive decline in the process of aging, but little is known whether it is involved in the pathogenesis of AD. In the present study, we showed that CCR3, the receptor for CCL11, was expressed by hippocampal neurons and treatment of primary hippocampal neuronal cultures (14 days in vitro) with CCL11 resulted in activation of cyclin-dependent kinase 5 and glycogen synthase kinase-3β, associated with elevated tau phosphorylation at multiple sites. CCL11 treatment also induced the production of Aβ and dendritic spine loss in the hippocampal neuronal cultures. All these effects were blocked by the CCR3 specific antagonist, GW766994. An age-dependent increase in CCL11, predominantly expressed by the activated microglia, was observed in the cerebrospinal fluid of both APP/PS1 double transgenic mice and wild-type (WT) littermates, with a markedly higher level in APP/PS1 double transgenic mice than that in WT littermates. Deletion of CCR3 in APP/PS1 double transgenic mice significantly reduced the phosphorylation of CDK5 and GSK3β, tau hyperphosphorylation, Aβ deposition, microgliosis, astrogliosis, synaptic loss, and spatial learning and memory deficits. Thus, the age-related increase in CCL11 may be a risk factor of AD, and antagonizing CCR3 may bring therapeutic benefits to AD.
Collapse
Affiliation(s)
- Chunyan Zhu
- Department of Neurology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Bing Xu
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, China
| | - Xiaohong Sun
- Department of Neurology, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiwen Zhu
- Key laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Yi Sui
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, China. .,Department of Neurology, the Fourth Affiliated Hospital, China Medical University, Shenyang, China. .,Key laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
135
|
Ayala I, Colanzi A. Alterations of Golgi organization in Alzheimer's disease: A cause or a consequence? Tissue Cell 2016; 49:133-140. [PMID: 27894594 DOI: 10.1016/j.tice.2016.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 11/06/2016] [Indexed: 01/24/2023]
Abstract
The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy.
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
136
|
Gerakis Y, Dunys J, Bauer C, Checler F. Aβ42 oligomers modulate β-secretase through an XBP-1s-dependent pathway involving HRD1. Sci Rep 2016; 6:37436. [PMID: 27853315 PMCID: PMC5112606 DOI: 10.1038/srep37436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
The aspartyl protease β-site APP cleaving enzyme, BACE1, is the rate-limiting enzyme involved in the production of amyloid-β peptide, which accumulates in both sporadic and familial cases of Alzheimer’s disease and is at the center of gravity of the amyloid cascade hypothesis. In this context, unravelling the molecular mechanisms controlling BACE1 expression and activity in both physiological and pathological conditions remains of major importance. We previously demonstrated that Aβ controlled BACE1 transcription in an NFκB-dependent manner. Here, we delineate an additional cellular pathway by which natural and synthetic Aβ42 oligomers enhance active X-box binding protein XBP-1s. XBP-1s lowers BACE1 expression and activity indirectly, via the up-regulation of the ubiquitin-ligase HRD1 that acts as an endogenous down-regulator of BACE1. Thus, we delineate a novel pathway by which cells could compensate for Aβ42 oligomers production and thus, associated toxicity, by triggering a compensatory mechanism aimed at lowering BACE-1-mediated Aβ production by a molecular cascade involving XBP-1s and HRD1. It thus identifies HRD1 as a potential target for a novel Aβ-centered therapeutic strategy.
Collapse
Affiliation(s)
- Yannis Gerakis
- Université Côte d'Azur, INSERM, CNRS, IPMC, France, Laboratory of excellence DistALZ, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Julie Dunys
- Université Côte d'Azur, INSERM, CNRS, IPMC, France, Laboratory of excellence DistALZ, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Charlotte Bauer
- Université Côte d'Azur, INSERM, CNRS, IPMC, France, Laboratory of excellence DistALZ, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Fréderic Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, France, Laboratory of excellence DistALZ, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
137
|
Janssen L, Dubbelaar ML, Holtman IR, de Boer-Bergsma J, Eggen BJL, Boddeke HWGM, De Deyn PP, Van Dam D. Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:395-405. [PMID: 27838490 DOI: 10.1016/j.bbadis.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023]
Abstract
Aging is the key risk factor for Alzheimer's disease (AD). In addition, the amyloid-beta (Aβ) peptide is considered a critical neurotoxic agent in AD pathology. However, the connection between these factors is unclear. We aimed to provide an extensive characterization of the gene expression profiles of the amyloidosis APP23 model for AD and control mice and to evaluate the effect of aging on these profiles. We also correlated our findings to changes in soluble Aβ-levels and other pathological and symptomatic features of the model. We observed a clear biphasic expression profile. The first phase displayed a maturation profile, which resembled features found in young carriers of familial AD mutations. The second phase reflected aging processes and showed similarities to the progression of human AD pathology. During this phase, the model displayed a clear upregulation of microglial activation and lysosomal pathways and downregulation of neuron differentiation and axon guidance pathways. Interestingly, the changes in expression were all correlated to aging in general, but appeared more extensive/accelerated in APP23 mice.
Collapse
Affiliation(s)
- Leen Janssen
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Marissa L Dubbelaar
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jelkje de Boer-Bergsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium; University of Groningen, University Medical Center Groningen (UMCG), Department of Neurology and Alzheimer Research Center, Groningen, The Netherlands; Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|
138
|
Saito M, Zako T, Takahashi R, Shimazaki Y. Inhibition of Amyloid β Protein Fibrillation via Carboxypeptidase Y after Protein Trapping Using Immunoaffinity Membranes. CHEM LETT 2016. [DOI: 10.1246/cl.160613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
139
|
Shi H, Kang B, Lee JY. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1–40). J Phys Chem B 2016; 120:11405-11411. [DOI: 10.1021/acs.jpcb.6b08685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hu Shi
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- Department
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
140
|
Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis 2016; 54:859-878. [DOI: 10.3233/jad-160517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamàs Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
141
|
Liu J, Yang B, Ke J, Li W, Suen WC. Antibody-Based Drugs and Approaches Against Amyloid-β Species for Alzheimer’s Disease Immunotherapy. Drugs Aging 2016; 33:685-697. [DOI: 10.1007/s40266-016-0406-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
142
|
Chang YJ, Linh NH, Shih YH, Yu HM, Li MS, Chen YR. Alzheimer's Amyloid-β Sequesters Caspase-3 in Vitro via Its C-Terminal Tail. ACS Chem Neurosci 2016; 7:1097-106. [PMID: 27227450 DOI: 10.1021/acschemneuro.6b00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Amyloid-β (Aβ), the main constituent in senile plaques found in the brain of patients with Alzheimer's disease (AD), is considered as a causative factor in AD pathogenesis. The clinical examination of the brains of patients with AD has demonstrated that caspase-3 colocalizes with senile plaques. Cellular studies have shown that Aβ can induce neuronal apoptosis via caspase-3 activation. Here, we performed biochemical and in silico studies to investigate possible direct effect of Aβ on caspase-3 to understand the molecular mechanism of the interaction between Aβ and caspase-3. We found that Aβ conformers can specifically and directly sequester caspase-3 activity in which freshly prepared Aβ42 is the most potent. The inhibition is noncompetitive, and the C-terminal region of Aβ plays an important role in sequestration. The binding of Aβ to caspase-3 was examined by cross-linking and proteolysis and by docking and all-atom molecular dynamic simulations. Experimental and in silico results revealed that Aβ42 exhibits a higher binding affinity than Aβ40 and the hydrophobic C-terminal region plays a key role in the caspase-Aβ interaction. Overall, our study describes a novel mechanism demonstrating that Aβ sequesters caspase-3 activity via direct interaction and facilitates future therapeutic development in AD.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building,
Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Yao Hsiang Shih
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Hui-Ming Yu
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Yun-Ru Chen
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| |
Collapse
|
143
|
Agca C, Klakotskaia D, Schachtman TR, Chan AW, Lah JJ, Agca Y. Presenilin 1 transgene addition to amyloid precursor protein overexpressing transgenic rats increases amyloid beta 42 levels and results in loss of memory retention. BMC Neurosci 2016; 17:46. [PMID: 27388605 PMCID: PMC4936262 DOI: 10.1186/s12868-016-0281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We previously reported the production of transgenic rats (APP21 line) that over-express human amyloid precursor protein (APP) containing Swedish and Indiana mutations. In order to generate a better model for Alzheimer's disease (AD), the APP21 rat line was used to generate double transgenic line that over-expressed Presenilin 1 (PS1) with L166P mutation in addition to APP transgene (APP + PS1 line). RESULTS Thirty-two double transgenic founders were generated and the ultimate transgenic founder was selected based on PS1 transgene copy number and level of amyloid-beta (Aβ)42 peptide. The APP + PS1 double transgenic rats had 38 times more PS1 in brains compared to APP rats. Behavioral assessment using Barnes maze showed that APP + PS1 rats exhibited a larger learning and memory deficit than APP21 rats. Double transgenic rats also produced more Aβ42. Histological examination of the brains showed that the APP21 rat line displayed neurofibrillary tangles and in contrast, the APP + PS1 line showed chromatolysis in hippocampal neurons and neuronal loss in CA3 region of hippocampus. CONCLUSIONS Due to the separate segregation of APP and PS1 transgenes in APP + PS1 double transgenic rats, this transgenic line may be a valuable model for studying the effects of various levels of APP and PS1 transgenes on various aspects of brain pathologies associated with the AD phenotype.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Room W191, Columbia, MO, 65211, USA
| | - Diana Klakotskaia
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Todd R Schachtman
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Anthony W Chan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - James J Lah
- Department of Neurology, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, 30322, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Room W191, Columbia, MO, 65211, USA.
| |
Collapse
|
144
|
Qian Y, Yin J, Hong J, Li G, Zhang B, Liu G, Wan Q, Chen L. Neuronal seipin knockout facilitates Aβ-induced neuroinflammation and neurotoxicity via reduction of PPARγ in hippocampus of mouse. J Neuroinflammation 2016; 13:145. [PMID: 27287266 PMCID: PMC4902906 DOI: 10.1186/s12974-016-0598-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Seipin is highly expressed in hippocampal pyramidal cells and astrocytes. Neuronal knockout of seipin in mice (seipin-KO mice) reduces the hippocampal peroxisome proliferator-activated receptor gamma (PPARγ) level without the loss of pyramidal cells. The down-regulation of PPARγ has gained increasing attention in neuroinflammation of Alzheimer’s disease (AD). Thus, the present study focused on exploring the influence of seipin depletion on β-amyloid (Aβ)-induced neuroinflammation and Aβ neurotoxicity. Methods Adult male seipin-KO mice were treated with a single intracerebroventricular (i.c.v.) injection of Aβ25–35 (1.2 nmol/mouse) or Aβ1–42 (0.1 nmol/mouse), generally a non-neurotoxic dose in wild-type (WT) mice. Spatial cognitive behaviors were assessed by Morris water maze and Y-maze tests, and hippocampal CA1 pyramidal cells and inflammatory responses were examined. Results The Aβ25–35/1–42 injection in the seipin-KO mice caused approximately 30–35 % death of pyramidal cells and production of Hoechst-positive cells with the impairment of spatial memory. In comparison with the WT mice, the number of astrocytes and microglia in the seipin-KO mice had no significant difference, whereas the levels of IL-6 and TNF-α were slightly increased. Similarly, the Aβ25–35/1–42 injection in the seipin-KO mice rather than the WT mice could stimulate the activation of astrocytes or microglia and further elevated the levels of IL-6 and TNF-α. Treatment of the seipin-KO mice with the PPARγ agonist rosiglitazone (rosi) could prevent Aβ25–35/1–42-induced neuroinflammation and neurotoxicity, which was blocked by the PPARγ antagonist GW9962. In the seipin-KO mice, the level of glycogen synthase kinase-3β (GSK3β) phosphorylation at Tyr216 was elevated, while at Ser9, it was reduced compared to the WT mice, which were corrected by the rosi treatment but were unaffected by the Aβ25–35 injection. Conclusions Seipin deficiency in astrocytes increases GSK3β activity and levels of IL-6 and TNF-α through reducing PPARγ, which can facilitate Aβ25–35/1–42-induced neuroinflammation to cause the death of neuronal cells and cognitive deficits. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0598-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Qian
- State Key Laboratory of Reproductive Medicine, Hanzhong Road 140, Nanjing, 210029, China.,Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jun Yin
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029, China
| | - Juan Hong
- State Key Laboratory of Reproductive Medicine, Hanzhong Road 140, Nanjing, 210029, China.,Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029, China
| | - Guoxi Li
- State Key Laboratory of Reproductive Medicine, Hanzhong Road 140, Nanjing, 210029, China.,Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029, China
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Beijing, 100191, China
| | - Qi Wan
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China.
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Hanzhong Road 140, Nanjing, 210029, China. .,Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029, China.
| |
Collapse
|
145
|
Labour MN, Vigier S, Lerner D, Marcilhac A, Belamie E. 3D compartmented model to study the neurite-related toxicity of Aβ aggregates included in collagen gels of adaptable porosity. Acta Biomater 2016; 37:38-49. [PMID: 27057929 DOI: 10.1016/j.actbio.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/29/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Insoluble deposits of β-amyloid (Aβ) are associated to neurodegenerative pathologies, in particular Alzheimer's Disease (AD). The toxicity of synthetic amyloid-like peptides has been largely demonstrated and shown to depend upon their aggregation state. However, standard 2D cell culture conditions are not well suited to study the role of the close vicinity of Aβ aggregates and growing neurites in the degenerative process. Here, we have designed a compartmented set-up where model neural cells are differentiated on the surface of Aβ-containing collagen matrices. The average pore size can be modulated, from below 0.2μm to more than 0.5μm by simple treatment with collagenase, to respectively hamper or permit neurite outgrowth towards the depth of the matrix. Dense Aβ aggregates (Congo red and ThT-positive) were obtained inside the collagen matrix with a homogeneous distribution and dimensions similar to those observed in post-mortem brain slices from Alzheimer's patients. The aggregates are not toxic to cells when the pore size is small, in spite of relatively high concentrations of 0.05-0.62mg of peptide per gram of collagen (equivalent to 11.3-113μM). In contrast, on Aβ-containing matrices with large pores, massive neural death is observed when the cells are seeded in the same conditions. It is the first time to our knowledge that Aβ aggregates with a typical morphology of dense plaques are obtained within a porous biomimetic matrix, and are shown to be toxic only when accessible to differentiating cells. STATEMENT OF SIGNIFICANCE Insoluble deposits of β-amyloid (Aβ) are associated to neurodegenerative pathologies, in particular Alzheimer's Disease (AD). In this study, we have formed Aβ aggregates directly inside a biomimetic collagen matrix loaded with growth factors to induce the differentiation of PC12 or SH-SY6Y cells. For the first time, we show that when the contact between cells and Aβ aggregates is allowed by opening up the matrix porosity, the close vicinity with aggregates induces neurite dystrophy. The compartmented 3D culture model developed and used in this study is a valuable tool to study the cytotoxicity of preformed dense Aβ aggregates and proves that contact between the aggregates and neurons is required to induce neurodegenerative processes.
Collapse
|
146
|
Negatively charged hydrophobic nanoparticles inhibit amyloid β-protein fibrillation: The presence of an optimal charge density. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
147
|
Chemuru S, Kodali R, Wetzel R. Improved chemical synthesis of hydrophobic Aβ peptides using addition of C-terminal lysines later removed by carboxypeptidase B. Biopolymers 2016; 102:206-21. [PMID: 24488729 DOI: 10.1002/bip.22470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023]
Abstract
Many amyloidogenic peptides are highly hydrophobic, introducing significant challenges to obtaining high quality peptides by chemical synthesis. For example, while good yield and purity can be obtained in the solid-phase synthesis of the Alzheimer's plaque peptide Aβ40, addition of a C-terminal Ile-Ala sequence to generate the more toxic Aβ42 molecule creates a much more difficult synthesis resulting in low yields and purities. We describe here a new method that significantly improves the Fmoc solid-phase synthesis of Aβ peptides. In our method, Lys residues are linked to the desired peptide's C-terminus through standard peptide bonds during the synthesis. These Lys residues are then removed post-purification using immobilized carboxypeptidase B (CPB). With this method we obtained both Aβ42 and Aβ46 of superior quality that, for Aβ42, rivals that obtained by recombinant expression. Intriguingly, the method appears to provide independent beneficial effects on both the total synthetic yield and on purification yield and final purity. Reversible Lys addition with CPB removal should be a generally useful method for making hydrophobic peptides that is applicable to any sequence not ending in Arg or Lys. As expected from the additional hydrophobicity of Aβ46, which is extended from the sequence Aβ42 by a C-terminal Thr-Val-Ile-Val sequence, this peptide makes typical amyloid at rates significantly faster than for Aβ42 or Aβ40. The enhanced amyloidogenicity of Aβ46 suggests that, even though it is present in relatively low amounts in the human brain, it could play a significant role in helping to initiate Aβ amyloid formation.
Collapse
Affiliation(s)
- Saketh Chemuru
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | |
Collapse
|
148
|
Liu CH, Bu XL, Wang J, Zhang T, Xiang Y, Shen LL, Wang QH, Deng B, Wang X, Zhu C, Yao XQ, Zhang M, Zhou HD, Wang YJ. The Associations between a Capsaicin-Rich Diet and Blood Amyloid-β Levels and Cognitive Function. J Alzheimers Dis 2016; 52:1081-8. [DOI: 10.3233/jad-151079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
149
|
Binding Patterns Associated Aß-HSP60 p458 Conjugate to HLA-DR-DRB Allele of Human in Alzheimer's Disease: An In Silico Approach. Interdiscip Sci 2016; 10:93-104. [PMID: 27106586 DOI: 10.1007/s12539-016-0170-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a complex, irreversible, progressive brain disorder, which diminishes memory in a slow pace and thinking skills; ranked third by experts. It is a complex disorder that involves numerous cellular and subcellular alterations. The pathogenesis of AD is still unknown, but for better understanding, we proposed an in silico analysis to find out the binding patterns associated with HSP60. Several experimental conclusions have been drawn to understand the actual mechanism behind the forming of aggregation due to misfolding. Protein misfolding disorder is experimentally identified by the accumulation of protein aggregates at the intracellular or extracellular region of brain that adversely affects the cell functioning by disrupting the connection between the cells and ultimately leading to cell death. To unravel the mystery behind the mechanism of AD through computational approach, the current proposal shows the designing of Aß-HSP60 p458 conjugate followed by secondary structure analysis, which is further targeted to HLA-DR-DRB allele of human. The antigenicity of Aß (1-42) peptide is the major concern in our study predicted through PVS server, which provides an insight into the immunogenic behavior of Aß peptide. The mechanism involved in the interaction of HSP60-Aß conjugate with HLA-DR-DRB allele considering the fact that Aß (1-42) is highly immunogenic in human and interactions evoked highly robust T-cell response through MHC class II binding predictions. It was assisted by molecular dynamics simulation of predicted HSP60 structure followed by validation through Ramachandran plot analysis and protein-protein interaction of Aß (1-42) with HSP60.
Collapse
|
150
|
Li N, Liu K, Qiu Y, Ren Z, Dai R, Deng Y, Qing H. Effect of Presenilin Mutations on APP Cleavage; Insights into the Pathogenesis of FAD. Front Aging Neurosci 2016; 8:51. [PMID: 27014058 PMCID: PMC4786568 DOI: 10.3389/fnagi.2016.00051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Alzheimer disease (AD) is characterized by progressive memory loss, reduction in cognitive functions, and damage to the brain. The β-amyloid precursor protein can be sequentially cleaved by β- secretase and γ-secretase. Mutations in the presenilin1(PS1) are the most common cause of Familial Alzheimer’s disease (FAD). PS1 mutations can alter the activity of γ-secretase on the cleavage of the β-amyloid precursor protein, causing increased Aβ production. Previous studies show that the βAPP-C-terminal fragment is first cleaved by β-scretase, primarily generating long fragments of Aβ48 and Aβ49, followed by the stepwise cleavage of every three amino acid residues at the C terminus, resulting in Aβ48-, 45-, 42 line and Aβ49-, 46-, 43-, 40 line. Here, we used LC-MS/MS to analyze unique peptides IAT, VVIA, ITL, TVI, IVI through sequential cleavage, combined with ELISA to test the level of Aβ42 and Aβ40 for validation. The results show that most FAD mutant PS1 can alter the level of Aβ42 and Aβ40 monitored by the Aβ42/Aβ40 ratio. Among them, six mutants (I143T, H163P, S170F, Q223R, M233V, and G384A) affect the Aβ42/40 ratio through both Aβ49-40 and Aβ48-38 lines; L166P through decreasing the Aβ49-40 line, six mutants (I143V, M146V, G217A, E280A, L381V, and L392V) through increasing the Aβ48-42 line. More importantly, we found some mutations can affect the γ-secretase cleavage preference of α-CTF and β-CTF. In conclusion, we found that the FAD PS1 mutations mainly increase the generation of Aβ42 by decreasing the cleavage of Aβ42–Aβ38 and Aβ43–Aβ40.
Collapse
Affiliation(s)
- Nuomin Li
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yunjie Qiu
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Zehui Ren
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology Beijing, China
| |
Collapse
|